"Half Bridge" IGBT MTP (Warp 2 Speed IGBT), 70 A

MTP

PRIMARY CHARACTERISTICS	
$\mathrm{V}_{\mathrm{CES}}$	600 V
$\mathrm{~V}_{\mathrm{CE}(\text { on })}$ typical at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	2.1 V
I_{C} at $\mathrm{T}_{\mathrm{C}}=78^{\circ} \mathrm{C}$	70 A
Speed	30 kHz to 150 kHz
Package	MTP
Circuit configuration	Half bridge

FEATURES

- NPT warp 2 speed IGBT technology with positive temperature coefficient
- HEXFRED ${ }^{\circledR}$ antiparallel diodes with ultrasoft reverse recovery

RoHS COMPLANT

- SMD thermistor (NTC)
- $\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{BDC}$
- Very low stay inductance design for high speed operation
- UL approved file E78996

Nㅣㄴ

- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Optimized for welding, UPS and SMPS applications
- Lower conduction losses and switching losses
- Low EMI, requires less snubbing
- Direct mounting to heatsink
- PCB solderable terminals

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Collector to emitter voltage	$\mathrm{V}_{\text {CES }}$		600	V
Continuous collector current	I_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	A
		$\mathrm{T}_{\mathrm{C}}=78^{\circ} \mathrm{C}$	70	
Pulsed collector current	$\mathrm{I}_{\text {CM }}$		300	
Peak switching current	$\mathrm{I}_{\text {LM }}$		300	
Diode continuous forward current	I_{F}	$\mathrm{T}_{\mathrm{C}}=78^{\circ} \mathrm{C}$	53	
Peak diode forward current	I_{FM}		200	
Gate to emitter voltage	V_{GE}		± 20	V
RMS isolation voltage	$\mathrm{V}_{\text {ISOL }}$	Any terminal to case, $\mathrm{t}=1 \mathrm{~min}$	2500	
Maximum power dissipation, IGBT	$P_{\text {D }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	347	W
		$\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	139	

ELECTRICAL SPECIFICATIONS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	$\mathrm{V}_{\text {(BR)CES }}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	600	-	-	V
Collector to emitter voltage	$\mathrm{V}_{\text {CE(on) }}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}$	-	2.1	2.4	V
		$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=140 \mathrm{~A}$	-	2.8	3.4	
		$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	2.7	3	
Gate threshold voltage	$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$	3	-	6	
Collector to emitter leaking current	Ices	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=600 \mathrm{~V}$	-	-	0.7	mA
		$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	-	10	
Gate to emitter leakage current	$\mathrm{I}_{\text {ges }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$	-	-	± 250	nA

VS-70MT060WHTAPbF
Vishay Semiconductors
SWITCHING CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q_{g}	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=480 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	460	690	nC
Gate to emitter charge (turn-on)	Q_{ge}		-	160	250	
Gate to collector charge (turn-on)	Q_{gc}		-	70	130	
Turn-on switching loss	$\mathrm{E}_{\text {on }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega \\ & \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=480 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H} \end{aligned}$ energy losses include tail and diode reverse recovery, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	1.1	-	mJ
Turn-off switching loss	$\mathrm{E}_{\text {off }}$		-	0.9	-	
Total switching loss	$\mathrm{E}_{\text {ts }}$		-	2	-	
Turn-on switching loss	$\mathrm{E}_{\text {on }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega \\ & \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=480 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H} \\ & \text { energy losses include tail and diode reverse } \\ & \text { recovery, } \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	-	1.27	-	
Turn-off switching loss	$\mathrm{E}_{\text {off }}$		-	1.13	-	
Total switching loss	$\mathrm{E}_{\text {ts }}$		-	2.4	-	
Turn-on delay time	$\mathrm{td}_{\text {on }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega \\ & \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=480 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H} \end{aligned}$ energy losses include tail and diode reverse recovery	-	314	-	ns
Rise time	t_{r}		-	49	-	
Turn-off delay time	$\mathrm{td}_{\text {off }}$		-	308	-	
Fail time	t_{f}		-	68	-	
Turn-on delay time	$\mathrm{td}_{\text {on }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega \\ & \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=480 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H} \\ & \text { energy losses include tail and diode reverse } \\ & \text { recovery, } \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	-	312	-	
Rise time	t_{r}		-	50	-	
Turn-off delay time	$\mathrm{td}_{\text {off }}$		-	320	-	
Fail time	t_{f}		-	78	-	
Input capacitance	$\mathrm{C}_{\text {ies }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	-	8000	-	pF
Output capacitane	$\mathrm{C}_{\text {oes }}$		-	790	-	
Reverse transfer capacitance	$\mathrm{C}_{\text {res }}$		-	110	-	
Reverse BIAS safe operating area	RBSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=600 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=22 \Omega, \mathrm{~V}_{\mathrm{GE}}=+15 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ & \hline \end{aligned}$	Fullsquare			

THERMISTOR SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Resistance	$\mathrm{R}_{0}{ }^{(1)}$	$\mathrm{T}_{0}=25^{\circ} \mathrm{C}$	-	30	-	$\mathrm{k} \Omega$	
Sensitivity index of the thermistor material	$\beta^{(1)(2)}$	$\mathrm{T}_{0}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{1}=85^{\circ} \mathrm{C}$	-	4000	-	K	

Notes

(1) T_{0}, T_{1} are thermistor's temperatures
(2) $\frac{R_{0}}{R_{1}}=\exp \left[\beta\left(\frac{1}{T_{0}}-\frac{1}{T_{1}}\right)\right]$, temperature in Kelvin

DIODE SPECIFICATIONS ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Diode forward voltage drop	$V_{\text {FM }}$	$\mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	-	1.64	2.1	V
		$\mathrm{I}_{\mathrm{C}}=140 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	-	2.1	2.4	
		$\mathrm{I}_{\mathrm{C}}=70 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	1.69	1.9	
Diode reverse recovery time	t_{rr}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A} \\ & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	96	126	ns
Diode peak reverse current	I_{rr}		-	9.4	12.8	A
Diode recovery charge	Q_{rr}		-	440	750	nC
Diode reverse recovery time	t_{rr}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=70 \mathrm{~A} \\ & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	-	140	194	ns
Diode peak reverse current	$I_{\text {r }}$		-	14	19	A
Diode recovery charge	Q_{rr}		-	950	1700	nC

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating junction temperature range	IGBT, Diode	TJ		-40	-	150	${ }^{\circ} \mathrm{C}$
	Thermistor			-40	-	125	
Storage temperature range		$\mathrm{T}_{\text {Stg }}$		-40	-	125	
Junction to case	IGBT	$\mathrm{R}_{\text {thJc }}$		-	-	0.36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Diode			-	-	0.8	
Case to sink per module		$\mathrm{R}_{\text {thCs }}$	Heatsink compound thermal conductivity $=1 \mathrm{~W} / \mathrm{mK}$	-	0.06	-	
Mounting torque to heatsink			A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads.	$3 \pm 10 \%$			Nm
Weight				66			g

Fig. 1 - Typical Output Characteristics

94469_02 Maximum DC Collector Current (A)
Fig. 2 - Maximum Collector Current vs. Case Temperature

Fig. 3 - Typical Collector to Emitter Voltage vs. Junction Temperature

94469_04
O_{G} - Total Gate Charge (nC)
Fig. 4 - Typical Gate Charge vs. Gate to Emitter Votlage

Fig. 5 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

94469_06 \quad V CES - Collector to Emitter Voltage (V)
Fig. 6 - Typical Zero Gate Voltage Collector Current

Fig. 7 - Typical Gate Threshold Voltage

Fig. 8 - Typical Energy Losses vs. $\mathrm{I}_{\mathrm{C}}\left(\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$

Fig. 9 - Switching Time vs. I_{C}

Fig. 10 - Reverse BIAS SOA, $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$

Fig. 11 - Typical Reverse Recovery Time vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 12 - Typical Reverse Recovery Current vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 13 - Typical Stored Charge vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 14 - Maximum Thermal Impedance $\mathrm{Z}_{\text {thJc }}$ Characteristics (IGBT)

Fig. 15 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics (Diode)

Fig. 16 - Electrical Diagram

Fig. 17 - Functional Diagram

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS
Dimensions

MTP

DIMENSIONS in millimeters

Note

- Unused terminals are not assembled in the package

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

