AIVKx

High Temperature Automotive MultiLayer Varistor

AVX High Temperature Multi-Layer Varistors are designed for underhood applications. Products have been tested, qualified, and specified to $150^{\circ} \mathrm{C}$. The MLV advantage is EMI/RFI attenuation in the off state. This allows designers the ability to combine the circuit protection and EMI/RFI attenuation function into a single highly reliable device.

The CAN and AntennaGuard series are the first releases in a planned series to include higher voltages and a variety of case size. AEC Q200 data packages available.

AVX Part No.	\mathbf{V}_{w} (DC)	$\mathbf{V}_{\mathbf{w}}(\mathrm{AC})$	$\mathbf{V}_{\mathbf{B}}$	\mathbf{I}_{L}	$\mathbf{E}_{\boldsymbol{T}}$	$\mathbf{I}_{\mathbf{P}}$	Cap.	Case Size	Elements
CANAT01_-	≤ 18	≤ 14	120	10	0.015	4	22	0603	1
CANAT02_-	≤ 18	≤ 14	70	10	0.015	4	22	0405	2
CANAT04_-	≤ 18	≤ 14	100	10	0.015	4	22	0612	4

AVX Part No.	$\mathbf{V}_{\mathrm{w}}(\mathrm{DC})$	$\mathbf{V}_{\mathrm{w}}(\mathrm{AC})$	\mathbf{I}_{L}	Cap	Cap Tolerance	Case Size
VCAT06AG18120YAT_- $^{\text {CA }}$	≤ 18	≤ 14	10	12	$+4,-2 p F$	0603

$\mathbf{V}_{\mathrm{W}}(\mathbf{D C})$	DC Working Voltage [V]	$\mathbf{I}_{\mathbf{L}}$	Maximum leakage current at the working voltage $[\mu \mathrm{A}]$
$\mathbf{V}_{\mathrm{W}}(\mathbf{A C})$	AC Working Voltage $[\mathrm{V}]$	$\mathbf{E}_{\mathbf{T}}$	Transient Energy Rating [J, 10x1000 $\mu \mathrm{S}]$
$\mathbf{V}_{\mathbf{B}}$	Breakdown Votage $\left[\mathrm{V} @ 1 \mathrm{~mA}_{\mathrm{DC}}\right]$	$\mathbf{I}_{\mathbf{P}}$	Peak Current Rating $[\mathrm{A}, 8 \mathrm{x} 20 \mu \mathrm{~S}]$
$\mathbf{V}_{\mathbf{C}}$	Clamping Votage $\left[\mathrm{V} \mathrm{@} \mathrm{I}_{\mathrm{VC}}\right]$	Cap	Capacitance $[\mathrm{pF}] @ 1 \mathrm{KHz}$ specified and $0.5 \mathrm{~V}_{\mathrm{RMS}}$

Size (EIA)	$\mathbf{0 6 0 3}$ Discrete	$\mathbf{0 4 0 5} \mathbf{- 2}$ Elements Array	$\mathbf{0 6 1 2} \mathbf{- 4}$ Elements Array
\mathbf{L}	$1.60 \pm .15$	1.00 ± 0.15	1.60 ± 0.20
	(0.063 ± 0.006)	(0.039 ± 0.006)	(0.063 ± 0.008)
\mathbf{W}	0.80 ± 0.15	1.37 ± 0.15	3.20 ± 0.20
	(0.032 ± 0.006)	(0.054 ± 0.006)	(0.126 ± 0.008)
\mathbf{T}	0.90 Max	0.66 Max	$(0.22 \mathrm{Max}$
	$(0.035 \mathrm{Max})$.	$(0.026 \mathrm{Max})$.	0.41 ± 0.10
$\mathbf{B W}$	$\mathrm{~N} / \mathrm{A}$	0.36 ± 0.10	(0.016 ± 0.004)
	0.35 ± 0.15	(0.014 ± 0.004)	$0.18+0.25 /-0.08$
	(0.014 ± 0.006)	0.20 ± 0.10	$(0.007+.01 /-.003)$
\mathbf{P}	N / A	(0.008 ± 0.004)	0.76 REF
		0.64 REF	$(0.030 \mathrm{REF})$

0405
Array

0612
Array

No.	Item	Requirement	Test method
1	Operating Temp.	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
2	Appearance/Dimensions	No visible damage Dimensions: see par. 6	Visual examination at 10\% magnification Dimensions verification by class2 caliper
3	Peak Current	Breakdown voltage change shall not be more than $\pm \mathbf{1 0 \%}$	a. Apply 1mA DC of each polarity to device terminals. Record polarity and magnitude of resultant voltage. b. Apply $8 \times 20 \mu$ S current pulse, peak value per standard parts table 5 , to terminals with same polarity as Step (a). c. Apply 1mA DC to terminals, same polarity as Steps (a) and (b). Record magnitude of resultant voltage.
4	Transient Energy	Breakdown voltage change shall not be more than $\pm \mathbf{1 0 \%}$	(a) Apply 1mA DC of each polarity to device terminals. Record polarity and magnitude of resultant voltage. (b) Apply $10 \times 1000 \mu \mathrm{~S}$ current pulse of amplitude sufficient to generate the energy as specified in standard parts table, 5(calculated by $E=0.0014 \mathrm{Vp}$ Ip, where $V p$ is peak value of voltage and Ip is peak current)
5	Solderability	The dipped surface shall be at least 95% covered with a new smooth solder coating.	Soak in eutectic solder bath of temperature at 230+/$5^{\circ} \mathrm{C}$ for 5 sec .
6	Solder heat resistance	No mechanical damage. Forward Breakdown voltage change shall not be more than $\pm 10 \%$	a. Read forward breakdown voltage. b. Soak in eutectic solder bath of temperature at $260+/-5^{\circ} \mathrm{C}$. for $10+/-1 \mathrm{sec}$. c. Natural cool down to $+25^{\circ} \mathrm{C}$ d. Read forward breakdown voltage after 24+/-2 hours.
7	Humidity Life	Forward breakdown voltage change shall not be more than $\pm 10 \%$	a. Read forward breakdown voltage. b. Leave device in chamber of $+85+/-3^{\circ} \mathrm{C}, 85+/ 5 \%$ relative humidity at 100% of working voltage for $1,000 \pm 5$ hours. c. Read forward breakdown voltage after 3-4 hours conditioning at $25+/-5^{\circ} \mathrm{C}$
8	Life Test	Forward breakdown voltage change shall not be more than $\pm 10 \%$ and IL spec is allowed to increase by one order of magnitude	a. Read forward breakdown voltage. b. Apply $\mathbf{1 0 0 \%}$ of working voltage at test temperature of $150+/-4^{\circ} \mathrm{C}$ for $1,000+48 /-0 h o u r s$. c. Read forward breakdown voltage after $24+/-2$ hours conditioning at $25+/-5^{\circ} \mathrm{C}$
9	Termination Strength	All components must stay in place.	a. Solder components onto substrate. b. Apply $\mathbf{5 0 0}$ grams lateral force across the body of the component.

