APT6M100K

1000V, 6A, 2.50 MAX

N-Channel MOSFET

Power MOS $8^{T M}$ is a high speed, high voltage N -channel switch-mode power MOSFET. A proprietary planar stripe design yields excellent reliability and manufacturability. Low switching loss is achieved with low input capacitance and ultra low $\mathrm{C}_{\text {rss }}$ "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control slew rates during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency. Reliability in flyback, boost, forward, and other circuits is enhanced by the high avalanche energy capability.

FEATURES

- Fast switching with low EMI/RFI
- Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- Ultra low $\mathrm{C}_{\text {rss }}$ for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- PFC and other boost converter
- Buck converter
- Two switch forward (asymmetrical bridge)
- Single switch forward
- Flyback
- Inverters

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_{D}	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	6	
	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	4	A
I_{DM}	Pulsed Drain Current ${ }^{(1)}$	20	
$\mathrm{~V}_{\mathrm{GS}}$	Gate-Source Voltage	± 30	V
E_{AS}	Single Pulse Avalanche Energy ${ }^{(2)}$	310	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current, Repetitive or Non-Repetitive	3	A

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Typ	Max	Unit
P_{D}	Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			225	W
$\mathrm{R}_{\text {өJC }}$	Junction to Case Thermal Resistance			0.56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{\theta CS}}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		
$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55		150	${ }^{\circ} \mathrm{C}$
T_{L}	Soldering Temperature for 10 Seconds (1.6mm from case)			300	
W_{T}	Package Weight		0.07		OZ
			1.2		g
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in.lbf
				1.1	$\mathrm{N} \cdot \mathrm{m}$

Static Characteristics
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified
APT6M100K

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {BRI(DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		1000			V
$\Delta \mathrm{V}_{\text {BR(DSS })} / \Delta \mathrm{T}_{\mathrm{j}}$	Breakdown Voltage Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$			1.15		$\mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain-Source On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$			2.05	2.50	Ω
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		3	4	5	V
$\Delta \mathrm{V}_{\mathrm{GS}(\text { (th })} / \Delta \mathrm{T}_{\mathrm{J}}$	Threshold Voltage Temperature Coefficient				-10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$V_{\text {DS }}=1000 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
		$\mathrm{v}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			500	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$				± 100	nA

Dynamic Characteristics
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
g_{fs}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$		5.6		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		1410		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			19		
$\mathrm{C}_{\text {oss }}$	Output Capacitance			120		
$\mathrm{Co}_{\mathrm{o}(\mathrm{rr})}{ }^{4}$	Effective Output Capacitance, Charge Related	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 667 \mathrm{~V}$		48		
$\mathrm{Co}_{\text {(er) }}{ }^{\text {(5) }}$	Effective Output Capacitance, Energy Related			25		
Q_{g}	Total Gate Charge	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \\ V_{\mathrm{DS}}=500 \mathrm{~V} \end{gathered}$		43		nC
$Q_{\text {gs }}$	Gate-Source Charge			8		
$Q_{g d}$	Gate-Drain Charge			21		
$t_{\text {d(on) }}$	Turn-On Delay Time	Resistive Switching$\begin{gathered} V_{D D}=667 \mathrm{~V}, I_{D}=3 \mathrm{~A} \\ R_{G}=10 \Omega^{(6)}, V_{G G}=15 \mathrm{~V} \end{gathered}$		6.4		ns
t_{r}	Current Rise Time			5.8		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time			22		
$\mathrm{t}_{\text {f }}$	Current Fall Time			5.4		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
I_{s}	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n junction diode (body diode)			6	A
$I_{\text {SM }}$	Pulsed Source Current (Body Diode) ${ }^{1}$				20	
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\text {SD }}=3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GS }}=0 \mathrm{~V}$			1.3	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\text {SD }}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}{ }^{(3)}$		1025		ns
Q_{rr}	Reverse Recovery Charge	$\mathrm{di}_{\text {SD }} / \mathrm{dtt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		17		$\mu \mathrm{C}$
dv/dt	Peak Recovery dv/dt	$\begin{gathered} \mathrm{I}_{\mathrm{SD}} \leq 3 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 1000 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}}=667 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{gathered}$			10	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
(2) Starting at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=68.89 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=3 \mathrm{~A}$.
(3) Pulse test: Pulse Width $<380 \mu \mathrm{~s}$, duty cycle $<2 \%$.
(4) $\mathrm{C}_{\mathrm{o}(\mathrm{cr})}$ is defined as a fixed capacitance with the same stored charge as $\mathrm{C}_{\mathrm{Oss}}$ with $\mathrm{V}_{\mathrm{DS}}=67 \%$ of $\mathrm{V}_{\text {(BR)DSS }}$
(5) $\mathrm{C}_{\text {o(er) }}$ is defined as a fixed capacitance with the same stored energy as $\mathrm{C}_{\mathrm{OSS}}$ with $\mathrm{V}_{\mathrm{DS}}=67 \%$ of $\mathrm{V}_{(B R) D S s}$. To calculate $\mathrm{C}_{\text {o(er) }}$ for any value of V_{DS} less than $\mathrm{V}_{\text {(BR)DSs, }}$, use this equation: $\mathrm{C}_{\mathrm{o}(\mathrm{er})}=-4.09 \mathrm{E}-8 / \mathrm{V}_{\mathrm{DS}}{ }^{\wedge} 2+7.21 \mathrm{E}-9 / \mathrm{V}_{\mathrm{DS}}+1.40 \mathrm{E}-11$.
(6) R_{G} is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Figure 1, Output Characteristics

Figure 3, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Junction Temperature

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 8 \\
\hline & & & & & & \\
\hline
\end{array}
$$

Figure 5, Gain vs Drain Current

Fin

APT6M100K

Figure 2, Output Characteristics

Figure 4, Transfer Characteristics

Figure 6, Capacitance vs Drain-to-Source Voltage

Figure 8, Reverse Drain Current vs Source-to-Drain Voltage

050-8110 Rev B 5-2009

Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,5225,262,336 6,503,786 $5,256,5834,748,1035,283,2025,231,4745,434,0955,528,058$ and foreign patents. US and Foreign patents pending. All Rights Reserved.

