Freescale’s MPXY8300 tire pressure monitoring system (TPMS) chipset is designed to enable a timely warning to the driver in the case of under-inflated or over-inflated tires on cars, trucks or buses—even while in motion. It is the first of its kind to offer capacitive sensor technology with full integration of a pressure sensor, an 8-bit S08 microcontroller (MCU), a radio frequency (RF) transmitter and a 2-axis accelerometer with X and Z axis in one package.

Key Features
- Pressure and temperature sensors
- Accelerometers for motion detection
- Integrated 315/434 MHz PLL-based RF transmitter
- Multiple baud rate and modulation scheme
- 8-bit MCU with 512B RAM and 16 KB flash
- Single-channel LF input with detector/decoder
- Over-temperature shutdown
- Supply voltage measurement
- Low-power wake-up timer and periodic reset driver by low frequency oscillations (LFO)
- Selective encapsulation for media protection

Design Considerations
- Power management specific to TPMS for long battery life
- Robust sensing accuracy in harsh environments during vehicle operation
- Fully integrated device in single package reduces system cost and development cycle time
- Precise tire pressure measurement
- Complies with the U.S. Federal Motor Vehicle Safety Standard (FMVSS) 138
- MCU, RF transmitter, LF receiver, pressure sensor and accelerometer integrated in a single small outline wide body, 20-pin package (SOIC 20 WB) minimizing components and space needed
- RF transmission/protocol can be used globally with regional variation
- Customizable and programmable

Fact Sheet

MPXY8300 Tire Pressure Monitoring System

TPMS All-in-One Package Block Diagram

- Pressure Sensor: CMOS P-Cell, Signal Conditioning, Trim, Power Control
- RF Transmitter: PLL, XTL OSC, VCO, Data Buffer, RF Out, Bit Rate Gen., SPI Slave
- MCU: LF Det/Dec, 16 KB Flash, 512B RAM, 32-bit Register, Wake-up Timer, 8-bit ADC, 8 MHz Osc, LFO, S08 MCU Core, C-to-V Accelerometer Interface

X-Axis and Z-Axis Accelerometer
MPXY8300 Selector Guide

<table>
<thead>
<tr>
<th>Root Part Number</th>
<th>MPXY8310A</th>
<th>MPXY8310B</th>
<th>MPXY8310C</th>
<th>MPXY8300A</th>
<th>MPXY8300B</th>
<th>MPXY8300C</th>
<th>MPXY8320A</th>
<th>MPXY8320B</th>
<th>MPXY8320C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Pressure Range</td>
<td>100–450 kPa</td>
<td>100–450 kPa</td>
<td>100–450 kPa</td>
<td>100–800 kPa</td>
<td>100–800 kPa</td>
<td>100–800 kPa</td>
<td>100–1500 kPa</td>
<td>100–1500 kPa</td>
<td>100–1500 kPa</td>
</tr>
<tr>
<td>Pressure Sensor</td>
<td>±7 kPa</td>
<td>±7 kPa</td>
<td>±7 kPa</td>
<td>±10 kPa</td>
<td>±10 kPa</td>
<td>±10 kPa</td>
<td>±20 kPa</td>
<td>±20 kPa</td>
<td>±20 kPa</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±2 g offset</td>
</tr>
<tr>
<td>Z-axis</td>
<td>±2 g offset</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Physical Self Test</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>RF Type</td>
<td>Transmitter</td>
<td>16 KB</td>
<td>512B</td>
<td>315 MHz/434 MHz RF Transmitter</td>
<td>ASK and FSK Modulation</td>
<td>0SC</td>
<td>4-ch., 10-bit</td>
<td>1</td>
<td>2-ch., 16-bit Timer/Pulse-Width Modulator</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-40ºC to +70ºC</td>
<td>4-ch., 10-bit</td>
<td>1</td>
<td>2-ch., 16-bit Timer/Pulse-Width Modulator</td>
<td>SOIC 20 WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions: 0ºC to 70ºC

TPMS Architecture Block Diagram

Wheel Module
- TPMS Wheel Module (x4)
 - Sensors P, T and V
 - Motion Sensor
 - Signal Conditioning and Protocol
 - LF Receiver
 - RF Tx

Car Body
- TPMS (RKE) Receiver
 - Body Controller MCU
 - RF Receiver
 - Phys I/F

TPMS Development Tools

<table>
<thead>
<tr>
<th>Product</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMS Evaluation Kit</td>
<td>315 MHz Kit—KIT315MPXY8300A</td>
</tr>
<tr>
<td>TPMS MPXY8300 Module Board</td>
<td>315 MHz Board—EVB315MPXY8300A1</td>
</tr>
<tr>
<td>TPMS RF Receiver USB Demonstration Board</td>
<td>315 MHz Board—EVB315MPXY8300A2</td>
</tr>
<tr>
<td>TPMS 125 kHz LF Transmitter Evaluation Board</td>
<td>EVBMPXY8300A3</td>
</tr>
<tr>
<td>TPMS RF Receiver Evaluation Board</td>
<td>315 MHz Board—MC33696MOD315EV</td>
</tr>
<tr>
<td>BDM Multilink</td>
<td>USBMULTILINKBDM</td>
</tr>
<tr>
<td>CodeWarrior™ Development Studio and Service Pack V 6.0</td>
<td>CWX-HXX-SE</td>
</tr>
</tbody>
</table>

Learn More:
For current information about Freescale products and documentation, please visit www.freescale.com/tpms.