General Description

The AOZ6236 is a 0.35Ω low-voltage Dual Single Pole Double Throw (SPDT) analog switch. The AOZ6236 operates from a single 1.65 V to 4.3 V supply. It features an ultra-low On Resistance of 0.35Ω at a +3.0 V supply and $25^{\circ} \mathrm{C}$. The AOZ6236 is designed for break-beforemake operation.

Features

- Typical 0.35Ω On Resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ for +3.0 V supply
- 0.15Ω maximum R_{ON} flatness for +3.0 V supply
- QFN-10: $1.8 \mathrm{~mm} \times 1.4 \mathrm{~mm} \times 0.55 \mathrm{~mm}$ package
- Broad V_{CC} operating range: 1.65 V to 4.3 V
- High current handling capability (350 mA continuous current under 3.3 V supply)

Applications

- Cell phone
- PDA
- Portable media player

Typical Application

Connection Diagram

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ6236QI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QFN-10	RoHS Compliant Green Product

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

TQFN-10
(Top Thru View)

Pin Description

Pin Name	Function
$1 A, 2 A, 1 B 0,1 B 1,2 B 0,2 B 1$	Data Ports
$1 S, 2 S$	Control Input

Truth Table

Logic Input	Function
0	B0 Connected to A
1	B1 Connected to A

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +5.5 V
$\mathrm{~V}_{\mathrm{SW}}$	Switch Voltage ${ }^{(1)}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\mathrm{~V}_{\text {IN }}$	Input Voltage $^{(1)}$	-0.5 V to V_{CC}
I_{IK}	Minimum Input Diode Current $^{(2)}$	-50 mA
I_{SW}	Switch Current	350 mA
$\mathrm{I}_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1 ms duration, $<10 \%$ Duty Cycle)	500 mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
ESD^{2}	Human Body Model	8000 V
	Charged Device Model	1000 V

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Recommended Operating Conditions.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	1.65 V to +4.3 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage ${ }^{(3)}$	0 V to V_{CC}
V_{SW}	Switch Input Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
2. Negative current should not exceed minimum negative value.
3. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Min.	Typ.	Max.	Units
V_{IH}	Input Voltage HIGH		3.6 to 4.3	1.7			V
			2.7 to 3.6	1.5			
			2.3 to 2.7	1.4			
			1.65 to 1.95	0.9			
$V_{\text {IL }}$	Input Voltage LOW		3.6 to 4.3			0.7	V
			2.7 to 3.6			0.5	
			2.3 to 2.7			0.4	
			1.65 to 1.95			0.4	
I_{IN}	Control Input Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	1.65 to 3.6	-0.5		0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{NO} \text { (OFF) }}$, $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	Off-Leakage Current of Port nB_{0} and nB_{1}	$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, nB0 or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text { or floating } \end{aligned}$	4.3	-50		50	nA
			3.6	-50		50	
		$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 2.4 \mathrm{~V} \text {, nB0 or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 2.4 \mathrm{~V} \text { or floating } \end{aligned}$	2.7	-50		50	
		$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 1.65 \mathrm{~V}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \text { or floating } \end{aligned}$	1.95	-50		50	
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port 1A and 2A	$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, nB0 or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text { or floating } \end{aligned}$	4.3	-50		50	nA
			3.6	-50		50	
		$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 2.4 \mathrm{~V} \text {, nB0 or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 2.4 \mathrm{~V} \text { or floating } \end{aligned}$	2.7	-50		50	
		$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, 1.65 \mathrm{~V}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \text { or floating } \end{aligned}$	1.95	-100		100	
R_{ON}	Switch On Resistance ${ }^{(4)}$ See Figure 5	$\begin{aligned} & \mathrm{l} \text { out }=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 3.6 \mathrm{~V}, 4.3 \mathrm{~V} \end{aligned}$	4.3		0.25	0.40	Ω
		$\begin{aligned} & \mathrm{l} \text { Out }=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 2.3 \mathrm{~V}, 3.0 \mathrm{~V} \end{aligned}$	3.0		0.35	0.50	
		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 2.0 \mathrm{~V}, 2.7 \mathrm{~V} \\ & \hline \end{aligned}$	2.7		0.40	0.60	
		$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.6 \mathrm{~V}, 2.3 \mathrm{~V} \end{aligned}$	2.3		0.50	0.70	
		$\begin{aligned} & \mathrm{l}_{\text {Out }}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.65 \mathrm{~V} \end{aligned}$	1.65		1.0	2.5	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching Between Channels ${ }^{(5)}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or } \\ & \mathrm{nB1}=0.7 \mathrm{~V} \end{aligned}$	4.3		0.02	0.13	Ω
			3.0		0.02	0.13	
			2.7		0.02	0.13	
			2.3		0.02		
			1.65		1.0		
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness ${ }^{(6)}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	4.3		0.06	0.15	Ω
			3.0		0.06	0.15	
			2.7		0.09	0.15	
			2.3		0.18		
			1.65		2.0		
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$	3.6	-500		500	nA
$\mathrm{I}_{\text {CCT }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	Input at 2.6 V	4.3		4.0	20.0	$\mu \mathrm{A}$
		Input at 1.8 V			13.0	25.0	

Notes:

4. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ONmax}}-\mathrm{R}_{\mathrm{ONmin}}$ measured at identical V_{CC}, temperature, and voltage.
6. Flatness is defined as the difference between the maximum and minimum value of $R_{O N}$ over the specified range of conditions.

AC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Min.	Typ.	Max.	Units
t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.6 to 4.3		45	60	ns
			2.7 to 3.6		50	70	
			2.3 to 2.7		95	100	
			1.65 to 1.95		160		
$t_{\text {OFF }}$	Turn-Off Time	$\begin{aligned} & \mathrm{nB} 0 \text { or } \mathrm{nB1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.6 to 4.3		30	35	ns
			2.7 to 3.6		35	40	
			2.3 to 2.7		60	65	
			1.65 to 1.95		110		
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.6 to 4.3	2.0	15.0		ns
			2.7 to 3.6	2.0	15.0		
			2.3 to 2.7	2.0	20.0		
			1.65 to 1.95	2.0	25.0		
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	1.65 to 4.3		40		pC
OIRR	Off Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Stray) } \end{aligned}$	1.65 to 4.3		-70.0		dB
Xtalk	Crosstalk	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}(\text { Stray }) \end{aligned}$	1.65 to 4.3		-70.0		dB
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65 to 4.3		> 50		MHz
THD	Total Harmonic Distortion	$\begin{aligned} & R_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	2.7 to 4.3		0.01		\%

Capacitance

Symbol	Parameter	Conditions	V $_{\text {CC }}(\mathbf{V})$	Min.	Typ.	Max.
C_{IN}	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Vbias $=1.5 \mathrm{~V}$	0.0		2	
$\mathrm{C}_{\text {OFF }}$	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Vbias $=1.5 \mathrm{~V}$	3.3		15	pF
C_{ON}	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Vbias $=1.5 \mathrm{~V}$	3.3		110	pF

Typical Performance Characteristics

Crosstalk and Off Isolation vs. Frequency

AC Loading and Waveforms

Figure 1. Turn-On/Turn-Off Timing

Figure 2. Break-Before-Make Timing

Figure 3. Off Isolation

Figure 4. Crosstalk

AC Loading and Waveforms (continued)

Figure 5. Charge Injection

Figure 6. ON/Off Capacitance Measurement

Figure 7. Bandwidth

Figure 8. Harmonic Distortion

Package Dimensions, QFN $1.8 \times 1.4 \times 0.55,10 \mathrm{~L}$

Top View

Bottom View

RECOMMENDED LAND PATTERN

Dimensions in millimeters

Symbols	Min.	Nom.	Max.	
A	0.50	0.55	0.60	
A1	0.00	-	0.05	
b	0.15	0.20	0.25	
c	0.152 REF.			
D	1.35	1.40	1.45	
E	1.75	1.80	1.85	
e	0.40 BSC			
L	0.35	0.40	0.45	
L1	0.50 REF.			

Dimensions in inches

Symbols	Min.	Nom.	Max.	
A	0.020	0.022	0.024	
A1	0.000	-	0.002	
b	0.006	0.008	0.010	
c	0.006 REF.			
D	0.053	0.055	0.057	
E	0.069	0.071	0.073	
e	0.016 BSC			
L	0.014	0.016	0.018	
L1	0.020 REF.			

Notes:

1. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
2. Angles are in degrees.

Tape and Reel Dimensions, QFN $1.8 \times 1.4 \times 0.55$, 10L

Carrier Tape

A-A

UNIT: mm

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
QFN $1.8 \times 1.4 \mathrm{~A}$	2.04	1.58	0.73	1.50	0.50	8.00	1.75	3.50	4.00	4.00	2.00	0.20
	± 0.05	± 0.05	± 0.05	$+0.10 /-0$	± 0.05	$+0.30 /-0.10$	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.02

Reel

Tape Size	Reel Size	\mathbf{M}	\mathbf{N}	\mathbf{W}	$\mathbf{W} 1$	\mathbf{H}	\mathbf{K}	\mathbf{S}	\mathbf{G}	\mathbf{R}	\mathbf{V}
8 mm	$\varnothing 178$	$\varnothing 178.0$	$\varnothing 70.5$	9.0	11.8	$\varnothing 13.0$	10.25	2.4	$\varnothing 9.8$	N/A	N/A
		± 1.0	± 1.0	± 0.5	± 1.1	$+0.5 /-0.2$	± 0.1	± 0.1			

Leader/Trailer and Orientation

Part Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
