SDR SDRAM
MT48LC4M32B2 – 1 Meg x 32 x 4 Banks

Features
• PC100-compliant
• Fully synchronous; all signals registered on positive edge of system clock
• Internal pipelined operation; column address can be changed every clock cycle
• Internal banks for hiding row access/precharge
• Programmable burst lengths: 1, 2, 4, 8, or full page
• Auto precharge, includes concurrent auto precharge and auto refresh modes
• Self refresh mode (not available on AT devices)
• Auto refresh
 – 64ms, 4096-cycle refresh (commercial and industrial)
 – 16ms, 4096-cycle refresh (automotive)
• LVTTL-compatible inputs and outputs
• Single 3.3V ±0.3V power supply
• Supports CAS latency (CL) of 1, 2, and 3

Options
• Configuration
 – 4 Meg x 32 (1 Meg x 32 x 4 banks) 4M32B2
• Package – OCPL
 – 86-pin TSOP II (400 mil) TG
 – 86-pin TSOP II (400 mil) Pb-free P
 – 90-ball VFBGA (8mm x 13mm) F5
 – 90-ball VFBGA (8mm x 13mm) Pb-free B5
• Timing (cycle time)
 – 6ns (167 MHz) -6A
 – 6ns (167 MHz) -6
 – 7ns (143 MHz) -7
• Revision
:G:/L
• Operating temperature range
 – Commercial (0°C to +70°C) None
 – Industrial (−40°C to +85°C) IT
 – Automotive (−40°C to +105°C) AT

Notes:
1. Off-center parting line.
2. Available only on Revision L.
3. Available only on Revision G.
4. Contact Micron for availability.

Table 1: Key Timing Parameters

<table>
<thead>
<tr>
<th>Speed Grade</th>
<th>Clock Frequency (MHz)</th>
<th>Target ˈRCD-ˈRP-CL</th>
<th>ˈRCD (ns)</th>
<th>ˈRP (ns)</th>
<th>CL (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6A</td>
<td>167</td>
<td>3-3-3</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-6</td>
<td>167</td>
<td>3-3-3</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>-7</td>
<td>143</td>
<td>3-3-3</td>
<td>20</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 2: Address Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4 Meg x 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>1 Meg x 32 x 4 banks</td>
</tr>
<tr>
<td>Refresh count</td>
<td>4K</td>
</tr>
<tr>
<td>Row addressing</td>
<td>4K A[11:0]</td>
</tr>
<tr>
<td>Bank addressing</td>
<td>4 BA[1:0]</td>
</tr>
<tr>
<td>Column addressing</td>
<td>256 A[7:0]</td>
</tr>
</tbody>
</table>

Table 3: 128Mb (x32) SDR Part Numbering

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT48LC4M32B2TG</td>
<td>4 Meg x 32</td>
</tr>
<tr>
<td>MT48LC4M32B2P</td>
<td>4 Meg x 32</td>
</tr>
<tr>
<td>MT48LC4M32B2F5¹</td>
<td>4 Meg x 32</td>
</tr>
<tr>
<td>MT48LC4M32B2B5¹</td>
<td>4 Meg x 32</td>
</tr>
</tbody>
</table>

Note: 1. FBGA Device Decoder: www.micron.com/decoder
List of Figures

Figure 1: 4 Meg x 32 Functional Block Diagram ... 8
Figure 2: 86-Pin TSOP Pin Assignments (Top View) .. 9
Figure 3: 90-Ball FBGA Ball Assignments (Top View) .. 10
Figure 4: 86-Pin Plastic TSOP II (400 mil) – Package Codes TG/P ... 12
Figure 5: 90-Ball VFBGA (8mm x 13mm) ... 13
Figure 6: Example: Temperature Test Point Location, 54-Pin TSOP (Top View) 15
Figure 7: Example: Temperature Test Point Location, 90-Ball VFBGA (Top View) 16
Figure 8: ACTIVE Command ... 25
Figure 9: READ Command .. 26
Figure 10: WRITE Command ... 27
Figure 11: PRECHARGE Command .. 28
Figure 12: Initialize and Load Mode Register .. 36
Figure 13: Mode Register Definition ... 38
Figure 14: CAS Latency ... 41
Figure 15: Example: Meeting tRCD (MIN) When 2 < tRCD (MIN)/tCK ≤ 3 42
Figure 16: Consecutive READ Bursts ... 44
Figure 17: Random READ Accesses ... 45
Figure 18: READ-to-WRITE .. 46
Figure 19: READ-to-WRITE With Extra Clock Cycle ... 47
Figure 20: READ-to-PRECHARGE .. 47
Figure 21: Terminating a READ Burst .. 48
Figure 22: Alternating Bank Read Accesses .. 49
Figure 23: READ Continuous Page Burst ... 50
Figure 24: READ – DQM Operation ... 51
Figure 25: WRITE Burst .. 52
Figure 26: WRITE-to-WRITE ... 53
Figure 27: Random WRITE Cycles .. 54
Figure 28: WRITE-to-READ .. 54
Figure 29: WRITE-to-PRECHARGE ... 55
Figure 30: Terminating a WRITE Burst .. 56
Figure 31: Alternating Bank Write Accesses .. 57
Figure 32: WRITE – Continuous Page Burst .. 58
Figure 33: WRITE – DQM Operation ... 59
Figure 34: READ With Auto Precharge Interrupted by a READ .. 61
Figure 35: READ With Auto Precharge Interrupted by a WRITE ... 62
Figure 36: READ With Auto Precharge .. 63
Figure 37: READ Without Auto Precharge ... 64
Figure 38: Single READ With Auto Precharge ... 65
Figure 39: Single READ Without Auto Precharge ... 66
Figure 40: WRITE With Auto Precharge Interrupted by a READ .. 67
Figure 41: WRITE With Auto Precharge Interrupted by a WRITE ... 67
Figure 42: WRITE With Auto Precharge .. 68
Figure 43: WRITE Without Auto Precharge .. 69
Figure 44: Single WRITE With Auto Precharge ... 70
Figure 45: Single WRITE Without Auto Precharge .. 71
Figure 46: Auto Refresh Mode ... 73
Figure 47: Self Refresh Mode .. 75
Figure 48: Power-Down Mode ... 76
Figure 49: Clock Suspend During WRITE Burst ... 77
Figure 50: Clock Suspend During READ Burst ... 78
Figure 51: Clock Suspend Mode

Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2001 Micron Technology, Inc. All rights reserved.
List of Tables
Table 1: Key Timing Parameters ... 1
Table 2: Address Table .. 2
Table 3: 128Mb (x32) SDR Part Numbering ... 2
Table 4: Pin/Ball Descriptions ... 11
Table 5: Temperature Limits ... 14
Table 6: Thermal Impedance Simulated Values 15
Table 7: Absolute Maximum Ratings .. 17
Table 8: DC Electrical Characteristics and Operating Conditions 17
Table 9: Capacitance .. 17
Table 10: IDD Specifications and Conditions – Revision G 18
Table 11: IDD Specifications and Conditions – Revision L 18
Table 12: Electrical Characteristics and Recommended AC Operating Conditions ... 20
Table 13: AC Functional Characteristics .. 21
Table 14: Truth Table – Commands and DQM Operation 24
Table 15: Truth Table – Current State Bank n, Command to Bank n 30
Table 16: Truth Table – Current State Bank n, Command to Bank m 32
Table 17: Truth Table – CKE .. 34
Table 18: Burst Definition Table .. 40
General Description

The 64Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 134,217,728 bits. It is internally configured as a quad-bank DRAM with asynchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 33,554,432-bit banks is organized as 4096 rows by 256 columns by 32 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA[1:0] select the bank; A[11:0] select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

The SDRAM provides for programmable read or write burst lengths (BL) of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

The 64Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2^n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

The 64Mb SDRAM is designed to operate in 3.3V memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible.

The devices offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time, and the capability to randomly change column addresses on each clock cycle during a burst access.

Automotive Temperature

The automotive temperature (AT) option adheres to the following specifications:

- 16ms refresh rate
- Self refresh not supported
- Ambient and case temperature cannot be less than −40°C or greater than 105°C
Figure 1: 4 Meg x 32 Functional Block Diagram
Figure 2: 86-Pin TSOP Pin Assignments (Top View)

VDD 1
DQ0 2
VDDQ 3
DQ1 4
DQ2 5
VSSQ 6
DQ3 7
DQ4 8
VDDQ 9
DQ5 10
DQ6 11
VSSQ 12
DQ7 13
NC 14
VDD 15
DQM0 16
WE# 17
CAS# 18
RAS# 19
CS# 20
A11 21
BA0 22
BA1 23
A10 24
A0 25
A1 26
A2 27
DQM2 28
VDD 29
NC 30
DQ16 31
VSSQ 32
DQ17 33
DQ18 34
VDDQ 35
DQ19 36
DQ20 37
VSSQ 38
DQ21 39
DQ22 40
VDDQ 41
DQ23 42
VDD 43

Note: 1. Package may or may not be assembled with a location notch.
Figure 3: 90-Ball FBGA Ball Assignments (Top View)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DQ26</td>
<td>DQ24</td>
<td>Vss</td>
<td></td>
<td></td>
<td>Vdd</td>
<td>DQ23</td>
<td>DQ21</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>DQ28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Vss</td>
<td>DQ27</td>
<td>DQ25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Vss</td>
<td>DQ29</td>
<td>DQ30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Vdd</td>
<td>DQ31</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Vss</td>
<td>DQM3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>A7</td>
<td>A8</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>CLK</td>
<td>CKE</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>DQM1</td>
<td>NU</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Vdd</td>
<td>DQ8</td>
<td>Vss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Vss</td>
<td>DQ10</td>
<td>DQ9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Vss</td>
<td>DQ12</td>
<td>DQ14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>DQ11</td>
<td>Vdd</td>
<td>Vss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>DQ13</td>
<td>DQ15</td>
<td>Vss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Pin/Ball Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>Input</td>
<td>Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on the positive edge of CLK. CLK also increments the internal burst counter and controls the output registers.</td>
</tr>
<tr>
<td>CKE</td>
<td>Input</td>
<td>Clock enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. Deactivating the clock provides precharge power-down and SELF REFRESH operation (all banks idle), active power-down (row active in any bank), or CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous except after the device enters power-down and self refresh modes, where CKE becomes asynchronous until after exiting the same mode. The input buffers, including CLK, are disabled during power-down and self refresh modes, providing low standby power. CKE may be tied HIGH.</td>
</tr>
<tr>
<td>CS#</td>
<td>Input</td>
<td>Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH, but READ/WRITE bursts already in progress will continue, and DQM operation will retain its DQ mask capability while CS# is HIGH. CS# provides for external bank selection on systems with multiple banks. CS# is considered part of the command code.</td>
</tr>
<tr>
<td>CAS#, RAS#, WE#</td>
<td>Input</td>
<td>Command inputs: CAS#, RAS#, and WE# (along with CS#) define the command being entered.</td>
</tr>
<tr>
<td>DQM[3:0]</td>
<td>Input</td>
<td>Input/output mask: DQM is sampled HIGH and is an input mask signal for write accesses and an output enable signal for read accesses. Input data is masked during a WRITE cycle. The output buffers are High-Z (two-clock latency) during a READ cycle. DQM0 corresponds to DQ[7:0], DQM1 corresponds to DQ[15:8], DQM2 corresponds to DQ[23:16], and DQM3 corresponds to DQ[31:24]. DQM[3:0] are considered the same state when referenced as DQM.</td>
</tr>
<tr>
<td>BA[1:0]</td>
<td>Input</td>
<td>Bank address inputs: BA[1:0] define to which bank the ACTIVE, READ, WRITE, or PRE-CHARGE command is being applied.</td>
</tr>
<tr>
<td>A[11:0]</td>
<td>Input</td>
<td>Address inputs: A[11:0] are sampled during the ACTIVE command (row address A[10:0]) and READ or WRITE command (column address A[7:0] with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRE-CHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA[1:0] (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.</td>
</tr>
<tr>
<td>DQ[31:0]</td>
<td>Input/Output</td>
<td>Data input/output: Data bus.</td>
</tr>
<tr>
<td>NC</td>
<td>–</td>
<td>No connect: These pins should be left unconnected. Pin 70 is reserved for SSTL reference voltage supply.</td>
</tr>
<tr>
<td>VDDQ</td>
<td>Supply</td>
<td>DQ power supply: Isolated on the die for improved noise immunity.</td>
</tr>
<tr>
<td>VSSQ</td>
<td>Supply</td>
<td>DQ ground: Provides isolated ground to DQs for improved noise immunity.</td>
</tr>
<tr>
<td>VDD</td>
<td>Supply</td>
<td>Power supply: 3.3V ±0.3V.</td>
</tr>
<tr>
<td>VSS</td>
<td>Supply</td>
<td>Ground.</td>
</tr>
</tbody>
</table>
Package Dimensions

Figure 4: 86-Pin Plastic TSOP II (400 mil) – Package Codes TG/P

Plated lead finish: TG (90% Sn, 10% Pb) or P (100% Sn) 0.01 ±0.005 thick per side
Plastic package material: Epoxy novolac
Package width and length do not include mold protrusion. Allowable protrusion is 0.25 per side.

Notes:
1. All dimensions are in millimeters.
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.
3. "2X" means the notch is present in two locations (both ends of the device).
4. Package may or may not be assembled with a location notch.
Figure 5: 90-Ball VFBGA (8mm x 13mm)

Dimensions apply to solder balls post reflow. The pre-reflow diameter is 0.42 on a 0.40 SMD ball pad.

Notes:
1. All dimensions are in millimeters.
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.
3. Recommended pad size for PCB is 0.33mm ±0.025mm.
Temperature and Thermal Impedance

It is imperative that the SDRAM device’s temperature specifications, shown in Temperature Limits below, be maintained to ensure the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device’s thermal impedances correctly. The thermal impedances are listed in Table 6 (page 15) for the applicable die revision and packages being made available. These thermal impedance values vary according to the density, package, and particular design used for each device.

Incorrectly using thermal impedances can produce significant errors. Read Micron technical note TN-00-08, “Thermal Applications” prior to using the thermal impedances listed in Table 6 (page 15). To ensure the compatibility of current and future designs, contact Micron Applications Engineering to confirm thermal impedance values.

The SDRAM device’s safe junction temperature range can be maintained when the T_C specification is not exceeded. In applications where the device’s ambient temperature is too high, use of forced air and/or heat sinks may be required to satisfy the case temperature specifications.

Table 5: Temperature Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating case temperature</td>
<td>Commercial</td>
<td>T_C</td>
<td>0</td>
<td>80</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td></td>
<td>–40</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automotive</td>
<td></td>
<td>–40</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>Commercial</td>
<td>T_J</td>
<td>0</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td></td>
<td>–40</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automotive</td>
<td></td>
<td>–40</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Commercial</td>
<td>T_A</td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td></td>
<td>–40</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automotive</td>
<td></td>
<td>–40</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Peak reflow temperature</td>
<td>T_{PEAK}</td>
<td>–</td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. MAX operating case temperature T_C is measured in the center of the package on the top side of the device, as shown in Figure 6 (page 15) and Figure 7 (page 16).
2. Device functionality is not guaranteed if the device exceeds maximum T_C during operation.
3. All temperature specifications must be satisfied.
4. The case temperature should be measured by gluing a thermocouple to the top-center of the component. This should be done with a 1mm bead of conductive epoxy, as defined by the JEDEC EIA/JESD51 standards. Take care to ensure that the thermocouple bead is touching the case.
5. Operating ambient temperature surrounding the package.
Table 6: Thermal Impedance Simulated Values

<table>
<thead>
<tr>
<th>Die Revision</th>
<th>Package</th>
<th>Substrate</th>
<th>(\Theta JA (\degree C/W)) Airflow = 0m/s</th>
<th>(\Theta JA (\degree C/W)) Airflow = 1m/s</th>
<th>(\Theta JA (\degree C/W)) Airflow = 2m/s</th>
<th>(\Theta JB (\degree C/W))</th>
<th>(\Theta JC (\degree C/W))</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>86-pin TSOP</td>
<td>Low Conductivity</td>
<td>82.2</td>
<td>65</td>
<td>59.7</td>
<td>49.4</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Conductivity</td>
<td>55</td>
<td>47.2</td>
<td>45.1</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-ball VFBGA</td>
<td>Low Conductivity</td>
<td>64.6</td>
<td>50.8</td>
<td>45.3</td>
<td>37.5</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Conductivity</td>
<td>48.2</td>
<td>41.1</td>
<td>38.1</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>86-pin TSOP</td>
<td>Low Conductivity</td>
<td>122.3</td>
<td>105.6</td>
<td>98.1</td>
<td>89.5</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Conductivity</td>
<td>101.9</td>
<td>93.5</td>
<td>88.8</td>
<td>87.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-ball VFBGA</td>
<td>Low Conductivity</td>
<td>76.8</td>
<td>63.1</td>
<td>63.1</td>
<td>50.1</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Conductivity</td>
<td>56.3</td>
<td>49.6</td>
<td>49.6</td>
<td>43.5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. For designs expected to last beyond the die revision listed, contact Micron Applications Engineering to confirm thermal impedance values.
2. Thermal resistance data is sampled from multiple lots, and the values should be viewed as typical.
3. These are estimates; actual results may vary.

Figure 6: Example: Temperature Test Point Location, 54-Pin TSOP (Top View)

Test point

Note:
1. Package may or may not be assembled with a location notch.
Figure 7: Example: Temperature Test Point Location, 90-Ball VFBGA (Top View)
Electrical Specifications

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 7: Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Voltage/Temperature</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage on (V_{DD}, \ V_{DDQ}) supply relative to (V_{SS})</td>
<td>(V_{DD}, \ V_{DDQ})</td>
<td>–1</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage on inputs, NC, or I/O pins relative to (V_{SS})</td>
<td>(V_{IN})</td>
<td>–1</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature (plastic)</td>
<td>(T_{STG})</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>–</td>
<td>1</td>
<td>W</td>
</tr>
</tbody>
</table>

Table 8: DC Electrical Characteristics and Operating Conditions

Notes 1, 2 apply to all parameters and conditions; \(V_{DD}, \ V_{DDQ} = 3.3V \pm0.3V \)

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{DD}, \ V_{DDQ})</td>
<td>3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage: Logic 1; All inputs</td>
<td>(V_{IH})</td>
<td>2</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage: Logic 0; All inputs</td>
<td>(V_{IL})</td>
<td>–0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Output high voltage: (I_{OUT} = -4mA)</td>
<td>(V_{OH})</td>
<td>2.4</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage: (I_{OUT} = 4mA)</td>
<td>(V_{OL})</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current: Any input (0V \leq V_{IN} \leq V_{DD}) (All other pins not under test = 0V)</td>
<td>(I_{L})</td>
<td>–5</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>Output leakage current: DQs are disabled; (0V \leq V_{OUT} \leq V_{DDQ})</td>
<td>(I_{OZ})</td>
<td>–5</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>Operating temperature:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>(T_{A})</td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Industrial</td>
<td>(T_{A})</td>
<td>–40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Automotive</td>
<td>(T_{A})</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. All voltages referenced to \(V_{SS} \).
2. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is ensured:
 - \(0^\circ C \leq T_{A} \leq +70^\circ C \) (commercial)
 - \(-40^\circ C \leq T_{A} \leq +85^\circ C \) (industrial)
 - \(-40^\circ C \leq T_{A} \leq +105^\circ C \) (automotive)
3. Based on \(f_{CK} = 143 \) MHz for -7, 167 MHz for -6/6A.

Table 9: Capacitance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance: CLK</td>
<td>(C_{I1})</td>
<td>2.5</td>
<td>3.5</td>
<td>pF</td>
</tr>
<tr>
<td>Input capacitance: All other input-only pins</td>
<td>(C_{I2})</td>
<td>2.5</td>
<td>3.8</td>
<td>pF</td>
</tr>
<tr>
<td>Input/output capacitance: DQs</td>
<td>(C_{IO})</td>
<td>4</td>
<td>6</td>
<td>pF</td>
</tr>
</tbody>
</table>
Table 10: I_{DD} Specifications and Conditions – Revision G

Notes 1–5 apply to all parameters and conditions; V_{DD}, V_{DDQ} = 3.3V ±0.3V

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating current: Active mode; Burst = 2; READ or WRITE; $^1RC = , ^1RC$ (MIN)</td>
<td>I_{DD1}</td>
<td>190</td>
<td>mA</td>
<td>6, 7, 8, 9</td>
</tr>
<tr>
<td>Standby current: Power-down mode; CKE = LOW; All banks idle</td>
<td>I_{DD2}</td>
<td>2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current: Active mode; CS# = HIGH; CKE = HIGH; All banks active after 1RCD met; No accesses in progress</td>
<td>I_{DD3}</td>
<td>65</td>
<td>mA</td>
<td>8, 9</td>
</tr>
<tr>
<td>Operating current: Burst mode; Continuous burst; READ or WRITE; All banks active; CL = 3</td>
<td>I_{DD4}</td>
<td>195</td>
<td>mA</td>
<td>6, 7, 8, 9</td>
</tr>
<tr>
<td>Auto refresh current: CS# = HIGH; CKE = HIGH; CL = 3 $^1RFC = , ^1RFC$ (MIN)</td>
<td>I_{DD5}</td>
<td>320</td>
<td>mA</td>
<td>6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Self refresh current: CKE ≤ 0.2V</td>
<td>I_{DD6}</td>
<td>2</td>
<td>mA</td>
<td>11, 12</td>
</tr>
</tbody>
</table>

Table 11: I_{DD} Specifications and Conditions – Revision L

Notes 1–5 apply to all parameters and conditions; V_{DD}, V_{DDQ} = 3.3V ±0.3V

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating current: Active mode; Burst = 2; READ or WRITE; $^1RC = , ^1RC$ (MIN)</td>
<td>I_{DD1}</td>
<td>120</td>
<td>mA</td>
<td>6, 7, 8, 9</td>
</tr>
<tr>
<td>Standby current: Power-down mode; CKE = LOW; All banks idle</td>
<td>I_{DD2}</td>
<td>2.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current: Active mode; CS# = HIGH; CKE = HIGH; All banks active after 1RCD met; No accesses in progress</td>
<td>I_{DD3}</td>
<td>45</td>
<td>mA</td>
<td>8, 9</td>
</tr>
<tr>
<td>Operating current: Burst mode; Continuous burst; READ or WRITE; All banks active; CL = 3</td>
<td>I_{DD4}</td>
<td>120</td>
<td>mA</td>
<td>6, 7, 8, 9</td>
</tr>
<tr>
<td>Auto refresh current: CS# = HIGH; CKE = HIGH; CL = 3 $^1RFC = , ^1RFC$ (MIN)</td>
<td>I_{DD5}</td>
<td>180</td>
<td>mA</td>
<td>6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Self refresh current: CKE ≤ 0.2V</td>
<td>I_{DD6}</td>
<td>3</td>
<td>mA</td>
<td>11, 12</td>
</tr>
</tbody>
</table>

Notes:
1. All voltages referenced to V_{SS}.
2. I_{DD} specifications are tested after the device is properly initialized.
3. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is ensured for IT parts: $0°C ≤ T_A ≤ +70°C$ $-40°C ≤ T_A ≤ +85°C$.
4. 1Hz defines the time at which the output achieves the open circuit condition; it is not a reference to V_{OH} or V_{OL}. The last valid data element will meet 1OH before going High-Z.
5. Other input signals are allowed to transition no more than once in any two-clock period and are otherwise at valid V_{IH} or V_{IL} levels.
6. I_{DD} is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
7. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter.
8. The I_{DD} current will decrease as CL is reduced. This is due to the fact that the maximum cycle rate is slower as CL is reduced.

9. JEDEC and PC100 specify three clocks.

10. AC timing and I_{DD} tests have $V_{IL} = 0.25$ and $V_{IH} = 2.75$, with timing referenced to the 1.5V crossover point.

11. Enables on-chip refresh and address counters.

12. CKE is HIGH during refresh command period $t_{RFC} (MIN)$, or else CKE is LOW. The I_{DD6} limit is actually a nominal value and does not result in a fail value.
Table 12: Electrical Characteristics and Recommended AC Operating Conditions

Notes 1–6 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>-6A³</th>
<th>-6</th>
<th>-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Access time from CLK (positive edge)</td>
<td>CL = 3</td>
<td>(t_{AC(3)})</td>
<td>-5.4</td>
<td>-5.5</td>
</tr>
<tr>
<td></td>
<td>CL = 2</td>
<td>(t_{AC(2)})</td>
<td>-7.5</td>
<td>-7.5</td>
</tr>
<tr>
<td></td>
<td>CL = 1</td>
<td>(t_{AC(1)})</td>
<td>-17</td>
<td>-17</td>
</tr>
<tr>
<td>Address hold time</td>
<td>(t_{AH})</td>
<td>0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Address setup time</td>
<td>(t_{AS})</td>
<td>1.5</td>
<td>-1.5</td>
<td>-2</td>
</tr>
<tr>
<td>CLK high-level width</td>
<td>(t_{CH})</td>
<td>2.5</td>
<td>-2.5</td>
<td>-2.75</td>
</tr>
<tr>
<td>CLK low-level width</td>
<td>(t_{CL})</td>
<td>2.5</td>
<td>-2.5</td>
<td>-2.75</td>
</tr>
<tr>
<td>Clock cycle time</td>
<td>CL = 3</td>
<td>(t_{CK(3)})</td>
<td>6</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>CL = 2</td>
<td>(t_{CK(2)})</td>
<td>10</td>
<td>-10³</td>
</tr>
<tr>
<td></td>
<td>CL = 1</td>
<td>(t_{CK(1)})</td>
<td>20</td>
<td>-20³</td>
</tr>
<tr>
<td>CKE hold time</td>
<td>(t_{CKH})</td>
<td>0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>CKE setup time</td>
<td>(t_{CKS})</td>
<td>1.5</td>
<td>-1.5</td>
<td>-2</td>
</tr>
<tr>
<td>CS#, RAS#, CAS#, WE#, DQM hold time</td>
<td>(t_{CMH})</td>
<td>0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>CS#, RAS#, CAS#, WE#, DQM setup time</td>
<td>(t_{CMS})</td>
<td>1.5</td>
<td>-1.5</td>
<td>-2</td>
</tr>
<tr>
<td>Data-in hold time</td>
<td>(t_{DH})</td>
<td>0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Data-in setup time</td>
<td>(t_{DS})</td>
<td>1.5</td>
<td>-1.5</td>
<td>-2</td>
</tr>
<tr>
<td>Data-out High-Z time</td>
<td>CL = 3</td>
<td>(t_{HZ(3)})</td>
<td>-5.4</td>
<td>-5.5</td>
</tr>
<tr>
<td></td>
<td>CL = 2</td>
<td>(t_{HZ(2)})</td>
<td>-7.5</td>
<td>-7.5</td>
</tr>
<tr>
<td></td>
<td>CL = 1</td>
<td>(t_{HZ(1)})</td>
<td>-17</td>
<td>-17</td>
</tr>
<tr>
<td>Data-out Low-Z time</td>
<td>(t_{LZ})</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Data-out hold time (load)</td>
<td>(t_{OH})</td>
<td>3</td>
<td>-2</td>
<td>-2.5</td>
</tr>
<tr>
<td>Data-out hold time (no load)</td>
<td>(t_{OHN})</td>
<td>1.8</td>
<td>-1.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>ACTIVE-to-PRECHARGE command</td>
<td>(t_{RAS})</td>
<td>42</td>
<td>120,000</td>
<td>42</td>
</tr>
<tr>
<td>ACTIVE-to-ACTIVE command period</td>
<td>(t_{RC})</td>
<td>60</td>
<td>-60</td>
<td>-70</td>
</tr>
<tr>
<td>AUTO REFRESH period</td>
<td>(t_{RFC})</td>
<td>60</td>
<td>-60</td>
<td>-70</td>
</tr>
<tr>
<td>ACTIVE-to-READ or WRITE delay</td>
<td>(t_{RCD})</td>
<td>18</td>
<td>-18</td>
<td>-20</td>
</tr>
<tr>
<td>Refresh period (4096 rows)</td>
<td>(t_{REF})</td>
<td>-64</td>
<td>-64</td>
<td>-64</td>
</tr>
<tr>
<td>Refresh period – automotive (4096 rows)</td>
<td>(t_{REFAT})</td>
<td>-16</td>
<td>-16</td>
<td>-16</td>
</tr>
<tr>
<td>PRECHARGE command period</td>
<td>(t_{RP})</td>
<td>18</td>
<td>-18</td>
<td>-20</td>
</tr>
<tr>
<td>ACTIVE bank a to ACTIVE bank b command</td>
<td>(t_{RRD})</td>
<td>12</td>
<td>-12</td>
<td>-15</td>
</tr>
<tr>
<td>Transition time</td>
<td>(t^{\circ})</td>
<td>0.3</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>WRITE recovery time</td>
<td>(t_{WR})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

³ 128Mb: x32 SDRAM
Table 12: Electrical Characteristics and Recommended AC Operating Conditions (Continued)

Notes 1–6 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>-6A</th>
<th>-6</th>
<th>-7</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit SELF REFRESH-to-ACTIVE command</td>
<td>^XSR</td>
<td>67</td>
<td>–</td>
<td>70</td>
<td>ns</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 13: AC Functional Characteristics

Notes 1–6 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>-6</th>
<th>-6A</th>
<th>-7</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ/WRITE command to READ/WRITE command</td>
<td>^CCD</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>CKE to clock disable or power-down entry mode</td>
<td>^CKED</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td>16</td>
</tr>
<tr>
<td>CKE to clock enable or power-down exit setup mode</td>
<td>^PED</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>DQM to input data delay</td>
<td>^DQD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>DQM to data mask during WRITEs</td>
<td>^DQM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>DQM to data High-Z during READs</td>
<td>^DQZ</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>WRITE command to input data delay</td>
<td>^DWD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Data-in to ACTIVE command</td>
<td>^DAL(3)</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>^CK</td>
<td>17</td>
</tr>
<tr>
<td>Data-in to PRECHARGE command</td>
<td>^DAL(2)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>^CK</td>
<td>17</td>
</tr>
<tr>
<td>Data-in to PRECHARGE command</td>
<td>^DAL(1)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>^CK</td>
<td>17</td>
</tr>
<tr>
<td>Last data-in to burst STOP command</td>
<td>^BDL</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Last data-in to new READ/WRITE command</td>
<td>^CDL</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Last data-in to burst PRECHARGE command</td>
<td>^RDL</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>^CK</td>
<td>18</td>
</tr>
<tr>
<td>LOAD MODE REGISTER command to ACTIVE or REFRESH command</td>
<td>^MRD</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Data-out to High-Z from PRECHARGE command</td>
<td>^ROH(3)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Data-out to High-Z from PRECHARGE command</td>
<td>^ROH(2)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>^CK</td>
<td></td>
</tr>
<tr>
<td>Data-out to High-Z from PRECHARGE command</td>
<td>^ROH(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>^CK</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range is ensured:
 - 0°C ≤ TA ≤ +70°C (commercial)
 - –40°C ≤ TA ≤ +85°C (industrial)
 - –40°C ≤ TA ≤ +105°C (automotive)
2. Minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range is ensured for IT parts:
 - 0°C ≤ TA ≤ +70°C
 - –40°C ≤ TA ≤ +85°C
3. An initial pause of 100μs is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VDD and VDDQ must be powered up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH command wake-ups should be repeated any time the ^REF refresh requirement is exceeded.
4. AC characteristics assume ^T = 1ns.
5. In addition to meeting the transition rate specification, the clock and CKE must transit between \(V_{IH} \) and \(V_{IL} \) (or between \(V_{IL} \) and \(V_{IH} \)) in a monotonic manner.

6. Outputs measured at 1.5V with equivalent load:

\[
Q \quad 50\text{pF}
\]

7. Parameter guaranteed by design. Note 6 does not apply to \(t_{OHn} \).

8. \(t_{HZ} \) defines the time at which the output achieves the open circuit condition; it is not a reference to \(V_{OH} \) or \(V_{OL} \). The last valid data element will meet \(t_{OH} \) before going High-Z.

9. Not applicable for Revision G.

10. \(V_{IH} \) overshoot: \(V_{IH,max} = V_{DDQ} + 1.2V \) for a pulse width \(\leq 3\text{ns} \), and the pulse width cannot be greater than one third of the cycle rate. \(V_{IL} \) undershoot: \(V_{IL,min} = -1.2V \) for a pulse width \(\leq 3\text{ns} \), and the pulse width cannot be greater than one third of the cycle rate.

11. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row address may result in reduction of the product lifetime.

12. Auto precharge mode only.

13. The clock frequency must remain constant (stable clock is defined as a signal cycling within timing constraints specified for the clock pin) during access or precharge states (READ, WRITE, including \(t_{WR} \), and PRECHARGE commands). CKE may be used to reduce the data rate.

14. \(t_{CK} = 7\text{ns} \) for -7, 6ns for -6/6A.

15. Address transitions average on transition every two clocks.

16. Timing is specified by \(t_{CKS} \). Clock(s) specified as a reference only at minimum cycle rate.

17. Timing is specified by \(t_{WR} \) plus \(t_{RP} \). Clock(s) specified as a reference only at minimum cycle rate.

18. Timing is specified by \(t_{WR} \).
Functional Description

In general, 128Mb SDRAM devices (1 Meg x 32 x 4 banks) are quad-bank DRAM that operate at 3.3V and include a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 33,554,432-bit banks is organized as 4096 rows by 256 columns by 32 bits.

Read and write accesses to the SDRAM are burst-oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA[1:0] select the bank; A[11:0] select the row). The address bits (A[7:0]) registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions, and device operation.
Commands

The following table provides a quick reference of available commands, followed by a written description of each command. Additional Truth Tables (Table 15 (page 30), Table 16 (page 32), and Table 17 (page 34)) provide current state/next state information.

Table 14: Truth Table – Commands and DQM Operation

Note 1 applies to all parameters and conditions

<table>
<thead>
<tr>
<th>Name (Function)</th>
<th>CS#</th>
<th>RAS#</th>
<th>CAS#</th>
<th>WE#</th>
<th>DQM</th>
<th>ADDR</th>
<th>DQ</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND INHIBIT (NOP)</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NO OPERATION (NOP)</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ACTIVE (select bank and activate row)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>Bank/row</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>READ (select bank and column, and start READ burst)</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L/H</td>
<td>Bank/col</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>WRITE (select bank and column, and start WRITE burst)</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L/H</td>
<td>Valid</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>BURST TERMINATE</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>X</td>
<td>Active</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>PRECHARGE (Deactivate row in bank or banks)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>X</td>
<td>Code</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>AUTO REFRESH or SELF REFRESH (enter self refresh mode)</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6, 7</td>
</tr>
<tr>
<td>LOAD MODE REGISTER</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>X</td>
<td>Op-code</td>
<td>X</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Write enable/output enable</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>X</td>
<td>Active</td>
<td>9</td>
</tr>
<tr>
<td>Write inhibit/output High-Z</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>High-Z</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes:
1. CKE is HIGH for all commands shown except SELF REFRESH.
2. A[0:n] provide row address (where An is the most significant address bit), BA0 and BA1 determine which bank is made active.
3. A[0:i] provide column address (where i = the most significant column address for a given device configuration). A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW disables the auto precharge feature. BA0 and BA1 determine which bank is being read from or written to.
4. The purpose of the BURST TERMINATE command is to stop a data burst, thus the command could coincide with data on the bus. However, the DQ column reads a “Don’t Care” state to illustrate that the BURST TERMINATE command can occur when there is no data present.
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: all banks precharged and BA0, BA1 are “Don’t Care.”
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
9. Activates or deactivates the DQ during WRITEs (zero-clock delay) and READs (two-clock delay).

COMMAND INHIBIT

The COMMAND INHIBIT function prevents new commands from being executed by the device, regardless of whether the CLK signal is enabled. The device is effectively deselected. Operations already in progress are not affected.
NO OPERATION (NOP)

The NO OPERATION (NOP) command is used to perform a NOP to the selected device (CS# is LOW). This prevents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected.

LOAD MODE REGISTER (LMR)

The mode registers are loaded via inputs A[^n:0] (where A^n is the most significant address term), BA0, and BA1 (see Mode Register (page 37)). The LOAD MODE REGISTER command can only be issued when all banks are idle and a subsequent executable command cannot be issued until tMRD is met.

ACTIVE

The ACTIVE command is used to activate a row in a particular bank for a subsequent access. The value on the BA0, BA1 inputs selects the bank, and the address provided selects the row. This row remains active for accesses until a PRECHARGE command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank.

Figure 8: ACTIVE Command

[Diagram showing the timing of the ACTIVE command with inputs CLK, CKE, CS#, RAS#, CAS#, WE#, and outputs Address and BA0, BA1. The diagram illustrates the timing of the signals and their relevance to activating a row in a bank.]
The READ command is used to initiate a burst read access to an active row. The values on the BA0 and BA1 inputs select the bank; the address provided selects the starting column location. The value on input A10 determines whether auto precharge is used. If auto precharge is selected, the row being accessed is precharged at the end of the READ burst; if auto precharge is not selected, the row remains open for subsequent accesses. Read data appears on the DQ subject to the logic level on the DQM inputs two clocks earlier. If a given DQM signal was registered HIGH, the corresponding DQ will be High-Z two clocks later; if the DQM signal was registered LOW, the DQ will provide valid data.

Figure 9: READ Command

Note: 1. EN AP = enable auto precharge, DIS AP = disable auto precharge.
The WRITE command is used to initiate a burst write access to an active row. The values on the BA0 and BA1 inputs select the bank; the address provided selects the starting column location. The value on input A10 determines whether auto precharge is used. If auto precharge is selected, the row being accessed is precharged at the end of the write burst; if auto precharge is not selected, the row remains open for subsequent accesses. Input data appearing on the DQ is written to the memory array, subject to the DQM input logic level appearing coincident with the data. If a given DQM signal is registered LOW, the corresponding data is written to memory; if the DQM signal is registered HIGH, the corresponding data inputs are ignored and a WRITE is not executed to that byte/column location.

Figure 10: WRITE Command

Note: 1. EN AP = enable auto precharge, DIS AP = disable auto precharge.
PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access a specified time \((t_{RP})\) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is precharged, inputs BA0 and BA1 select the bank. Otherwise BA0 and BA1 are treated as “Don’t Care.” After a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands are issued to that bank.

Figure 11: PRECHARGE Command

BURST TERMINATE

The BURST TERMINATE command is used to truncate either fixed-length or continuous page bursts. The most recently registered READ or WRITE command prior to the BURST TERMINATE command is truncated.
REFRESH

AUTO REFRESH

AUTO REFRESH is used during normal operation of the SDRAM and is analogous to CAS#-BEFORE-RAS# (CBR) refresh in conventional DRAMs. This command is nonpersistent, so it must be issued each time a refresh is required. All active banks must be precharged prior to issuing an AUTO REFRESH command. The AUTO REFRESH command should not be issued until the minimum \(t_{RP} \) has been met after the PRECHARGE command, as shown in Bank/Row Activation (page 42).

The addressing is generated by the internal refresh controller. This makes the address bits a “Don’t Care” during an AUTO REFRESH command. Regardless of device width, the 128Mb SDRAM requires 4096 AUTO REFRESH cycles every 64ms (commercial and industrial) or 16ms (automotive). Providing a distributed AUTO REFRESH command every 15.625\(\mu \)s (commercial and industrial) or 3.906\(\mu \)s (automotive) will meet the refresh requirement and ensure that each row is refreshed. Alternatively, 4096 AUTO REFRESH commands can be issued in a burst at the minimum cycle rate \(t_{RFC} \), once every 64ms (commercial and industrial) or 16ms (automotive).

SELF REFRESH

The SELF REFRESH command can be used to retain data in the SDRAM, even if the rest of the system is powered-down. When in the self refresh mode, the SDRAM retains data without external clocking.

The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is disabled (LOW). After the SELF REFRESH command is registered, all the inputs to the SDRAM become a “Don’t Care” with the exception of CKE, which must remain LOW.

After self refresh mode is engaged, the SDRAM provides its own internal clocking, causing it to perform its own AUTO REFRESH cycles. The SDRAM must remain in self refresh mode for a minimum period equal to \(t_{RAS} \) and may remain in self refresh mode for an indefinite period beyond that.

The procedure for exiting self refresh requires a sequence of commands. First, CLK must be stable (stable clock is defined as a signal cycling within timing constraints specified for the clock pin) prior to CKE going back HIGH. After CKE is HIGH, the SDRAM must have NOP commands issued (a minimum of two clocks) for \(t_{XSR} \) because time is required for the completion of any internal refresh in progress.

Upon exiting the self refresh mode, AUTO REFRESH commands must be issued at the specified intervals, as both SELF REFRESH and AUTO REFRESH utilize the row refresh counter.

Self refresh is not supported on automotive temperature devices.
Truth Tables

Table 15: Truth Table – Current State Bank \(n \), Command to Bank \(n \)

Notes 1–6 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Current State</th>
<th>CS#</th>
<th>RAS#</th>
<th>CAS#</th>
<th>WE#</th>
<th>Command/Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>COMMAND INHIBIT (NOP/continue previous operation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO OPERATION (NOP/continue previous operation)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>AUTO REFRESH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>LOAD MODE REGISTER</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td>8</td>
</tr>
<tr>
<td>Row active</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start READ burst)</td>
<td>9</td>
</tr>
<tr>
<td>(auto precharge disabled)</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start WRITE burst)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE (deactivate row in bank or banks)</td>
<td>10</td>
</tr>
<tr>
<td>Read</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start new READ burst)</td>
<td>9</td>
</tr>
<tr>
<td>(auto precharge disabled)</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start WRITE burst)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE (truncate READ burst, start PRECHARGE)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>BURST TERMINATE</td>
<td>11</td>
</tr>
<tr>
<td>Write</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start READ burst)</td>
<td>9</td>
</tr>
<tr>
<td>(auto precharge disabled)</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start new WRITE burst)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE (truncate WRITE burst, start PRECHARGE)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>BURST TERMINATE</td>
<td>11</td>
</tr>
</tbody>
</table>

Notes:
1. This table applies when \(\text{CKE}_{n-1} \) was HIGH and \(\text{CKE}_n \) is HIGH (see Table 17 (page 34)) and after \(1\text{XSR} \) has been met (if the previous state was self refresh).
2. This table is bank-specific, except where noted (for example, the current state is for a specific bank and the commands shown can be issued to that bank when in that state). Exceptions are covered below.
3. Current state definitions:
 - **Idle**: The bank has been precharged, and \(1\text{RP} \) has been met.
 - **Row active**: A row in the bank has been activated, and \(1\text{RCD} \) has been met. No data bursts/accesses and no register accesses are in progress.
 - **Read**: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated.
 - **Write**: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated.
4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP commands, or supported commands to the other bank should be issued on any clock edge occurring during these states. Supported commands to any other bank are determined by the bank’s current state and the conditions described in this and the following table.
5. **Precharging**: Starts with registration of a PRECHARGE command and ends when \(1\text{RP} \) is met. After \(1\text{RP} \) is met, the bank will be in the idle state.
6. **Row activating**: Starts with registration of an ACTIVE command and ends when \(1\text{RCD} \) is met. After \(1\text{RCD} \) is met, the bank will be in the row active state.
Read with auto precharge enabled: Starts with registration of a READ command with auto precharge enabled and ends when \(t_{\text{RP}} \) has been met. After \(t_{\text{RP}} \) is met, the bank will be in the idle state.

Write with auto precharge enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when \(t_{\text{RP}} \) has been met. After \(t_{\text{RP}} \) is met, the bank will be in the idle state.

5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP commands must be applied on each positive clock edge during these states.

Refreshing: Starts with registration of an AUTO REFRESH command and ends when \(t_{\text{RFC}} \) is met. After \(t_{\text{RFC}} \) is met, the device will be in the all banks idle state.

Accessing mode register: Starts with registration of a LOAD MODE REGISTER command and ends when \(t_{\text{MRD}} \) has been met. After \(t_{\text{MRD}} \) is met, the device will be in the all banks idle state.

Precharging all: Starts with registration of a PRECHARGE ALL command and ends when \(t_{\text{RP}} \) is met. After \(t_{\text{RP}} \) is met, all banks will be in the idle state.

6. All states and sequences not shown are illegal or reserved.

7. Not bank specific; requires that all banks are idle.

8. Does not affect the state of the bank and acts as a NOP to that bank.

9. READs or WRITEs listed in the Command/Action column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled.

10. May or may not be bank specific; if all banks need to be precharged, each must be in a valid state for precharging.

11. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank.
Table 16: Truth Table – Current State Bank n, Command to Bank m

Notes 1–6 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Current State</th>
<th>CS#</th>
<th>RAS#</th>
<th>CAS#</th>
<th>WE#</th>
<th>Command/Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>COMMAND INHIBIT (NOP/continue previous operation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO OPERATION (NOP/continue previous operation)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Any command otherwise supported for bank m</td>
<td></td>
</tr>
<tr>
<td>Row activating, active, or precharging</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start READ burst)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start WRITE burst)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td></td>
</tr>
<tr>
<td>Read (auto precharge disabled)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start new READ burst)</td>
<td>7, 10</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start WRITE burst)</td>
<td>7, 11</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td>9</td>
</tr>
<tr>
<td>Write (auto precharge disabled)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start READ burst)</td>
<td>7, 12</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start new WRITE burst)</td>
<td>7, 13</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td>9</td>
</tr>
<tr>
<td>Read (with auto precharge)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start new READ burst)</td>
<td>7, 8, 14</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start WRITE burst)</td>
<td>7, 8, 14</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td>9</td>
</tr>
<tr>
<td>Write (with auto precharge)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>ACTIVE (select and activate row)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>READ (select column and start READ burst)</td>
<td>7, 8, 16</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>WRITE (select column and start new WRITE burst)</td>
<td>7, 8, 17</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>PRECHARGE</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes:
1. This table applies when CKE_{n-1} was HIGH and CKE_n is HIGH (Table 17 (page 34)), and after \(t_{XSR} \) has been met (if the previous state was self refresh).
2. This table describes alternate bank operation, except where noted; for example, the current state is for bank n and the commands shown can be issued to bank m, assuming that bank m is in such a state that the given command is supported. Exceptions are covered below.
3. Current state definitions:
 - **Idle**: The bank has been precharged, and \(t_{RP} \) has been met.
 - **Row active**: A row in the bank has been activated, and \(t_{RCD} \) has been met. No data bursts/accesses and no register accesses are in progress.
 - **Read**: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated.
 - **Write**: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated.
Read with auto precharge enabled: Starts with registration of a READ command with auto precharge enabled and ends when tRP has been met. After tRP is met, the bank will be in the idle state.

Write with auto precharge enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when tRP has been met. After tRP is met, the bank will be in the idle state.

4. AUTO REFRESH, SELF REFRESH, and LOAD MODE REGISTER commands can only be issued when all banks are idle.

5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only.

6. All states and sequences not shown are illegal or reserved.

7. READs or WRITEs to bank m listed in the Command/Action column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled.

8. Concurrent auto precharge: Bank n will initiate the auto precharge command when its burst has been interrupted by bank m burst.

9. The burst in bank n continues as initiated.

10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the READ on bank n, CAS latency (CL) later.

11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the READ on bank n when registered. DQM should be used one clock prior to the WRITE command to prevent bus contention.

12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the WRITE on bank n when registered, with the data-out appearing CL later. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.

13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the WRITE on bank n when registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.

14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the READ on bank n, CL later. The PRECHARGE to bank n will begin when the READ to bank m is registered.

15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered.

16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the WRITE on bank n when registered, with the data-out appearing CL later. The PRECHARGE to bank n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE bank n will be data registered one clock prior to the READ to bank m.

17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where tWR begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock to the WRITE to bank m.
Table 17: Truth Table – CKE

Notes 1–4 apply to all parameters and conditions

<table>
<thead>
<tr>
<th>Current State</th>
<th>CKE<sub>n-1</sub></th>
<th>CKE<sub>n</sub></th>
<th>Command<sub>n</sub></th>
<th>Action<sub>n</sub></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-down</td>
<td>L</td>
<td>L</td>
<td>X</td>
<td>Maintain power-down</td>
<td></td>
</tr>
<tr>
<td>Self refresh</td>
<td></td>
<td></td>
<td>X</td>
<td>Maintain self refresh</td>
<td></td>
</tr>
<tr>
<td>Clock suspend</td>
<td></td>
<td></td>
<td>X</td>
<td>Maintain clock suspend</td>
<td></td>
</tr>
<tr>
<td>Power-down</td>
<td>L</td>
<td>H</td>
<td>COMMAND INHIBIT or NOP</td>
<td>Exit power-down</td>
<td>5</td>
</tr>
<tr>
<td>Self refresh</td>
<td></td>
<td></td>
<td>COMMAND INHIBIT or NOP</td>
<td>Exit self refresh</td>
<td>6</td>
</tr>
<tr>
<td>Clock suspend</td>
<td></td>
<td></td>
<td>X</td>
<td>Exit clock suspend</td>
<td>7</td>
</tr>
<tr>
<td>All banks idle</td>
<td>H</td>
<td>L</td>
<td>COMMAND INHIBIT or NOP</td>
<td>Power-down entry</td>
<td></td>
</tr>
<tr>
<td>All banks idle</td>
<td></td>
<td></td>
<td>AUTO REFRESH</td>
<td>Self refresh entry</td>
<td></td>
</tr>
<tr>
<td>Reading or writing</td>
<td></td>
<td></td>
<td>VALID</td>
<td>Clock suspend entry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>See Table 16 (page 32).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. CKE_n is the logic state of CKE at clock edge n; CKE_{n-1} was the state of CKE at the previous clock edge.
2. Current state is the state of the SDRAM immediately prior to clock edge n.
3. COMMAND_n is the command registered at clock edge n, and ACTION_n is a result of COMMAND_n.
4. All states and sequences not shown are illegal or reserved.
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n + 1 (provided that 'CKS is met).
6. Exiting self refresh at clock edge n will put the device in the all banks idle state after 'XSR is met. COMMAND INHIBIT or NOP commands should be issued on any clock edges occurring during the 'XSR period. A minimum of two NOP commands must be provided during the 'XSR period.
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next command at clock edge n + 1.
Initialization

SDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. After power is applied to \(V_{DD} \) and \(V_{DDQ} \) (simultaneously) and the clock is stable (stable clock is defined as a signal cycling within timing constraints specified for the clock pin), the SDRAM requires a 100\(\mu \)s delay prior to issuing any command other than a COMMAND INHIBIT or NOP. Starting at some point during this 100\(\mu \)s period and continuing at least through the end of this period, COMMAND INHIBIT or NOP commands must be applied.

After the 100\(\mu \)s delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied. All banks must then be precharged, thereby placing the device in the all banks idle state.

Once in the idle state, at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is ready for mode register programming. Because the mode register will power up in an unknown state, it must be loaded prior to applying any operational command. If desired, the two AUTO REFRESH commands can be issued after the LMR command.

The recommended power-up sequence for SDRAM:

1. Simultaneously apply power to \(V_{DD} \) and \(V_{DDQ} \).
2. Assert and hold CKE at a LVTTL logic LOW since all inputs and outputs are LVTTL-compatible.
3. Provide stable CLOCK signal. Stable clock is defined as a signal cycling within timing constraints specified for the clock pin.
4. Wait at least 100\(\mu \)s prior to issuing any command other than a COMMAND INHIBIT or NOP.
5. Starting at some point during this 100\(\mu \)s period, bring CKE HIGH. Continuing at least through the end of this period, 1 or more COMMAND INHIBIT or NOP commands must be applied.
6. Perform a PRECHARGE ALL command.
7. Wait at least \(t_{RP} \) time; during this time NOPs or DESELECT commands must be given. All banks will complete their precharge, thereby placing the device in the all banks idle state.
8. Issue an AUTO REFRESH command.
9. Wait at least \(t_{RFC} \) time, during which only NOPs or COMMAND INHIBIT commands are allowed.
10. Issue an AUTO REFRESH command.
11. Wait at least \(t_{RFC} \) time, during which only NOPs or COMMAND INHIBIT commands are allowed.
12. The SDRAM is now ready for mode register programming. Because the mode register will power up in an unknown state, it should be loaded with desired bit values prior to applying any operational command. Using the LMR command, program the mode register. The mode register is programmed via the MODE REGISTER SET command with BA1 = 0, BA0 = 0 and retains the stored information until it is programmed again or the device loses power. Not programming the mode register upon initialization will result in default settings which may not be desired. Outputs are guaranteed High-Z after the LMR command is issued. Outputs should be High-Z already before the LMR command is issued.
13. Wait at least \(t_{MRD} \) time, during which only NOP or DESELECT commands are allowed.

At this point the DRAM is ready for any valid command.
Note:

More than two AUTO REFRESH commands can be issued in the sequence. After steps 9 and 10 are complete, repeat them until the desired number of AUTO REFRESH + 1RFC loops is achieved.

Figure 12: Initialize and Load Mode Register

Notes:
1. The mode register may be loaded prior to the AUTO REFRESH cycles if desired.
2. If CS is HIGH at clock HIGH time, all commands applied are NOP.
3. JEDEC and PC100 specify three clocks.
4. Outputs are guaranteed High-Z after command is issued.
5. A12 should be a LOW at Tp + 1.
Mode Register

The mode register defines the specific mode of operation, including burst length (BL), burst type, CAS latency (CL), operating mode, and write burst mode. The mode register is programmed via the LOAD MODE REGISTER command and retains the stored information until it is programmed again or the device loses power.

Mode register bits M[2:0] specify the BL; M3 specifies the type of burst; M[6:4] specify the CL; M7 and M8 specify the operating mode; M9 specifies the write burst mode; and M10–Mn should be set to zero to ensure compatibility with future revisions. Mn + 1 and Mn + 2 should be set to zero to select the mode register.

The mode registers must be loaded when all banks are idle, and the controller must wait tMRD before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.
Figure 13: Mode Register Definition

- **A12-A0** Address Bus
- **Mx** Mode Register
- **WBA1, BA0 = “0, 0”** to ensure compatibility with future devices.

M9 Write Burst Mode
- 0 Programmed Burst Length
- 1 Single Location Access

M8 M7 M6-M0 Operating Mode
- 0 0 Defined Standard Operation
- 0 1 - - All other states reserved

M3 Burst Type
- 0 Sequential
- 1 Interleaved

M2 M1 M0 Burst Length

<table>
<thead>
<tr>
<th>M2 M1 M0</th>
<th>M3 = 0</th>
<th>M3 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0 1 1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Full Page</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

M6 M5 M4 CAS Latency

<table>
<thead>
<tr>
<th>M6 M5 M4</th>
<th>CAS Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>Reserved</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2</td>
</tr>
<tr>
<td>0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Burst Length

Read and write accesses to the device are burst oriented, and the burst length (BL) is programmable. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4, 8, or continuous locations are available for both the sequential and the interleaved burst types, and a continuous page burst is available for the sequential type. The continuous page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst wraps within the block when a boundary is reached. The block is uniquely selected by A[8:1] when BL = 2, A[8:2] when BL = 4, and A[8:3] when BL = 8. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Continuous page bursts wrap within the page when the boundary is reached.

Burst Type

Accesses within a given burst can be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type, and the starting column address.
Table 18: Burst Definition Table

<table>
<thead>
<tr>
<th>Burst Length</th>
<th>Starting Column Address</th>
<th>Order of Accesses Within a Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type = Sequential</td>
</tr>
<tr>
<td>2</td>
<td>A0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1-0</td>
</tr>
<tr>
<td>4</td>
<td>A1, A0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0-1-2-3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1-2-3-0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2-3-0-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3-0-1-2</td>
</tr>
<tr>
<td>8</td>
<td>A2, A1, A0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0-1-2-3-4-5-6-7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1-2-3-4-5-6-7-0-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2-3-4-5-6-7-0-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3-4-5-6-7-0-1-2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4-5-6-7-0-1-2-3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5-6-7-0-1-2-3-4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6-7-0-1-2-3-4-5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7-0-1-2-3-4-5-6</td>
</tr>
</tbody>
</table>

Continuous

n = A0–An/9/8 (location 0–y)
Cn, Cn + 1, Cn + 2, Cn + 3...Cn - 1, Cn...

Not supported

Notes:
1. For full-page accesses: y = 2048 (x4); y = 1024 (x8); y = 512 (x16).
2. For BL = 2, A1–A9, A11 (x4); A1–A9 (x8); or A1–A8 (x16) select the block-of-two burst; A0 selects the starting column within the block.
3. For BL = 4, A2–A9, A11 (x4); A2–A9 (x8); or A2–A8 (x16) select the block-of-four burst; A0–A1 select the starting column within the block.
4. For BL = 8, A3–A9, A11 (x4); A3–A9 (x8); or A3–A8 (x16) select the block-of-eight burst; A0–A2 select the starting column within the block.
5. For a full-page burst, the full row is selected and A0–A9, A11 (x4); A0–A9 (x8); or A0–A8 (x16) select the starting column.
6. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.
7. For BL = 1, A0–A9, A11 (x4); A0–A9 (x8); or A0–A8 (x16) select the unique column to be accessed, and mode register bit M3 is ignored.
CAS Latency

The CAS latency (CL) is the delay, in clock cycles, between the registration of a READ command and the availability of the output data. The latency can be set to two or three clocks.

If a READ command is registered at clock edge \(n \), and the latency is \(m \) clocks, the data will be available by clock edge \(n + m \). The DQ start driving as a result of the clock edge one cycle earlier \((n + m - 1)\), and provided that the relevant access times are met, the data is valid by clock edge \(n + m \). For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at \(T0 \) and the latency is programmed to two clocks, the DQ start driving after \(T1 \) and the data is valid by \(T2 \).

Reserved states should not be used as unknown operation or incompatibility with future versions may result.

Figure 14: CAS Latency

Operating Mode

The normal operating mode is selected by setting \(M7 \) and \(M8 \) to zero; the other combinations of values for \(M7 \) and \(M8 \) are reserved for future use. Reserved states should not be used because unknown operation or incompatibility with future versions may result.

Write Burst Mode

When \(M9 = 0 \), the burst length programmed via \(M[2:0] \) applies to both READ and WRITE bursts; when \(M9 = 1 \), the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses.
Bank/Row Activation

Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be opened. This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated.

After a row is opened with the ACTIVE command, a READ or WRITE command can be issued to that row, subject to the \(t_{RCD} \) specification. \(t_{RCD} \) (MIN) should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a \(t_{RCD} \) specification of 20ns with a 125 MHz clock (8ns period) results in 2.5 clocks, rounded to 3. This is reflected in Figure 15 (page 42), which covers any case where \(2 < \frac{t_{RCD} \text{(MIN)}}{t_{CK}} \leq 3 \). (The same procedure is used to convert other specification limits from time units to clock cycles.)

A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been precharged. The minimum time interval between successive ACTIVE commands to the same bank is defined by \(t_{RC} \).

A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by \(t_{RRD} \).

Figure 15: Example: Meeting \(t_{RCD} \text{(MIN)} \) When \(2 < \frac{t_{RCD} \text{(MIN)}}{t_{CK}} \leq 3 \)
READ Operation

READ bursts are initiated with a READ command, as shown in Figure 9 (page 26). The starting column and bank addresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. In the following figures, auto precharge is disabled.

During READ bursts, the valid data-out element from the starting column address is available following the CAS latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. Figure 17 (page 45) shows general timing for each possible CAS latency setting.

Upon completion of a burst, assuming no other commands have been initiated, the DQ signals will go to High-Z. A continuous page burst continues until terminated. At the end of the page, it wraps to column 0 and continues.

Data from any READ burst can be truncated with a subsequent READ command, and data from a fixed-length READ burst can be followed immediately by data from a READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst either follows the last element of a completed burst or the last desired data element of a longer burst that is being truncated. The new READ command should be issued \(x\) cycles before the clock edge at which the last desired data element is valid, where \(x = CL - 1\). This is shown in Figure 17 (page 45) for CL2 and CL3.

SDRAM devices use a pipelined architecture and therefore do not require the \(2n\) rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle following a READ command. Full-speed random read accesses can be performed to the same bank, or each subsequent READ can be performed to a different bank.
Figure 16: Consecutive READ Bursts

Note: 1. Each READ command can be issued to any bank. DQM is LOW.
Figure 17: Random READ Accesses

Note: 1. Each READ command can be issued to any bank. DQM is LOW.

Data from any READ burst can be truncated with a subsequent WRITE command, and data from a fixed-length READ burst can be followed immediately by data from a WRITE command (subject to bus turnaround limitations). The WRITE burst can be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. In a given system design, there is a possibility that the device driving the input data will go Low-Z before the DQ go High-Z. In this case, at least a single-cycle delay should occur between the last read data and the WRITE command.

The DQM input is used to avoid I/O contention, as shown in Figure 18 (page 46) and Figure 19 (page 47). The DQM signal must be asserted (HIGH) at least two clocks prior to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-out from the READ. After the WRITE command is registered, the DQ will go to High-Z (or remain High-Z), regardless of the state of the DQM signal, provided the DQM was active on the clock just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during T4, then the WRITEs at T5 and T7 would be valid, and the WRITE at T6 would be invalid.
The DQM signal must be de-asserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data is not masked. Figure 18 (page 46) shows where, due to the clock cycle frequency, bus contention is avoided without having to add a NOP cycle, while Figure 19 (page 47) shows the case where an additional NOP cycle is required.

A fixed-length READ burst may be followed by or truncated with a PRECHARGE command to the same bank, provided that auto precharge was not activated. The PRECHARGE command should be issued x cycles before the clock edge at which the last desired data element is valid, where $x = CL - 1$. This is shown in Figure 20 (page 47) for each possible CL; data element $n + 3$ is either the last of a burst of four or the last desired data element of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until t_{RP} is met. Note that part of the row precharge time is hidden during the access of the last data element(s).

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate fixed-length or continuous page bursts.

Figure 18: READ-to-WRITE

Note: 1. CL = 3. The READ command can be issued to any bank, and the WRITE command can be to any bank. If a burst of one is used, DQM is not required.
Figure 19: READ-to-WRITE With Extra Clock Cycle

Note: 1. CL = 3. The READ command can be issued to any bank, and the WRITE command can be to any bank.

Figure 20: READ-to-PRECHARGE

Note: 1. DQM is LOW.
Continuous-page READ bursts can be truncated with a BURST TERMINATE command and fixed-length READ bursts can be truncated with a BURST TERMINATE command, provided that auto precharge was not activated. The BURST TERMINATE command should be issued \(x \) cycles before the clock edge at which the last desired data element is valid, where \(x = CL - 1 \). This is shown in Figure 21 (page 48) for each possible CAS latency; data element \(n + 3 \) is the last desired data element of a longer burst.

Figure 21: Terminating a READ Burst

Note: 1. DQM is LOW.
Figure 22: Alternating Bank Read Accesses

Note: 1. For this example, BL = 4 and CL = 2.
Figure 23: READ Continuous Page Burst

Note: 1. For this example, CL = 2.
Figure 24: READ – DQM Operation

Note: 1. For this example, BL = 4 and CL = 2.
WRITE Operation

WRITE bursts are initiated with a WRITE command, as shown in Figure 10 (page 27). The starting column and bank addresses are provided with the WRITE command and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following figures, auto precharge is disabled.

During WRITE bursts, the first valid data-in element is registered coincident with the WRITE command. Subsequent data elements are registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQ will remain at High-Z and any additional input data will be ignored (see Figure 25 (page 52)). A continuous page burst continues until terminated; at the end of the page, it wraps to column 0 and continues.

Data for any WRITE burst can be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst can be followed immediately by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command (see Figure 26 (page 53)). Data \(n + 1 \) is either the last of a burst of two or the last desired data element of a longer burst.

SDRAM devices use a pipelined architecture and therefore do not require the \(2^n \) rule associated with a prefetch architecture. A WRITE command can be initiated on any clock cycle following a previous WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Figure 27 (page 54), or each subsequent WRITE can be performed to a different bank.

Figure 25: WRITE Burst

![WRITE Burst Diagram](image-url)

Note: 1. BL = 2. DQM is LOW.
Figure 26: WRITE-to-WRITE

CLK

Command

WRITE

NOP

WRITE

Address

Bank, Col n

Bank, Col b

DQ

DIN

DIN

DIN

Transitioning data

Don't Care

Note: 1. DQM is LOW. Each WRITE command may be issued to any bank.

Data for any WRITE burst can be truncated with a subsequent READ command, and data for a fixed-length WRITE burst can be followed immediately by a READ command. After the READ command is registered, data input is ignored and WRITEs will not be executed (see Figure 28 (page 54)). Data \(n + 1 \) is either the last of a burst of two or the last desired data element of a longer burst.

Data for a fixed-length WRITE burst can be followed by or truncated with a PRECHARGE command to the same bank, provided that auto precharge was not activated. A continuous-page WRITE burst can be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued 1\(^{\text{WR}}\) after the clock edge at which the last desired input data element is registered. The auto precharge mode requires a 1\(^{\text{WR}}\) of at least one clock with time to complete, regardless of frequency.

In addition, when truncating a WRITE burst at high clock frequencies (\(t_{\text{CK}} < 15\text{ns} \)), the DQM signal must be used to mask input data for the clock edge prior to and the clock edge coincident with the PRECHARGE command (see Figure 29 (page 55)). Data \(n + 1 \) is either the last of a burst of two or the last desired data element of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until \(t_{\text{RP}} \) is met.

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate fixed-length bursts or continuous page bursts.
Figure 27: Random WRITE Cycles

CLK: T0 T1 T2 T3

Command:
- WRITE

Address:
- Bank, Col n
- Bank, Col a
- Bank, Col x
- Bank, Col m

DQ:
- D_IN
- D_IN
- D_IN
- D_IN

- Transitioning data
- Don’t Care

Note: 1. Each WRITE command can be issued to any bank. DQM is LOW.

Figure 28: WRITE-to-READ

CLK: T0 T1 T2 T3 T4 T5

Command:
- WRITE
- NOP
- READ
- NOP
- NOP
- NOP

Address:
- Bank, Col n
- Bank, Col b
- Bank, Col a
- Bank, Col b
- Bank, Col m
- Bank, Col m

DQ:
- D_IN
- D_IN
- D_OUT
- D_OUT

- Transitioning data
- Don’t Care

Note: 1. The WRITE command can be issued to any bank, and the READ command can be to any bank. DQM is LOW. CL = 2 for illustration.
Figure 29: WRITE-to-PRECHARGE

Note: 1. In this example DQM could remain LOW if the WRITE burst is a fixed length of two.

Fixed-length WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with the BURST TERMINATE command is ignored. The last data written (provided that DQM is LOW at that time) will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in Figure 30 (page 56), where data n is the last desired data element of a longer burst.
Figure 30: Terminating a WRITE Burst

Note: 1. DQM is LOW.
Figure 31: Alternating Bank Write Accesses

Note: 1. For this example, BL = 4.
Notes:
1. WR must be satisfied prior to issuing a PRECHARGE command.
2. Page left open; no RP.
Burst Read/Single Write

The burst read/single write mode is entered by programming the write burst mode bit (M9) in the mode register to a 1. In this mode, all WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0).
PRECHARGE Operation

The PRECHARGE command (see Figure 11 (page 28)) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access some specified time (t_{RP}) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged (A10 = LOW), inputs BA0 and BA1 select the bank. When all banks are to be precharged (A10 = HIGH), inputs BA0 and BA1 are treated as “Don’t Care.” After a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

Auto Precharge

Auto precharge is a feature that performs the same individual-bank PRECHARGE function described previously, without requiring an explicit command. This is accomplished by using A10 to enable auto precharge in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst, except in the continuous page burst mode where auto precharge does not apply. In the specific case of write burst mode set to single location access with burst length set to continuous, the burst length setting is the overriding setting and auto precharge does not apply. Auto precharge is nonpersistent in that it is either enabled or disabled for each individual READ or WRITE command.

Auto precharge ensures that the precharge is initiated at the earliest valid stage within a burst. Another command cannot be issued to the same bank until the precharge time (t_{RP}) is completed. This is determined as if an explicit PRECHARGE command was issued at the earliest possible time, as described for each burst type in the Burst Type (page 39) section.

Micron SDRAM supports concurrent auto precharge; cases of concurrent auto precharge for READs and WRITEs are defined below.

READ with auto precharge interrupted by a READ (with or without auto precharge)

A READ to bank m will interrupt a READ on bank n following the programmed CAS latency. The precharge to bank n begins when the READ to bank m is registered (see Figure 34 (page 61)).

READ with auto precharge interrupted by a WRITE (with or without auto precharge)

A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent bus contention. The precharge to bank n begins when the WRITE to bank m is registered (see Figure 35 (page 62)).

WRITE with auto precharge interrupted by a READ (with or without auto precharge)

A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing CL later. The precharge to bank n will begin after 1WR is met, where 1WR begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m (see Figure 40 (page 67)).

WRITE with auto precharge interrupted by a WRITE (with or without auto precharge)

A WRITE to bank m will interrupt a WRITE on bank n when registered. The precharge to bank n will begin after 1WR is met, where 1WR begins when the WRITE to bank m is reg-
istered. The last valid data WRITE to bank \(n \) will be data registered one clock prior to a WRITE to bank \(m \) (see Figure 41 (page 67)).

Figure 34: READ With Auto Precharge Interrupted by a READ

<table>
<thead>
<tr>
<th>CLK</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>NOP</td>
<td>READ - AP Bank n</td>
<td>NOP</td>
<td>READ - AP Bank m</td>
<td>NOP</td>
<td>NOP</td>
<td>NOP</td>
<td>NOP</td>
</tr>
</tbody>
</table>

Internal states

- **Bank n**: Page active, READ with burst of 4, interrupt burst, precharge, idle
- **Bank m**: Page active, READ with burst of 4, precharge

Address

- Bank n, Col a
- Bank m, Col d

DQ

- \(D_{OUT} \)
- \(D_{OUT} \)
- \(D_{OUT} \)
- \(D_{OUT} \)

\(CL = 3 \) (bank \(n \))

\(CL = 3 \) (bank \(m \))

Don't Care

Note:

1. DQM is LOW.
Figure 35: READ With Auto Precharge Interrupted by a WRITE

Note: 1. DQM is HIGH at T2 to prevent DOUTa + 1 from contending with DINd at T4.
Figure 36: READ With Auto Precharge

Note: 1. For this example, BL = 4 and CL = 2.
Figure 37: READ Without Auto Precharge

Note: 1. For this example, BL = 4, CL = 2, and the READ burst is followed by a manual PRE-CHARGE.
Figure 38: Single READ With Auto Precharge

Note: 1. For this example, BL = 1 and CL = 2.
Figure 39: Single READ Without Auto Precharge

Note: 1. For this example, BL = 1, CL = 2, and the READ burst is followed by a manual PRECHARGE.
Figure 40: WRITE With Auto Precharge Interrupted by a READ

Command

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP</td>
<td>WRITE - AP Bank n</td>
<td>NOP</td>
<td>READ - AP Bank m</td>
<td>NOP</td>
<td>NOP</td>
<td>NOP</td>
<td>NOP</td>
</tr>
</tbody>
</table>

Internal States

Bank n
- Page active
- WRITE with burst of 4
- Interrupt burst, write-back
- Precharge

Bank m
- Page active
- READ with burst of 4

Address

Bank n, Col a

Bank m, Col d

DQ

Don't Care

CL = 3 (bank m)

Note: 1. DQM is LOW.

Figure 41: WRITE With Auto Precharge Interrupted by a WRITE

Command

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP</td>
<td>WRITE - AP Bank n</td>
<td>NOP</td>
<td>NOP</td>
<td>WRITE - AP Bank m</td>
<td>NOP</td>
<td>NOP</td>
<td>NOP</td>
</tr>
</tbody>
</table>

Internal States

Bank n
- Page active
- WRITE with burst of 4
- Interrupt burst, write-back
- Precharge

Bank m
- Page active
- WRITE with burst of 4

Address

Bank n, Col a

Bank m, Col d

DQ

Don't Care

Note: 1. DQM is LOW.
Figure 42: WRITE With Auto Precharge

Note: 1. For this example, BL = 4.
Figure 43: WRITE Without Auto Precharge

Note: 1. For this example, BL = 4 and the WRITE burst is followed by a manual PRECHARGE.
Figure 44: Single WRITE With Auto Precharge

Note: 1. For this example, BL = 1.
Figure 45: Single WRITE Without Auto Precharge

Note: 1. For this example, BL = 1 and the WRITE burst is followed by a manual PRECHARGE.
AUTO REFRESH Operation

The AUTO REFRESH command is used during normal operation of the device to refresh the contents of the array. This command is nonpersistent, so it must be issued each time a refresh is required. All active banks must be precharged prior to issuing an AUTO REFRESH command. The AUTO REFRESH command should not be issued until the minimum \(t_{RP} \) is met following the PRECHARGE command. Addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AUTO REFRESH command.

After the AUTO REFRESH command is initiated, it must not be interrupted by any executable command until \(t_{RFC} \) has been met. During \(t_{RFC} \) time, COMMAND INHIBIT or NOP commands must be issued on each positive edge of the clock. The SDRAM requires that every row be refreshed each \(t_{REF} \) period. Providing a distributed AUTO REFRESH command—calculated by dividing the refresh period (\(t_{REF} \)) by the number of rows to be refreshed—meets the timing requirement and ensures that each row is refreshed. Alternatively, to satisfy the refresh requirement a burst refresh can be employed after every \(t_{REF} \) period by issuing consecutive AUTO REFRESH commands for the number of rows to be refreshed at the minimum cycle rate (\(t_{RFC} \)).
Figure 46: Auto Refresh Mode

Note: 1. Back-to-back AUTO REFRESH commands are not required.
SELF REFRESH Operation

The self refresh mode can be used to retain data in the device, even when the rest of the system is powered down. When in self refresh mode, the device retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command, except CKE is disabled (LOW). After the SELF REFRESH command is registered, all the inputs to the device become “Don’t Care” with the exception of CKE, which must remain LOW.

After self refresh mode is engaged, the device provides its own internal clocking, enabling it to perform its own AUTO REFRESH cycles. The device must remain in self refresh mode for a minimum period equal to tRAS and remains in self refresh mode for an indefinite period beyond that.

The procedure for exiting self refresh requires a sequence of commands. First, CLK must be stable prior to CKE going back HIGH. (Stable clock is defined as a signal cycling within timing constraints specified for the clock ball.) After CKE is HIGH, the device must have NOP commands issued for a minimum of two clocks for tXSR because time is required for the completion of any internal refresh in progress.

Upon exiting the self refresh mode, AUTO REFRESH commands must be issued according to the distributed refresh rate (tREF/refresh row count) as both SELF REFRESH and AUTO REFRESH utilize the row refresh counter.
Figure 47: Self Refresh Mode

1. Each AUTO REFRESH command performs a REFRESH cycle. Back-to-back commands are not required.
Power-Down

Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device cannot remain in the power-down state longer than the refresh period (64ms) because no REFRESH operations are performed in this mode.

The power-down state is exited by registering a NOP or COMMAND INHIBIT with CKE HIGH at the desired clock edge (meeting t_{CKS}).

Figure 48: Power-Down Mode

Note: 1. Violating refresh requirements during power-down may result in a loss of data.
Clock Suspend

The clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend mode, the internal clock is deactivated, freezing the synchronous logic.

For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is suspended. Any command or data present on the input balls when an internal clock edge is suspended will be ignored; any data present on the DQ balls remains driven; and burst counters are not incremented, as long as the clock is suspended.

Exit clock suspend mode by registering CKE HIGH; the internal clock and related operation will resume on the subsequent positive clock edge.

Figure 49: Clock Suspend During WRITE Burst

Note: 1. For this example, BL = 4 or greater, and DQM is LOW.
Figure 50: Clock Suspend During READ Burst

Note: 1. For this example, CL = 2, BL = 4 or greater, and DQM is LOW.
Figure 51: Clock Suspend Mode

Note: 1. For this example, BL = 2, CL = 3, and auto precharge is disabled.