Issue No. :	ECJ05100301
Date of Issue :	October 03.2005
Classification $:$	\square New \square Changed \square

PRODUCT SPECIFICATION FOR APPROVAL

Product Description	$:$	Multila
Product Part Number	$:$	ECJ3Y
Customers Part Number	$:$	
Country of Origin	$:$	Japan
Applications	$:$	

※If you approve this specification, please fill in and sign the below and return 1copy to us.

Approval No
 Approval Date
 Excecuted by

(signature)
Title
Dept.
Prepared by
Capacitor Business Unit
Panasonic Electronic Devices Co.,Ltd.
25.Kohata-nishinaka..Uji City, Kyoto, Japan
Phone : $+81-123-22-8758$$\quad$ (Direct)

| CLASSIFICATION SPECIFICATIONS | No $_{\text {151S-ECJ-KAM46E }}$ |
| :---: | :--- | :--- |
| SUBJECT Multilayer Ceramic Chip Capacitors 13type (EIA 1206) | PAGE 1 of 1 |
| High Capacitance (P/N : ECJ3YF1C106Z) Individual Specification | DATE 3 Oct, 2005 |

1. Scope

This specification applies to High Capacitance Multilayer Ceramic Chip Capacitor 13 type (EIA 1206), Temp. Char.: F,
Rated voltage DC 16V , Nominal Capacitance $10 \mu \mathrm{~F}$.
2. Style and Dimensions

3. Operating Temperature Range

Table 2

	Temperature Characteristics	Operating Temp. Range.
Class2	F	-30 to $+85^{\circ} \mathrm{C}$

4. Individual Specification

Table 3

Part Number	Rated Voltage	Temp. Char.	Nominal Capacitance	Cap. Tolerance
ECJ3YF1C106Z	DC 16V	F	$10 \mu \mathrm{~F}$	$+80,-20 \%$

5. Explanation of Part Numbers

6. Temperature Characteristics

Table 4

Temp. Char. Code	Capacitance Change rate from Temperature			Measurement Temperature Range	Reference Temperature
	Temp Char.	Without voltage application	With $1 / 2$ Rated voltage application		
F	F	+30, -80\%	+30, -95\%	-25 to $+85{ }^{\circ} \mathrm{C}$	$+20^{\circ} \mathrm{C}$

7. Soldering method

Flow soldering shall not be applied.

Note ;

APPROVAL	CHECK	DESIGN
Y.Sakaguchi	S. Endoh	T.Shinriki

1. Information

1-1.Applicable laws and regulations
(1) Any ozone-depleting substances listed in the Montreal Protocol are not used in the manufacturing processes for parts and materials used in this product.
(2) PBB and PBDE are intentionally excluded from materials used in this product.
(3) All the materials used in this product are registered materials under the Law Concerning Examination and Regulation of Manufacture and Handling of Chemical Substances.
(4) This product complies with the RoHS, DIRECTIVE 2002/95/EC on the Restriction of the use of certain Hazardous Substances in electrical and electronic equipment.
(5) This product is exported with export procedures under export related laws and regulations such as the Foreign Exchange and Foreign Trade Law.

1-2.Limitation in Applications
This product was designed and manufactured for general-purpose electronic equipment such as household, office, information \& communication equipment. When the following applications, which are required higher reliability and safety because the trouble or malfunction of this product may threaten the lives and/or properties, are examined, separate specifications suitable for the application should be exchanged.

- Aerospace / Aircraft equipment, Warning / Antitheft equipment, Medical equipment, Transport equipment (Motor vehicles, Trains, Ship and Vessel), Highly public information processing equipment, Others equivalent to the above.

1-3.Production factory
(1) Panasonic Electronic Devices Hokkaido Co., Ltd.
(2) Tianjin Matsushita Electronic Components Co., Ltd.(TMCOM)
(3) Matsushita Electronic Devices (M) Sdn. Bhd.(MEDEM)
2. Scope

2-1.This specification applies to High Capacitance Multilayer Ceramic Chip Capacitor 13type (P/N: ECJ3YF1C106Z) . If there is a difference between this common specification and any individual specifications, priority shall be given to the individual specifications.

2- 2. This product shall be used for general-purpose electronic equipment such as audiovisual, household, office, information \& communication equipment.
Unreasonable applications may accelerate performance deterioration or short/open circuits as failure modes affecting the life end.
Adequate safety shall be ensured especially for product design required a high level of safety with the following considerations.
1)Previously examine how a single trouble in this product affects the end product.
2)Design a protection circuit as Failsafe-design to avoid unsafe system resulting from a single trouble with this product.
Whenever a doubt about safety arises from this product, immediately inform us for technical consultation without fail, please.

2-3.This specification is a part of contract documents pertaining to the trade made by and between your company and Matsushita Electric Industrial Co., Ltd.
3. Part Number Code
ECJ 3
Y
F
1C
106
Z
(1) (2)
(3)
(4)
(5)
(6)
(7)

3-1.Common Code (1)
ECJ : Multilayer Ceramic Chip Capacitors
3- 2.Size (2), Packaging Styles (3), Temperature Characteristic (4), Rated Voltage (5), Capacitance Tolerance (7) : Shown in Individual Specification.

Note ;

APPROVAL	CHECK	DESIGN
Y.Sakaguchi	S.Endoh	T.Shinriki

CLASSIFICATION SPECIFICATIONS	No $_{\text {151S-ECJ-KGM46E }}$
SUBJECT Multilayer Ceramic Chip Capacitors 13type (EIA 1206)	PAGE 2 of 7
High Capacitance (P/N : ECJ3YF1C106Z) Common Specification	DATE 3 Oct, 2005

3- 3.Nominal Capacitance (6)
The Nominal Capacitance value is expressed in pico farads (pF) and is identified by a three-digit number ; the first two digit represent significant figures and the last digit specifies the number of zero to follow.

Symbol (Ex.)	Nominal Cap.
105	$1000000 \mathrm{pF}(1 \mu \mathrm{~F})$
106	$10000000 \mathrm{pF}(10 \mu \mathrm{~F})$
476	$47000000 \mathrm{pF}(47 \mu \mathrm{~F})$

4. Operating Temperature Range

Shown in Individual Specification.
5. Performance

The performance of the capacitor and its test condition shall be specified in Table 2.
5-1.Pretreatment
Before test and measurements, the following pretreatment shall be applied when necessary.
5-1-1. Heat Treatment
The capacitors shall be kept in a temperature of $150+0 /-10^{\circ} \mathrm{C}$ for 1 hour and then shall be stored in a room temperature for 48 +/- 4 hours, before initial measurement.

5-1-2. Voltage Treatment
D.C. voltage shall be applied for 1 hour in the specified test condition and then shall be stored in a room temperature for $48+/-4$ hours, before initial measurement.
6. Test

Unless otherwise specified, all test and measurements shall be made at a temperature of 15 to $35^{\circ} \mathrm{C}$ and at a relative humidity of 45 to 75%.
If results obtained are doubted a further test should be carried out at a temperature of $20 \pm 2^{\circ} \mathrm{C}$ and a relative humidity of 60 to 70\%.
7. Structure

The structure shall be in a monolithic form as shown in Fig. 1.
Fig. 1 Table 1

No.	Name
(1)	Dielectric
(2)	Inner electrode
(3)	Substrate electrode
44	Intermediate electrode
(5)	External electrode

Note ;

(continue)

Note ;

CLASSIFICATION SUBJECT	SPECIFICATIONS	${ }^{\text {No. }}$ 151S-ECJ-KGM46E	
	Chip Capacitors 13type (EIA 1206)	PAGE	5 of 7
High Ca	ECJ3YF1C106Z) Common Specification	DATE	3 Oct, 2005

Table 2

No	Contents		Performance		Test Method		
13	Temperature cycle	Appearance	There shall be no cracks and other mechanical damage.		Solder the specimen to the testing jig shown in Fig. 2. Condition the specimen to each temperature from step 1 to 4 in this order for the period shown in the table below. Regarding this conditioning as one cycle, perform 5 cycles continuously.		
		Capacitance	Temp. Char.	Change from the value before test.			
			F	Within +/- 20\%			
		$\tan \delta$	Shall meet the specified initial value.				
		I.R.	Shall meet the specified initial value.		Step	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Period (min.)
		Withstand voltage	There shall be no dielectric breakdown or damage.		1	Minimum operation temperature +/- 3	30+/-3
					2	Room temperature	3 max.
					3	Maximum operation temperature $+/-5$	30+/-3
					4	Room temperature	3 max.

For the class2 capacitors, perform the heat treatment in par. 5-1-1.
Before the measurement after test, the specimen shall be left to stand at room
temperature for the following period : 48+/-4 h
For the class2 capacitors, perform the heat treatment in par. 5-1-1.
Solder the specimen to the testing jig shown in Fig. 2.

Test temperature : $40+/-2^{\circ} \mathrm{C}$
Relative humidity : 90 to 95%
Test period : 500+24/0 h
Before the measurement after test, the specimen shall be left to stand at room temperature for the following period :

48+/-4 h
For the class2 capacitors, perform the heat treatment in par. 5-1-2.
Solder the specimen to the testing jig shown in Fig. 2.

Test temperature : $40+/-2^{\circ} \mathrm{C}$
Relative humidity : 90 to 95%
Applied voltage : Rated voltage
(DC Voltage)
Charge/discharge current : within 50 mA .
Test period: 500+24/0 h
Before the measurement after test, the specimen shall be left to stand at room temperature for the following period : $48+/-4 \mathrm{~h}$
(continue)

Note ;

When uncertainty occurs in the weather resistance characteristic tests (temperature cycle, moisture resistance,
moisture resistant loading, high temperature resistant loading), the same tests shall be performed for the capacitor itself.

Table 3

	Our Standard Measuring Instrument
Measuring Instrument	4278A 1kHz/1MHz Capacitance Meter (Agilent Technologies)
Measuring Mode	Parallel Mode
Recommended Measuring Jig	16034e Test Fixture (Agilent Technologies)

For High Cap Type, signal voltage may be unable to be applied to depending on conditions of measuring instruments. We would appreciate it if you would confirm whether High Cap Type is under the measurable environment or not by checking that the fixed signal voltage is applied or not. (For example, ALC function is ON, HPA is expanded.)

CLASSIFICATION	ON SPECIFICATIONS	$\mathrm{No}_{151 \mathrm{~S}-\mathrm{ECJ} \text {-KGM46E }}$
SUBJECT M	Multilayer Ceramic Chip Capacitors 13type (EIA 1206)	PAGE 7 of 7
	Capacitance (P/N : ECJ3YF1C106Z) Common Specification	DATE 3 Oct, 2005

Fig. 2 Testing jig

Table 4

Type (EIA)	A	B	C
13type (1206)	2.2	5.0	2.0
Unit : mm			

Material : Glass epoxy board
Thickness : 1.6 mm
:Copper foil (0.035 mm thick)
:Solder resist

Fig. 3 Testing jig

Table 5

Type (EIA)	A	B	C
13type (1206)	2.2	5.0	2.0
Unit : mm			

Material : Glass epoxy board
Thickness : 1.6 mm
:Copper foil (0.035 mm thick)
:Solder resist

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No }}{ }_{151 S}{ }_{\text {-ECJ-SS009E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 1 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

1. Precautions for Use

The Multilayer Ceramic Chip Capacitors (hereafter referred to as "Capacitors") may fail in a short circuit mode in an open-circuit mode when subjected to severe conditions of electrical, environmental and/or mechanical stress beyond the specified "Rating and specified "Conditions" in the Specifications, resulting in burn out, flaming or glowing in the worst case.
The following "Operating Conditions and Circuit Design" and "Precautions for Assembly" shall be taken in your major consideration.
If you have a question about the "Precautions for Use", please contact our engineering section or factory.
2. Operating Conditions and Circuit Design

2-1.Circuit Design
2-1-1. Operating Temperature Range
The specified "Operating Temperature Range" in the Specifications is absolute maximum and minimum temperature rating.
So in any case, each of the Capacitors shall be operated within the specified "Operating Temperature Range".
2-1-2. Design of Voltage application
The Capacitors shall not be operated exceeding the specified "Rated Voltage" in the Specification.
If voltage ratings are exceeded, the Capacitors could result in failure or damage. In case of application of DC and AC voltages to the Capacitors, the designed peak voltage shall be within the specified "Rated Voltage".
In case of AC of pulse voltage, the peak voltage shall be within the specified "Rated Voltage". If high frequency voltage or fast rising pulse voltage is applied continuously even within the "Rated Voltage", contact our engineering section before use. Such continuous application affects the life of the Capacitors.

2-1-3. Charging and Discharging Current
The Capacitors shall not be operated beyond the specified "Maximum Charging/Discharging Current Ratings" in the Specifications. Applications to a low impedance circuit such as a "secondary power circuit" are not recommended for safety.

2-1-4. Temperature Rise by Dielectric Loss of the Capacitors
The "Operating Temperature Range" mentioned above shall include a maximum surface temperature rise of $20^{\circ} \mathrm{C}$, which is caused by the Dielectric loss of the Capacitor and applied electrical stresses (such as voltage, frequency and wave form etc.). It is recommended to measure and check "Surface Temperature of the Capacitor" in your equipment at room temperature (up to $25^{\circ} \mathrm{C}$).

2-1-5. Restriction on Environmental Conditions
The Capacitors shall not be operated and / or stored under the following environmental conditions.
(1) Environmental conditions
(a) To be exposed directly to water or salt water
(b) To be dew formation
(c) Under conditions of corrosive gases such as hydrogen sulfide, sulfurous acid, chlorine and ammonia
(2) Under severe conditions of vibration or impact beyond the specified conditions in the Specifications

2-1-6. DC voltage characteristics
The Capacitors (Class 2) employ dielectric ceramics with dielectric constant having voltage dependency, and if applied DC voltage is high, capacitance may broadly change. For the specified capacitance, the following should be confirmed.
(1) If capacitance change by applied voltage is within the allowable range, or if its application allows unlimited capacitance change.
(2) DC voltage characteristics demonstrate, even if applied voltage is under the rated voltage, capacitance change rate increases with higher voltage (Capacitance down). Accordingly, when the Capacitors are used for circuits with narrow capacitance allowable range such as time constant circuits, we recommend to apply lower voltage upon due consideration on capacitance aging in addition to the above.

Note ;

APPROVAL	CHECK	DESIGN
Y.Sakaguchi	S.Endoh	T.Shinriki

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No }}{ }_{151 S}$-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 2 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

Capacitance change vs. DC voltage

2-1-7. Capacitance aging
The ceramic dielectrics of the Capacitors (Class 2) have capacitance aging. Accordingly, when the Capacitors are used for the circuits, which require a narrow capacitance allowable range, such as time constant circuits, pay due consideration to capacitance aging for use.

Under Ordinary Temperature	Before and After Heat treatment

2-1-8. Piezoelectricity

Dielectrics used for the Capacitors (Class 2) may cause the following Piezoelectricity (or Electrostriction).
(1) If the signal of a specific frequency is applied to the Capacitors, electric and acoustic noise may be generated by resonating the characteristic frequency which is determined by the dimensions of the Capacitor.
As a measure to prevent this phenomenon, changing the size of the Capacitor is effective to change its resonance frequency.
Also there is another measure changing the materials of the Capacitors to the Low-loss type, which has no (or less) piezoelectricity, or to Class1.
which has no (or less) piezoelectricity, or to Class 1 is also available.
(2) Vibration or impact applied to the Capacitors may cause noise because mechanical force is converted to electrical signals (Especially, application to around the amplifier unit) .
As a measure to prevent this phenomenon, changing the materials of the Capacitor to the Low-loss type, which has no (or less) piezoelectricity, or to Class1 is also available.
(3) Even if a whining sound is generated, there is no problem in product performance and reliability, however, check the worrisome phenomenon which may generate noise in your equipment.
As a measure to prevent this phenomenon, changing to the Capacitor different in characteristics, size and shape as shown in the (1), (2) above is effective.
As the other measures, changing the mounting direction of the Capacitors to bring under control the resonance with equipment bodies such as printed circuit board, or the Capacitors are fixed with equipment bodies such as printed circuit board by adhesive may be effective.

2-2.Design of Printed Circuit Board

2-2-1. Selection of Printed Circuit Board

When the Capacitors are mounted and soldered on an Aluminum Substrate, the substrate has influences on Capacitor's reliabilities against "Temperature Cycles" and "Heat shock" because of difference in thermal expansion coefficient between them.
It shall be carefully confirmed that the actual board applied does not deteriorate the characteristics of the Capacitors.

Note ;

CLASSIFICATION S	CIFICAT	ONS					${ }^{\text {No. }}{ }_{151 \mathrm{~S}-\mathrm{E}}$	CJ－SS009E
SUBJECT Multilayer	ramic C	ip Cap	acito				PAGE	3 of 10
Common Spe	ation（	cautior	s fo	Use）			DATE	Apr， 2005
2－2－2．Design of Land Pattern （1）Recommended land dime of excessive stress to the \｛ Recommended land dimens ［ For General Electronic Equi	ns are sh pacitors du $\text { is (Ex.) \} }$ ent，High	wn belo to incr pacitan	for p ased ce，Low	per amoun mount of s ProfileTyp	nt of sol solder． pe，100	to prev 00V se	vent crackin ries ］	at the time
Land SMD	Type	Com	ponent	Dimension				Unit in mm
$1 /$	（EIA）	L	W	T			b	C
眚－－	06 （0201）	0.6	0.3	0.3	0.2	0.3	0.25 to 0.3	0.2 to 0.3
O－i	10 （0402）	1.0	0.5	0.5	0.4	0.5	0.4 to 0.5	0.4 to 0.5
为	11 （0603）	1.6	0.8	0.8	0.8	1.0	0.6 to 0.8	0.6 to 0.8
Solder	12 （0805）	2.0	1.25	0.6 to 1.25	55	1.2	0.8 to 1.0	0.8 to 1.0
esist	13 （1206）	3.2	1.6	0.6 to 1.6	61.8	2.2	1.0 to 1.2	1.0 to 1.3
	23 （1210）	3.2	2.5	1.4 to 2.5	51.8	2.2	1.0 to 1.2	1.8 to 2.3
	34 （1812）	4.5	3.2	2.5 to 3.2	23.0		1.2 to 1.6	2.3 to 3.0
［ Wide－width Type ］								
Land SMD								Unit in mm
夕	Type	Com	ponent	Dimension			b	c
		L	W	T			b	c
	21（0508）	1.25	2.0	0.85	0.5		0.5 to 0.6	1.4 to 1.9
$\ddot{y} \quad: \quad 1-\downarrow \vee$	31（0612）	1.6	3.2	0.85	0.8		0.6 to 0.7	2.5 to 3.0
4 Cap．Array								Unit in mm
${ }^{c}><\gg{ }_{<1}^{P / 2 P}$	Type	Compo	ent Di	ension	a	b	c	P
	（EIA）	L	W	T	a	b	－c	P
$0 \mathbb{1}$	$\begin{gathered} 12 \\ (0805) \\ \hline \end{gathered}$	2.0	1.25	0.85	$\begin{gathered} 0.55 \\ \text { to } 0.75 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ \text { to } 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \\ \text { to } 0.3 \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ \text { to } 0.6 \\ \hline \end{gathered}$
	$\begin{gathered} 13 \\ (1206) \\ \hline \end{gathered}$	3.2	1.6	0.85	$\begin{array}{r} 0.9 \\ \text { to } 1.1 \\ \hline \end{array}$	$\begin{gathered} 0.7 \\ \text { to } 0.9 \\ \hline \end{gathered}$	$\begin{array}{c\|c} \hline & 0.35 \\ \hline & \text { to } 0.45 \\ \hline \end{array}$	$\begin{gathered} 0.7 \\ \text { to } 0.9 \\ \hline \end{gathered}$
2－fold Array								Unit in mm
	Type （EIA）		$\begin{aligned} & \text { mpons } \\ & \text { imensic } \end{aligned}$		a	b	C	P
O		L	W	T				
		1.37	1.0	0.6	$\begin{gathered} 0.3 \\ \text { to } 0.4 \\ \hline \end{gathered}$	$\begin{gathered} 0.45 \\ \text { to } 0.55 \\ \hline \end{gathered}$	$\begin{array}{c\|c} & 0.3 \\ 5 & \text { to } 0.4 \\ \hline \end{array}$	$\begin{gathered} 0.54 \\ \text { to } 0.74 \\ \hline \end{gathered}$
ォ	(0504)	1.37	1.0	0.8	$\begin{gathered} 0.3 \\ \text { to } 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ \text { to } 0.7 \\ \hline \end{gathered}$	$\begin{array}{r} 0.46 \\ \text { to } 0.56 \\ \hline \end{array}$	$\begin{array}{r} 0.71 \\ \text { to } 0.91 \\ \hline \end{array}$

（2）The size of lands shall be designed to be equal between the right and left sides．If the amount of solder on the right land is different from that on the left land，the component may be cracked by stress to one side of the component since the side with a larger amount of solder solidifies later at the time of cooling．

Recommended Amount of Solder
（a）Excessive amount

（b）Proper amount of solder

（c）Insufficient

Note ；

CLASSIFICATION	SPECIFICATIONS	No. ${ }^{\text {151S-ECJ-SS009E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor	
	Common Specification (Precautions for Use)	

2-2-3. Applications of Solder Resist
Applications of Solder resist are effective to prevent solder bridges and to control amounts of solder on PC boards.
(1) Solder resist shall be utilized to equalize the amounts of solder on both sides.
(2) If the Capacitors are arranged in succession, solder resist shall be used to divide the pattern in the mixed mounting with a component with lead wires or in the arrangement near a chassis etc. See the table below.

NG Examples and Recommended Examples

	NG Examples	Improved Examples by pattern division
Mixed mounting with a component with lead wires	The lead wire of a component with lead wires Sectional view	
Arrangement near chassis		
Retrofitting of Component with lead wires		Sectional view
Lateral arrangement		

2-2-4. Component Layout
The Capacitors / components shall be placed on the PC board so as to have both electrodes subjected to uniform stresses, or to position the component electrodes at right angles to the grid glove or bending line to avoid cracking in the Capacitors caused by the bending of the PC board after or during placing / mounting the Capacitors / components on the PC board.
(1) The recommended layout of the Capacitor to minimize mechanical stress caused by warp or bending of a PC board is as below.

	NG Example	Recommended Example
Warp of		
Circuit board		

(2) The following drawing is for your reference since mechanical stress near the dividing/breaking position of a PC board varies depending on the mounting position of the Capacitors.
(3) The magnitude of mechanical stress applied to the Capacitors when the circuit board is divided is in the order of push back < slit < V-groove < perforation.
Also take into account the layout of the Capacitors and the dividing/breaking method.

2-2-5. Mounting Density and Spaces
If components are arranged in too narrow spaces, the components are affected by Solder bridges and
 Solder balls. Each space between components should be carefully determined.

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No }}{ }_{151 S}$-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 5 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

3. Precautions for Assembly

3-1.Storage
(1) The Capacitors shall be stored under $5-40^{\circ} \mathrm{C}$ and $20-70 \% \mathrm{RH}$, not under severe conditions of high temperature and humidity.
(2) If the storage place is humid, dusty, and contains corrosive gasses (hydrogen sulfide, sulfurous acid, hydrogen chloride and ammonia, etc.), the solderability of the terminal electrodes may deteriorate.
Also, storage in a place subjected to heating or exposed to direct sunlight causes deformed tapes and reels of taped version and/or components sticking to tapes, which results in troubles at the time of mounting.
(3) The storage period shall be within 6 months. Products stored for more than 6 months shall be checked their solderability before use.
(4) The Capacitors of high dielectric constant series (Class 2, Characteristic B, $\mathrm{X} 7 \mathrm{R}, \mathrm{X} 5 \mathrm{R}$ and $\mathrm{F}, \mathrm{Y} 5 \mathrm{~V}$) change in capacitance with the passage of time, "Capacitance aging", due to the inherent characteristics of ceramic dielectric materials. The changed capacitance can be recovered by heat treatment to each initial value at the time of shipping. (See 2. Operating Condition and Circuit Design, 2-1-7. Capacitance aging)
(5) When the initial capacitance is measured, the Capacitors shall be heat-treated at $150+0 /-10^{\circ} \mathrm{C}$ for 1 hour and then subjected to ordinary temperature and humidity for 48 ± 4 hours before measuring the initial value.

3-2.Adhesives for Mounting
(1) The amount and viscosity of an adhesive for mounting shall be such that the adhesive shall not flow off on the land during it's curing.
(2) If the amount of adhesive is insufficient for mounting, the Capacitor may fall after or during soldering.
(3) If the adhesive is too low in its viscosity, the Capacitors may be out of alignment after or during soldering.
(4) Adhesives for mounting can be cured by ultraviolet or infrared radiation. In order to prevent the terminal electrodes of the Capacitors from oxidizing, the curing shall be dune at conditions of $160^{\circ} \mathrm{C}$ max., for 2 minutes max.
(5) If curing is insufficient, the Capacitor may fall after or during soldering. Also insulation resistance between terminal electrodes may deteriorate due to moisture absorption. In order to prevent these problems, the curing conditions shall be sufficiently examined.

3-3.Chip Mounting Consideration
(1) When mounting the Capacitors/components on a PC board, the capacitor bodies shall be free from excessive impact loads such as mechanical impact or stress in the positioning, pushing force and displacement of vacuum nozzles at the time of mounting.
(2) The maintenance and inspections for Chip Mounter must be performed regularly.
(3) If the bottom dead center of the vacuum nozzle is too low, the Capacitor is cracked by an excessive force at the time of mounting.
The following precautions and recommendations are for your reference in use.
(a) Set and adjust the bottom dead center of the vacuum nozzles to the upper surface of the PC board after correcting the warp of the PC board.
(b) Set the pushing force of the vacuum nozzle at the time of mounting to 1 to 3 N in static load.
(c) For double surface mounting, apply a supporting pin on the rear surface of the PC board to suppress the bending of the PC board in order to minimize the impact of the vacuum nozzles. The typical examples are shown in the table below.
(d) Adjust the vacuum nozzles so that their bottom dead center at the time of mounting is not too low.
(4) The closing dimensions of positioning chucks shall be controlled and the maintenance, checks and replacement of positioning chucks shall be regularly performed to prevent chipping or cracking of the Capacitors caused by mechanical impact at the time of positioning due to worn positioning chucks.
(5) Maximum stroke of the nozzle shall be adjusted so that the maximum bending of PC board does not exceed 0.5 mm at 90 mm span. The PC board shall be supported by means of adequate supporting pins.

3-4.Selection of Soldering Flux
Soldering flux may seriously affect the performance of the Capacitors. The following shall be confirmed before use.
(1) Soldering flux having a halogen based content of 0.1 wt . \% (converted to chlorine) or below shall be used. Do not use soldering flux with strong acid.
(2) When applying water-soluble soldering flux, wash the Capacitors sufficiently because the soldering flux residue on the surface of PC boards may deteriorate the insulation resistance on the Capacitor surface due to insufficient cleaning.

3-5.Soldering
3-5-1. Flow soldering
In flow soldering process, abnormal and large thermal and mechanical stresses, caused by "Temperature Gradient" between the mounted Capacitors and melted solder in a soldering bath, may be applied directly to the Capacitors, resulting in failures and damages of the Capacitors, So it is essential that soldering process shall be controlled to the following recommended conditions.
(1) Application of Soldering flux:

The soldering flux shall be applied to the mounted Capacitors thinly and uniformly by foaming method.
(2) Preheating:

The mounted Capacitors/Components shall be preheated sufficiently so that the "Temperature Gradient" between the Capacitors/Components and the melted solder shall be $150^{\circ} \mathrm{C}$ max. (100 to $130^{\circ} \mathrm{C}$)
(3) Immersion into Soldering Bath:

The Capacitors shall be immersed into a soldering bath of 240 to $260^{\circ} \mathrm{C}$ for 3 to 5 seconds.
(4) Gradual Cooling:

The Capacitors shall be cooled gradually to room ambient temperature with the cooling temperature rates of $8^{\circ} \mathrm{C} / \mathrm{s}$ max. from $250^{\circ} \mathrm{C}$ to $170^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C} / \mathrm{s}$ max. from $170^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
(5) Flux Cleaning:

When the Capacitors are immersed into a cleaning solvent, it shall be confirmed that the surface temperatures of devices do not exceed $100^{\circ} \mathrm{C}$.
(6) One time of flow soldering under the conditions shown in the figure below [Recommended profile of Flow soldering (Ex)] do not cause any problems.
However, fully pay attention to the possible warp and bending of the PC board.

Note ;

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No. }}{ }_{151 S-E C J-S S 009 E}$
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 8 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

3-5-3. Hand soldering
In hand soldering of the Capacitors, large temperature gradient between the preheated Capacitors and the tip of soldering iron may cause electrical failures and mechanical damages such as cracking or breaking of the devices.
The soldering shall be carefully controlled and carried out so that the temperature gradient is kept minimum with the following recommended conditions for hand soldering.
(1) Condition 1 (with preheating)
(a) Soldering : $\phi 1.0 \mathrm{~mm}$ Thread eutectic solder with soldering flux* in the core.
*Rosin-based and non-activated flux is recommended.
(b) Preheating:

The Capacitors shall be preheated so that "Temperature Gradient" between the devices and the tip of soldering iron is $150^{\circ} \mathrm{C}$ or below.
(c) Temperature of Iron tip: $300^{\circ} \mathrm{C}$ max.
(The required amount of solder shall be melted in advance on the soldering tip.)
(d) Gradual Cooling: After soldering, the Capacitors shall be cooled gradually at room ambient temperature.

Recommended profile of Hand Soldering [Ex.]

\langle Allowable temperature difference $\Delta \mathrm{T}\rangle$	
Size	Temp. Tol.
0201 to 1206	$\Delta \mathrm{~T} \leqq 150^{\circ} \mathrm{C}$
$0508,0612,0504$	$\Delta \mathrm{~T} \leqq 130^{\circ} \mathrm{C}$
1210 to 1812	

(2) Condition 2 (without preheating)

Modification with a soldering iron is acceptable without preheating if within the conditions specified below.
(a) Soldering iron tip shall never directly touch the ceramic dielectrics and terminal electrodes of the Capacitors.
(b) The lands are sufficiently preheated with a soldering iron tip before sliding the soldering iron tip to the terminal electrode of the Capacitor for soldering.

Conditions of Hand soldering without preheating		
	Condition	
Chip size	0201 to $0805,0508,0504$	1206 to 1812,0612
Temperature of soldering iron	$270^{\circ} \mathrm{C} \mathrm{Max}$.	$250^{\circ} \mathrm{C} \mathrm{Max}$.
Wattage	20 W Max.	
Shape of soldering iron tip	$\phi 3 \mathrm{~mm}$ Max.	
Soldering time with soldering iron	$3 \mathrm{~s} \mathrm{Max}$	

3-6.Post Soldering Cleaning
3-6-1. Residues of soldering fluxes on the PC board after cleaning with an inappropriate solvent may deteriorate on the electrical characteristics and reliability (particularly, insulation resistance) of the Capacitors.
3-6-2. Inappropriate cleaning conditions (Such as insufficient cleaning, excessive cleaning) may impair the electrical characteristics and reliability of the Capacitors.
(1) If cleaning is insufficient :
(a) The halogen substance in the residues of the soldering flux may cause the metal of terminal electrodes to corrode.
(b) The halogen substance in the residues of the soldering flux on the surface of the Capacitors may deteriorate the insulation resistance.
(c) Water-soluble soldering flux may have more remarkable tendencies of (a) and (b) above compared to those of rosin soldering flux.
(2) If cleaning is excessive :

Note ;

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No. }}$ 151S-ECJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 9 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

(a) Too much output of ultrasonic cleaning may deteriorate the strength of the terminal electrodes or cause cracking in the solder and/or ceramic bodies of the Capacitors due to vibrated PC boards. The following conditions are for Ultrasonic cleaning. Ultrasonic wave output: 20 W/L max. Ultrasonic wave frequency: 40 kHz max. Ultrasonic wave cleaning time: 5 min . max.
3-6-3. Cleaning with contaminated cleaning solvent may cause the same results in case of insufficient cleaning due to the high density of liberated halogen.

3-7.Process Inspection
When the mounted PC boards are inspected with measuring terminal pins, abnormal and excess mechanical stresses shall not be applied to the PC board and mounted components, to prevent failures or damages of the devices.
(1) The mounted PC boards shall be supported by some adequate supporting pins setting their bending to 90 mm span 0.5 mm max.
(2) It shall be confirmed that measuring pins have a right tip shape, are equal in height and are set in the right positions.
The following figures are for your reference to avoid the possible bending of PC board.

	NG Example	Recommended Example
Bending of PC board		

3-8.Protective Coat
When the surface of a PC board on which the Capacitors have been mounted is coated with resin to protect against moisture and dust, it shall be confirmed that the protective coat does not have influences on the reliability of the Capacitors in the actual equipment.
(1) Coating materials, such as being corrosive and chemically active, shall not be applied to the Capacitors and other components.
(2) Coating materials with large thermal expansivity shall not be applied to the Capacitors for preventing failures or damages (such as cracking) of the devices in the curing process.

3-9.Dividing/Breaking of PC Boards
(1) Abnormal and excessive mechanical stresses such as bending or torsion as below, which cause cracking in the Capacitors, on the components on the PC board shall be kept minimum in the dividing/breaking.
(2) Dividing/Breaking of the PC boards shall be done carefully at moderate speed by using a jig or apparatus to prevent the Capacitors on the boards from mechanical damages.

(3) Examples of PCB dividing/breaking jig

The outline of PC board breaking jig is shown below.
As a recommended example, Dividing/Breaking of the PC boards shall be done by holding the position near the jig where is free from bending, and so as to be compressive stress for the components such as the Capacitors on the PC board.
And as a NG example, if holding the PC board at any position apart from the jig, tensile stress to the Capacitor may cause cracking in the Capacitors.

Recommended Example

Note ;

CLASSIFICATION	SPECIFICATIONS	${ }^{\text {No }}{ }_{151 S}$ ECCJ-SS009E
SUBJECT	Multilayer Ceramic Chip Capacitor	PAGE 10 of 10
	Common Specification (Precautions for Use)	DATE 1 Apr, 2005

3- 10.Mechanical Impact
(1) The Capacitors shall be free from any excessive mechanical impact.

The Capacitor body, which is made of ceramics, may be damaged or cracked by dropping impact.
Never use dropped capacitors because their quality may be already
 impaired and its failure level of significance may be increased. Particularly, large size capacitors tend to be damaged or cracked more easily.
(2) When handling the PC boards on which the Capacitors are mounted, the Capacitors shall not collide with another PC board.
When mounted PC boards are handled or stored in a stacked state, impact caused by colliding between the corner of the PC board and the Capacitor may cause damage or cracking in the Capacitor and deteriorate the withstand voltage and insulation resistance of the Capacitor.

4. Other

Various precautions described above are typical ones.
For special mounting conditions, please contact us.
Precautions for Use above are from
The Technical Report EIAJ RCR-2335 Caution Guide Line for Operation of Fixed Multilayer Ceramic Capacitors for Electronic Equipment by Japan Electronics and Information Technology Industries Association (March 2002 issued)

Please refer to above technical report for details.

Explanation of Part Numbers (Example)

3-3.Marking on the Reel
The following items are described in the side of a reel in English at least.

1) Part Number
2) Quantity
3) Lot Number
4) Place of origin

Note ;

APPROVAL				
Y.Sakaguchi	CHECK	DESIGN		
S.Endoh			\quad	T.Shinriki
:---:				

CLASSFICATION	SPECIFICATIONS	No. ${ }^{\text {151S-ECJ-SV040E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor Packaging Specifications	PAGE 2 of 6
	DATE 28 Jul, 2005	

3-4.Structure of Taping

1) The direction of winding of taping on the reel shall be in accordance with the following diagram.

Fig. 1 Paper Tape

Fig. 2 Embossed Tape

2) The specification of the leader and empty portion shall be in accordance with the following diagram.

Fig. 3 Leader Part and Taped End

Taperunning direction

Note ;

CLASSFICATION	SPECIFICATIONS	No. 151 S-ECJ-SV040E
SUBJECT	Multilayer Ceramic Chip Capacitor Packaging Specifications	PAGE 3 of 6
	DATE 28 Jul, 2005	

4. Efficiency

4-1.Breakage strength of the tape : 10 N or more.
4-2.Peel strength of the cover tape (refer to the Fig.4, 5).

1) Peel angle : 165 to 180 degree from the tape adhesive face.
2) Peel velocity : 300 mm per min.
3) Peel strength : 0.1 to 0.7 N

Fig. 4 Paper Tape

Press Carrier Tape

Punch Carrier Tape

Fig. 5 Embossed Tape

4-3.Barrs on tape
There shall be no barrs preventing suction when products are taken out.
4- 4.Missing of products
The missing of products shall be 0.1% or less per reel and there shall be no continuous missing of products.
4- 5.Adherence to the tape
Products shall not be stuck to the cover tape or bottom tape.
Fig. 6 Carrier Tape Dimension
(a) 06 type : 2 mm pitch for Paper tape

Code	Dimension
W	8.0 ± 0.2
F	3.50 ± 0.05
E	1.75 ± 0.10
P_{1}	2.00 ± 0.05
P_{2}	2.00 ± 0.05
P_{0}	4.0 ± 0.1
D_{0}	$\phi 1.5+0.1 /-0$
t	0.55 max.
K_{0}	0.36 ± 0.03

Code Type	$06(0201)$
A	$0.36+/-0.03$
B	$0.66+/-0.03$

Note ;

CLASSFICATION	SPECIFICATIONS	No. ${ }^{\text {151S-ECJ-SV040E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor Packaging Specifications	PAGE 4 of 6
	DATE 28 Jul, 2005	

(b) 10 type : 2 mm pitch for Paper tape

Code Type	$10(0402)$
A	$0.62+/-0.05$
B	$1.12+/-0.05$

(c) 11, 12 and 13 type : 4 mm pitch for Paper tape

CLASSFICATION	SPECIFICATIONS	No. ${ }_{\text {151S-ECJ-SV040E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor Packaging Specifications	PAGE 5 of 6
	DATE 28 Jul, 2005	

(d) 12, 13 and 23 type : 4mm pitch for Embossed tape

Code	Dimension	
W	$8.0+/-0.2$	
F	$3.50+/-0.05$	
E	$1.75+/-0.10$	
P_{1}	$4.0+/-0.1$	
P_{2}	$2.00+/-0.05$	
P_{0}	$4.0+/-0.1$	
D_{0}	$\phi 1.5$ $+0.1 /-0$	
D_{1}	$\phi 1.1+/-0.1$	
t_{1}	0.6 max.	
t_{2}	"12" "13" Type	
	"23" Type	

Code Type	$12(0805)$	$13(1206)$	$23(1210)$
A	$1.55+/-0.20$	$1.90+/-0.20$	$2.8+/-0.2$
B	$2.35+/-0.20$	$3.5+/-0.2$	$3.5+/-0.2$

(e) 34 type : 8 mm pitch for Embossed tape

Code	Dimension
W	$12.0+/-0.3$
F	$5.50+/-0.05$
E	$1.75+/-0.10$
P_{1}	$8.0+/-0.1$
P_{2}	$2.00+/-0.05$
P_{0}	$4.0+/-0.1$
D_{0}	$\left.\begin{array}{c}\phi 1.5 \\ \\ \\ \hline \mathrm{t}_{1}\end{array}\right] .0 .1 /-0$
t_{2}	$4.0 \max$.

Code Type	$34(1812)$
A	$3.6+/-0.3$
B	$4.9+/-0.3$

CLASSFICATION	SPECIFICATIONS	No. ${ }^{\text {151S-ECJ-SV040E }}$
SUBJECT	Multilayer Ceramic Chip Capacitor Packaging Specifications	PAGE 6 of 6
	DATE 28 Jul, 2005	

Fig. 7 Reel Dimension
(a) $\phi 180 \mathrm{~mm}$ Reel (Standard Reel)

(b) $\phi 330 \mathrm{~mm}$ Reel (Large size Reel)

Code	Dimension
A	$\phi 330+/-5.0$
B	$\phi 50$ min.
C	$13.0+/-0.5$
D	20 min.
E	$2.0+/-0.5$
W	$9.5+/-1.0$
$\mathrm{~W}_{1}$	$2.0+/-0.5$
Unit $: \mathrm{mm}$	

