
 Page 1 of 8

07 September 2006

Introduction
This application note discusses a technique to divide binary coded decimal (BCD) numbers in hardware.
BCD division is easily achievable by repeatedly adding the divisor to itself and counting the iterations
required for the sum to equal the dividend. The resulting count yields the quotient, while the difference
between the sum and dividend provides the remainder. However, this technique crawls when the
dividend is orders of magnitude larger than the divisor.

BCD division by shift and subtract offers an alternative method appropriate for this situation. Based on
long division, it is more difficult to implement, but it tremendously improves the computation time
needed to divide a small number into a large one. This makes it suitable for applications requiring regular
calculations of this sort (e.g. averaging small sets of large numbers).

Besides a discussion of the concepts, this document provides an open source VHDL example
implementation of BCD division by shift and subtract, applicable to CPLDs and FPGAs. This example
divides 2-digit (or less) divisors into 6-digit (or less) dividends. It is easily modified to fit other
dividend/divisor size requirements.

Application

Concept
As alluded to above, BCD division by shift and subtract mimics long division. The flow chart in Figure 1
describes the procedure. As in long division, left-align the divisor below the dividend. Compare the
divisor to the dividend digits directly above it to determine the most significant quotient digit. Once the
divisor is greater than the dividend digits above it, the divisor is shifted to the right one digit. Comparing
the divisor to the new dividend digits above produces the next quotient digit. This process repeats until
the divisor is larger than the remaining dividend. The quotient is complete, and the residual dividend
equals the remainder.

To help illustrate the concept, the procedure is applied in the example below. This technique uses only
addition, subtraction, comparisons, and shifting, making it straightforward to implement in programmable
logic.

Application Note DKAN0003A

Binary Coded Decimal (BCD)
Division by Shift and Subtract

BCD Division by Shift and Subtract

Digi-Key Corporation Page 2 of 8

Figure 1. BCD Division by Shift and Subtract Flow Chart

Example

BCD Division by Shift and Subtract

Digi-Key Corporation Page 3 of 8

BCD Division by Shift and Subtract

Digi-Key Corporation Page 4 of 8

Performance Considerations
BCD division by shift and subtract has its place. It offers an enormous performance improvement over
the generic BCD division by summing (described in the introduction) for cases with dividend >> divisor.
Given comparable dividend and divisor values, BCD division by shift and subtract still successfully
executes, but takes somewhat longer than the other method. Certainly, BCD division by shift and subtract
requires more complex logic to implement properly.

Appendix A contains open source VHDL code that divides 2-digit (or less) divisors into 6-digit (or less)
dividends. In this specific case, BCD division by shift and subtract will execute up to 8000 times faster
than BCD division by summing (best case) and about 10-15 times slower in a worst case scenario. Given
a random set of numbers, BCD division by shift and subtract executes thousands of times faster than BCD
division by summing.

Conclusion
The concepts described in this application note provide a means of constructing BCD division logic
without the inconveniencies of converting between BCD and Binary. It offers substantial performance
improvements over generic BCD division by summing in many cases.

Appendix A: Example Source Code
The following open source VHDL code divides 2-digit (or less) divisors into 6-digit (or less) dividends.
The code defines the Control Logic block in Figure 2. The BCD Adder block in Figure 2 represents a 3-
digit BCD adder. For more information on BCD adder construction, see the background material
included in Digi-Key Application Note DKAN0002A.

BCD Division by Shift and Subtract

Digi-Key Corporation Page 5 of 8

3-digit
BCD Adder

A[11..0]
B[11..0]
Cin

Σ[11..0]
result[11..0]

BCD Adder

subtrahend[11..0]
minuend[11..0]

clock
reset_n
enable
dividend[23..0]
divisor[7..0]

remainder[7..0]
quotient[23..0]

busy

Control Logic

Figure 2. BCD Division Example Circuit

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY division_controller IS
 PORT(
 clock : IN STD_LOGIC; --system clock
 reset_n : IN STD_LOGIC; --resets on logic low
 enable : IN STD_LOGIC; --signal high for division to start
 busy : OUT STD_LOGIC; --goes high when busy, low when done
 divisor : IN STD_LOGIC_VECTOR(7 DOWNTO 0); --2 digit divisor
 dividend : IN STD_LOGIC_VECTOR(23 DOWNTO 0); --6 digit dividend
 quotient : OUT STD_LOGIC_VECTOR(23 DOWNTO 0);--6 digit quotient result
 remainder : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); --2 digit remainder result
 subtrahend : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);--output to bcd adder
 minuend : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);--output to bcd adder
 result : IN STD_LOGIC_VECTOR(11 DOWNTO 0)); --input from bcd adder
END division_controller;

ARCHITECTURE controller OF division_controller IS
 TYPE CONTROL IS(ready,shift,compare,subtract);
 SIGNAL state : CONTROL;
 SIGNAL q : STD_LOGIC_VECTOR(1 DOWNTO 0); --buffer for reset_n
 SIGNAL divis : STD_LOGIC_VECTOR(7 DOWNTO 0); --buffer for divisor
 SIGNAL divid : STD_LOGIC_VECTOR(23 DOWNTO 0); --buffer for dividend
 SIGNAL divid_part : STD_LOGIC_VECTOR(11 DOWNTO 0); --dividend digits under fire
 SIGNAL quot : STD_LOGIC_VECTOR(23 DOWNTO 0); --buffer for quotient result
BEGIN

 PROCESS(clock)
 VARIABLE q_index : INTEGER RANGE 0 TO 6; --index of quotient digit under fire
 BEGIN

 IF(clock'EVENT and clock = '1') THEN
 q(1) <= q(0);
 q(0) <= reset_n;
 CASE state IS

BCD Division by Shift and Subtract

Digi-Key Corporation Page 6 of 8

 --ready and waiting for new division process to start
 WHEN ready =>
 busy <= '0';
 quotient <= "000000000000000000000000";
 remainder <= "00000000";
 subtrahend <= "000000000000";
 minuend <= "000000000000";
 q_index := 0;
 quot <= "000000000000000000000000";
 IF(enable = '1') THEN
 --get user inputs
 divis <= divisor;
 divid <= dividend;
 --find ten's complement of the divisior for future subtractions
 subtrahend <= "1001" & ("1001" - divisor(7 DOWNTO 4)) &

 ("1001" - divisor(3 DOWNTO 0));
 minuend <= "000000000001";
 state <= shift;
 ELSE
 state <= ready;
 END IF;

 --find appropriate dividend bits to compare with divisor
 WHEN shift =>
 busy <= '1';
 --finish ten's complement calculation for future subtractions
 IF(q_index = 0) THEN
 subtrahend <= result;
 END IF;
 q_index := q_index + 1;
 --shift to appropriate dividend bits
 IF(q_index = 1) THEN
 divid_part <= "00000000" & divid(23 DOWNTO 20);
 state <= compare;
 ELSIF(q_index = 2) THEN
 divid_part <= "0000" & divid(23 DOWNTO 16);
 state <= compare;
 ELSIF(q_index = 3) THEN
 divid_part <= divid(23 DOWNTO 12);
 state <= compare;
 ELSIF(q_index = 4) THEN
 divid_part <= divid(19 DOWNTO 8);
 state <= compare;
 ELSIF(q_index = 5) THEN
 divid_part <= divid(15 DOWNTO 4);
 state <= compare;
 ELSIF(q_index = 6) THEN
 divid_part <= divid(11 DOWNTO 0);
 state <= compare;
 ELSE
 --error code
 quotient <= "101010101010101010101010";
 state <= ready;
 END IF;

BCD Division by Shift and Subtract

Digi-Key Corporation Page 7 of 8

 --compare dividend bits to divisor
 WHEN compare =>
 busy <= '1';
 IF(divis > divid_part) THEN --if divisor > digits above it
 IF(q_index = 6) THEN --if no more shifting can be done
 quotient <= quot;
 remainder <= divid(7 DOWNTO 0);
 state <= ready;
 ELSE --if shifting not done
 state <= shift;
 END IF;
 ELSE --if divisor <= digits above it
 minuend <= divid_part;
 state <= subtract;
 END IF;

 --subtract divisor from dividend bits
 --replace dividend value
 --increment quotient digit
 WHEN subtract =>
 busy <= '1';
 IF(q_index = 1) THEN
 divid(23 DOWNTO 20) <= result(3 DOWNTO 0);
 quot(23 DOWNTO 20) <= quot(23 DOWNTO 20) + 1;
 ELSIF(q_index = 2) THEN
 divid(23 DOWNTO 16) <= result(7 DOWNTO 0);
 quot(19 DOWNTO 16) <= quot(19 DOWNTO 16) + 1;
 ELSIF(q_index = 3) THEN
 divid(23 DOWNTO 12) <= result;
 quot(15 DOWNTO 12) <= quot(15 DOWNTO 12) + 1;
 ELSIF(q_index = 4) THEN
 divid(19 DOWNTO 8) <= result;
 quot(11 DOWNTO 8) <= quot(11 DOWNTO 8) + 1;
 ELSIF(q_index = 5) THEN
 divid(15 DOWNTO 4) <= result;
 quot(7 DOWNTO 4) <= quot(7 DOWNTO 4) + 1;
 ELSIF(q_index = 6) THEN
 divid(11 DOWNTO 0) <= result;
 quot(3 DOWNTO 0) <= quot(3 DOWNTO 0) + 1;
 ELSE
 --error code
 quotient <= "101010101010101010101010";
 END IF;
 divid_part <= result;
 state <= compare;

 END CASE;

 --clear to ready state when reset
 IF(reset_n = '0') THEN
 state <= ready;
 END IF;

 END IF;
 END PROCESS;
END controller;

BCD Division by Shift and Subtract

Digi-Key Corporation Page 8 of 8

Appendix B: Applicable Parts Manufacturers
Digi-Key carries a variety of parts suitable for implementing BCD division in programmable logic.

Altera (http://dkc1.digikey.com/us/mkt/vendors/544.html)
 MAX II CPLDs
 Cyclone/Cyclone II FPGAs
 Stratix/Stratix II FPGAs

Cypress Semiconductor (http://dkc1.digikey.com/us/mkt/vendors/428.html)
 Delta39K CPLDs

Xilinx (http://dkc1.digikey.com/us/mkt/vendors/122.html)
 CoolRunner II CPLDs
 Spartan-3 FPGAs
 Virtex-4 FPGAs

Disclaimer
Digi-Key offers its Technical Assistance and Design Support Services as a convenience to Digi-Key customers. Digi-Key
Technical Assistance and Design Support Services personnel strive to provide useful information regarding Digi-Key products.
DIGI-KEY DOES NOT GUARANTEE THAT ANY INFORMATION OR RECOMMENDATION PROVIDED IS
ACCURATE, COMPLETE, OR CORRECT, AND DIGI-KEY SHALL HAVE NO RESPONSIBILITY OR LIABILITY
WHATSOEVER IN CONNECTION WITH ANY INFORMATION OR RECOMMENDATION PROVIDED, OR THE
CUSTOMER'S RELIANCE ON SUCH INFORMATION OR RECOMMENDATION. THE CUSTOMER IS SOLELY
RESPONSIBLE FOR ANALYZING AND DETERMINING THE APPROPRIATENESS OF ANY INFORMATION OR
RECOMMENDATION PROVIDED BY DIGI-KEY TECHNICAL ASSISTANCE AND DESIGN SUPPORT SERVICES
PERSONNEL, AND ANY RELIANCE ON SUCH INFORMATION OR RECOMMENDATION IS AT THE CUSTOMER'S
SOLE RISK AND DISCRETION. ACCORDINGLY, THE CUSTOMER SHALL RELEASE AND HOLD DIGI-KEY
HARMLESS FROM AND AGAINST ANY AND ALL LOSS, LIABILITY, AND DAMAGE INCURRED BY THE
CUSTOMER OR ANY THIRD PARTY AS A RESULT OF ANY INFORMATION OR RECOMMENDATION PROVIDED
TO THE CUSTOMER OR THE CUSTOMER'S RELIANCE ON SUCH INFORMATION OR RECOMMENDATION.

