

Absolute Maximum Ratings(Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-6.5	mA
I_{OL}	LOW Level Output Current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.4	3.2		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
IIH	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$			-2	mA
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with HIGH Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZL }}$	Off-State Output Current with LOW Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 3)	-40		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max (Note 4)		55	70	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs OPEN.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
tpLH	Propagation Delay Time LOW-to-HIGH Level Output	Data to Y		9		12	ns
	Propagation Delay Time HIGH-to-LOW Level Output	Data to Y		9		12	ns
tpLH	Propagation Delay Time LOW-to-HIGH Level Output	Select to Y		18		21	ns
${ }_{\text {tphL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Y		18		21	ns
${ }_{\text {t }}{ }_{\text {PZH }}$	Output Enable Time to HIGH Level Output	Output Control to Y		16.5		19.5	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output	Output Control to Y		18		21	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time to HIGH Level Output (Note 5)	Output Control to Y		9.5			ns
tpLz	Output Disable Time to LOW Level Output (Note 5)	Output Control to Y		15			ns

Note 5: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
