SL869 DGPS Application Note

80405NT11319A r0 – 2014-10-28
APPLICABILITY TABLE

<table>
<thead>
<tr>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL869</td>
</tr>
</tbody>
</table>
Notice
While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights
This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights
The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
Usage and Disclosure Restrictions

License Agreements
The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials
Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

High Risk Materials
Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities”). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks
TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A. 2014.
Contents

1. Introduction .. 6
 1.1. Scope .. 6
 1.2. Audience .. 6
 1.3. Contact Information, Support .. 6
 1.4. Text Conventions ... 6
 1.5. Related Documents .. 7

2. Overview ... 8

3. Performance .. 9
 3.1. Test results of the SL869 with the application of DGPS corrections. 9

4. Document History ... 12
1. Introduction

1.1. Scope

The scope of this document is to give an overview of Differential GNSS, how it can be implemented in the SL869 Telit GNSS Receiver, and actual test results.

1.2. Audience

This document is intended for designers implementing the SL869 onto a DGPS platform.

1.3. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:

TS-EMEA@telit.com
TS-AMERICAS@telit.com
TS-APAC@telit.com

Alternatively, use:

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.
1.5. Related Documents

- SL869 Hardware User Guide, 1VV0301001
- SL869 Software User Guide, 1VV0301002
- SL869 EVK User Guide, 1VV0301004
2. **Overview**

A one-time commonly used technique for improving the accuracy of GNSS receivers was Differential GPS, “DGPS”. Now with multiple satellite constellations available it can be referred to as Differential GNSS. Using Differential GNSS, the position of a fixed GNSS receiver antenna is placed over a known surveyed reference point. This receiver is commonly referred to as the “Base”, or “Reference” Station. The reference station determines ranges to the various GNSS satellites in view and computes a position. This position is compared internally to the known reference point. In most cases this computed position will be in error from the surveyed referenced point. The error usually results from a combination of satellite ephemeris and clock errors along with atmospheric delay. From the comparison, differences in pseudorange measurements of the satellites can be determined. These differences are converted into corrections which can be sent to local “rover” receivers. The rover receivers receive and apply the corrections to their computed position. The result is usually a more accurate result.

It must be noted that Differential GNSS requires a data link between the reference station and the rover receiver, and corrections must be applied in real time. The proximity of the reference and rover will determine the effect of the corrections. In other words, the closer the rover is to the base station, the better. Usually a range of a few tens of kilometers is acceptable.
3. Performance

NOTE: The following test was performed in a lab environment with simulated satellite signals and corrections. Results may differ under live satellite conditions.

3.1. Test results of the SL869 with the application of DGPS corrections.

Equipment Used
1. GSS6700 Multi-GNSS Simulator
2. PC running TelitView and Positioning Application Tool (RTCM scenario)
3. Device Under Test “DUT” (SL869 Rev F)
4. RTCM build SL869STD_v3.1.12.0_N115_DBG_USB_ONLY_RTCM_BOOT.bin

Test Procedure
1. Ensure an RTCM Build (as noted above), is loaded on the device under test (USB Detect disabled, and NMEA is the default on the SL869 USB port. RTCM is assigned to Port 0 of the EVK. The RTCM port defaults to 115200 baud.)
2. Verify Com ports on EVK.

3. Open SimREPLAY and select an RTCM Scenario.
4. Connect the RTCM output from the Simulator to Serial Port titled RTCM above on the DUT. (To Connect RTCM correction, click the tab titled Options, then down to the RS232 port Settings option.)
5. Once RS232 Port Setting is open, input the proper Com Ports and select Not Used for the port that outputs NMEA. For the port using RTCM, select RTCM output. “See example below”.

![Figure 3-2 SimREPLAY Port Settings](image)

6. Open TelitView.
7. Connect the Device and Begin Recording.
8. Begin the Simulator Scenario.
9. Wait until the receiver obtains a DGPS fix (reference the “D” in the last parameter of RMC message.)
10. After collecting data with RTCM corrections applied, replay Scenario without RTCM corrections and compare the two.

![Figure 3-3 Port Settings-RTCM Output](image)
Pass/Fail Criteria

Passes if receiver enters DGPS mode and position accuracy shows improvement.

Results

<table>
<thead>
<tr>
<th>CEP</th>
<th>With RTCM</th>
<th>Without RTCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>0.21m</td>
<td>3.85m</td>
</tr>
<tr>
<td>90%</td>
<td>0.36m</td>
<td>4.85m</td>
</tr>
<tr>
<td>95%</td>
<td>0.36m</td>
<td>4.90m</td>
</tr>
<tr>
<td>98%</td>
<td>1.30m</td>
<td>5.11m</td>
</tr>
</tbody>
</table>

Table 3-1 RTCM Accuracy Results

Figure 3-4 RTCM Accuracy Results image
4. Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2014-10-28</td>
<td>First issue</td>
</tr>
</tbody>
</table>