## General Description

The AOZ6134 is a high performance single-pole double-throw (SPDT), low power, TTL-compatible bus switch.

The AOZ6134 will accept analog and digital signals.
Signals with voltages up to $\mathrm{V}_{\mathrm{CC}}(1.65 \mathrm{~V}$ to 5.5 V$)$ can be transmitted in either direction.

When the Select pin is LOW, $\mathrm{B}_{0}$ is connected to the output A pin. When the Select pin is HIGH, $B_{1}$ is connected to the output A pin. The path that is open will have a high-impedance state with respect to the output. Break-before-make is guaranteed.

## Features

- DFN $1.2 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 0.55 \mathrm{~mm}$ 6-Lead Package
- 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operation
- $1 \Omega$ connection between ports
- Break-before-make switching


## Typical Application



## Ordering Information

| Part Number | Ambient Temperature Range | Package | Environmental |
| :---: | :---: | :---: | :---: |
| AOZ6134DI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | DFN $1.2 \mathrm{~mm} \times 1.0 \mathrm{~mm}, 6 \mathrm{~L}$ | RoHS Compliant <br> Green Product |

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

## Pin Configuration



## Truth Table

| Logic S Input | Function |
| :---: | :---: |
| 0 | $\mathrm{~B}_{0}$ Connected to A |
| 1 | $\mathrm{~B}_{1}$ Connected to A |

## Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

| Symbol | Parameter | Rating |
| :---: | :--- | ---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | -0.5 V to +6 V |
| $\mathrm{~V}_{\mathrm{S}}$ | Switch Voltage $^{(1)}$ | -0.5 V to $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{V}_{\mathrm{IN}}$ | Input Voltage $^{(1)}$ | -0.5 V to $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{I}_{\mathrm{IK}}$ | Minimum Input Diode Current $^{(2)}$ | -50 mA |
| $\mathrm{I}_{\text {SW }}$ | Switch Current | 200 mA |
| $\mathrm{I}_{\text {SWPEAK }}$ | Peak Switch Current (Pulsed at $1 \mathrm{~ms},<10 \%$ Duty Cycle) | 400 mA |
| $\mathrm{~T}_{\text {STG }}$ | Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{J}}$ | Maximum Junction Temperature | $+150{ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\mathrm{D}}$ | DFN-6 Power Dissipation at $85^{\circ} \mathrm{C}{ }^{(3)}$ | 560 mW |
| ESD | Human Body Model (JESD22A-114E) | 8000 V |

## Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

| Symbol | Parameter | Rating |
| :---: | :--- | ---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 1.65 V to +5.5 V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Control Input Voltage ${ }^{(4)}$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{V}_{\mathrm{SW}}$ | Switch Input Voltage | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

## Notes:

1. Signals on $A$, or $B$ or $S$ exceeding $V+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. Negative current should not exceed minimum negative value.
3. All leads welded or soldered to PC Board.
4. Unused inputs must be held HIGH or LOW. They may not float.

## Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

| Symbol | Parameter | Test Conditions | $\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC CHARACTERISTICS |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage High |  | 1.65 to 2.7 | 1.0 |  |  | V |
|  |  |  | 2.7 to 3.6 | 1.5 |  |  |  |
|  |  |  | 4.5 to 5.5 | 2.0 |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low |  | 1.65 to 2.7 |  |  | 0.4 | V |
|  |  |  | 2.7 to 3.6 |  |  | 0.6 |  |
|  |  |  | 4.5 to 5.5 |  |  | 0.8 |  |
| $\mathrm{R}_{\mathrm{ON}}$ | On Resistance | $\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \\ & \mathrm{B0} \text { or } \mathrm{B} 1=0 \mathrm{~V}, 1.5 \mathrm{~V}, 2.5 \mathrm{~V}, 3.5 \mathrm{~V} \text {, } \\ & 3.75 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \\ & \hline \end{aligned}$ | 4.5 |  | 0.6 | 1.2 | $\Omega$ |
|  |  | $\begin{aligned} & \mathrm{I}_{\text {Out }}=100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \text {, or } 2.7 \mathrm{~V} \end{aligned}$ | 2.7 |  | 1.0 | 1.5 |  |
|  |  | $\begin{aligned} & \text { I OUT }=100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \mathrm{~V}, 1.25 \mathrm{~V}, 1.5 \mathrm{~V} \text {, or } 1.8 \mathrm{~V} \end{aligned}$ | 1.8 |  | 3.0 | 6.0 |  |
| $\mathrm{R}_{\text {FLAT }}$ | On Resistance Flatness | $\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$ | 4.5 |  | 0.2 |  | $\Omega$ |
|  |  |  | 2.7 |  | 0.4 |  |  |
|  |  |  | 1.8 |  | 2.5 |  |  |
| $\Delta \mathrm{R}_{\mathrm{ON}}$ | On Resistance Matching Between Channels | $\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~B} 0$ or B1 $=1.5 \mathrm{~V}$ | 4.5 |  | 0.03 | 0.15 | $\Omega$ |
|  |  | $\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~B} 0$ or B1 $=3.5 \mathrm{~V}$ |  |  |  |  |  |
| $\mathrm{I}_{\text {IN }}$ | Input Leakage Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 1.95 to 5.5 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{B} \text { (off) }}$ | Off Stage Switch Leakage | $\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | 1.95 to 5.5 |  |  | $\pm 30$ | nA |
| $\mathrm{I}_{\text {(\%n) }}$ | On State Switch Leakage | $\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=4.5 \mathrm{~V}, 1 \mathrm{~V} \text { or floating } \end{aligned}$ | 1.95 to 5.5 |  |  | $\pm 40$ | nA |
| POWER SUPPLY |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Power Supply Range |  | 1.65 to 5.5 | 1.65 |  | 5.5 | V |
| $\mathrm{I}_{\text {CCQ }}$ | Quiescent Supply Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~V}$ | 5.5 |  |  | 0.5 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {CCT }}$ | Increase in $\mathrm{I}_{\mathrm{CC}}$ per Input | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ | 5.5 |  | 30 | 40 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}$ |  |  | 18 | 25 |  |

Electrical Characteristics (Continued)
Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

| Symbol | Parameter | Test Conditions | $\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC CHARACTERISTICS |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{ON}}$ | Turn-On Time | $\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ | 2.7 to 3.6 |  |  | $\begin{aligned} & 70 \\ & 65 \end{aligned}$ | ns |
|  |  |  | 4.5 to 5.5 |  |  | $\begin{aligned} & 55 \\ & 55 \end{aligned}$ |  |
| $t_{\text {OFF }}$ | Turn-Off Time | $\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ | 2.7 to 3.6 |  |  | $\begin{aligned} & 50 \\ & 45 \end{aligned}$ | ns |
|  |  |  | 4.5 to 5.5 |  |  | $\begin{aligned} & 45 \\ & 45 \end{aligned}$ |  |
| $\mathrm{t}_{\text {BBM }}$ | Break-Before-Make Time |  | 1.65 to 1.95 |  | 20 |  | ns |
|  |  |  | 2.3 to 2.7 |  | 15 |  |  |
|  |  |  | 3.0 to 3.65 |  | 10 |  |  |
|  |  |  | 4.5 to 5.5 |  | 10 |  |  |
| Q | Charge Injection ${ }^{(2)}$ | $\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$ | 4.5 to 5.5 |  | 90 |  | pC |
|  |  |  | 2.7 to 3.6 |  | 50 |  |  |
| ANALOG SWITCH CHARACTERISTICS ${ }^{(2)}$ |  |  |  |  |  |  |  |
| OIRR | Off Isolation | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$ | 2.7 to 5.5 |  | -60 |  | dB |
| $\mathrm{X}_{\text {TALK }}$ | Crosstalk | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$ | 2.7 to 5.5 |  | -60 |  | dB |
| BW | -3 dB Bandwidth | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ | 2.7 to 5.5 |  | 180 |  | MHz |
| THD | Total Harmonic Distortion | $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz | 2.7 to 5.5 |  | 0.002 |  | \% |
| CAPACITANCE ${ }^{(3)}$ |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {IN }}$ | Control Pin <br> Capacitance | $\mathrm{f}=1 \mathrm{MHz}$, Vbias $=1.5 \mathrm{~V}$ | 4.5 |  | 3.0 |  | pF |
| $\mathrm{C}_{\text {OFF }}$ | B Port Off Capacitance | $\mathrm{f}=1 \mathrm{MHz}$, Vbias $=1.5 \mathrm{~V}$ | 4.5 |  | 7.0 |  | pF |
| $\mathrm{CoN}^{\text {O }}$ | A Port Capacitance When Switch Enable | $\mathrm{f}=1 \mathrm{MHz}$, Vbias $=1.5 \mathrm{~V}$ | 4.5 |  | 40.0 |  | pF |

## Notes:

1. Typical values are for design aid only, not guaranteed nor subject to production testing.
2. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, parameters are characterized but not tested in production and guaranteed by design.
3. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, capacitance is characterized but not tested in production.

## AC Loading and Waveforms


$C_{L}$ Includes Fixture and Stray Capacitance


Logic input waveform are inverted for switches with opposite logic sense

Figure 1. Turn-On/Turn-Off Timing


Figure 2. Off State Leakage Current


Figure 3. On State Leakage Current


Figure 4. Break-Before-Make Timing


Figure 5. Off Isolation


Figure 6. Crosstalk

AC Loading and Waveforms (Continued)


Figure 7. On State Resistance


Figure 8. Charge Injection


Figure 9. ON/Off Capacitance Measurement


Figure 10. Bandwidth


Figure 11. Harmonic Distortion

## Package Dimensions, DFN 1.2 mm x 1.0 mm, 6L



Pin 1 Dot by Marking

## TOP VIEW




SIDE VIEW

## RECOMMENDED LAND PATTERN



Dimensions in millimeters

| Symbols | Min. | Nom. | Max. |  |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.50 | 0.55 | 0.60 |  |
| A1 | 0.00 | - | 0.05 |  |
| b | 0.15 | 0.20 | 0.25 |  |
| c | 0.152 Ref. |  |  |  |
| D | 1.05 |  | 1.25 |  |
| E | 0.95 |  | 1.15 |  |
| e | 0.40 BSC |  |  |  |
| L | 0.30 | 0.40 | 0.50 |  |
| L1 | 0.375 | 0.475 | 0.575 |  |

Dimensions in inches

| Symbols | Min. | Nom. | Max. |
| :---: | :---: | :---: | :---: |
| A | 0.020 | 0.022 | 0.024 |
| A1 | 0.000 | - | 0.002 |
| b | 0.006 | 0.008 | 0.010 |
| C | 0.006 Ref. |  |  |
| D | 0.045 | 0.047 | 0.049 |
| E | 0.041 | 0.043 | 0.045 |
| e | 0.016 BSC |  |  |
| L | 0.012 | 0.016 | 0.020 |
| L1 | 0.015 | 0.019 | 0.023 |

UNIT: mm

## Note:

1. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

## Part Marking



This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

## LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
