0.3』 Low-Voltage Dual-DPDT Analog Switch

General Description

The AOZ6274 is a dual Double-Pole, Double-Throw (DPDT) analog switch that is designed to operate from a single 1.65 V to 4.3 V supply. The AOZ6274 features an ultra-low on resistance, excellent total harmonic distortion (THD) performance, and low power consumption. The device also features fast switching and guaranteed Break-Before-Make (BBM) switching, assuring the switches never shorts the driver.

Features

- Low On Resistance (R_{ON}) for +2.7 V supply (0.3Ω)
- Low $\mathrm{I}_{\mathrm{CCT}}$ current when nS input is lower than V_{CC}
- 0.25Ω maximum R_{ON} flatness for +2.7 V supply
- Small $3 \times 3 \mathrm{~mm}$ 16-Lead QFN Package
- Broad 1.65 V to $4.30 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range
- Low THD (0.01% typical for 32Ω load)

Applications

- Cell phone
- PDA
- Portable media player

Pin Configuration

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ6274QI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 16-Lead QFN	Green

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Pin Description

Pin Name	Function
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 1 \mathrm{~B}_{0}, 1 \mathrm{~B}_{1}, 2 \mathrm{~B}_{0}, 2 \mathrm{~B}_{1}$, $3 \mathrm{~B}_{0}, 3 \mathrm{~B}_{1}, 4 \mathrm{~B}_{0}, 4 \mathrm{~B}_{1}$	Data Ports
$1 \mathrm{~S}, 2 \mathrm{~S}$	Control Input

Truth Table

Logic Input	Function
0	nB_{0} Connected to nA
1	nB_{1} Connected to nA

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +4.6 V
$\mathrm{~V}_{\mathrm{S}}$	Switch Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.5 V to +4.6 V
I_{IK}	Minimum Input Diode Current	-50 mA
I_{SW}	Switch Current	350 mA
$\mathrm{I}_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1ms duration, <10\% Duty Cycle)	500 mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
ESD	Human Body Model	6000 V

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	1.65 V to 4.3 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage ${ }^{(1)}$	0 V to V_{CC}
V_{SW}	Switch Input Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min.	Typ.	Max.	Units
V_{IH}	Input Voltage HIGH		4.3	1.4			V
			2.7 to 3.6	1.3			
			2.3 to 2.7	1.1			
			1.65 to 1.95	0.9			
V_{IL}	Input Voltage LOW		4.3			0.7	V
			2.7 to 3.6			0.5	
			2.3 to 2.7			0.4	
			1.65 to 1.95			0.4	
I_{IN}	Control Input Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	1.65 to 4.30	-0.5		0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{NO}(\text { OFF })}$, $\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$	Off-Leakage Current of Port nB_{0} and nB_{1}	$\mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{nB}_{0}$ or $\mathrm{nB}_{1}=0.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or floating	1.95 to 4.30	-50		50	nA
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port A	$\mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-0.3 \mathrm{~V}, \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0.3 \mathrm{~V},$ $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or floating	1.95 to 4.30	-60		60	nA
R_{ON}	Switch On Resistance ${ }^{(2)}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, \\ & 2.3 \mathrm{~V}, 4.3 \mathrm{~V} \end{aligned}$	4.3		0.25	0.4	Ω
		$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, \\ & 2.3 \mathrm{~V}, 3.0 \mathrm{~V} \end{aligned}$	3.0		0.27	0.4	
		$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, \\ & 2.0 \mathrm{~V}, 2.7 \mathrm{~V} \end{aligned}$	2.7		0.3	0.4	
		$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, \\ & 1.6 \mathrm{~V}, 2.3 \mathrm{~V} \end{aligned}$	2.3		0.4	0.7	
		Iout $=100 \mathrm{~mA}, \mathrm{nB}_{0}$ or $\mathrm{nB}_{1}=0 \mathrm{~V}, 1.0 \mathrm{~V}, 1.8 \mathrm{~V}$	1.8		0.8	1.8	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching Between Channels ${ }^{(3)}$	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{nB}_{0}$ or $\mathrm{nB}_{1}=0.7 \mathrm{~V}$	4.3		0.03	0.1	Ω
			3.0		0.03	0.1	
			2.7		0.03	0.1	
			2.3		0.03	0.1	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{~B}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}$	4.3		0.07	0.2	Ω
			3.0		0.07	0.2	
			2.7		0.09	0.25	
			2.3		0.16	0.3	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$	4.3	-500		500	nA
$\mathrm{I}_{\text {CCT }}$	Increase in ICC Per Input Control Voltage	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$	4.3		26.0	32.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2.6 \mathrm{~V}$			9.0	12.0	

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ONmax}}-\mathrm{R}_{\mathrm{ONmin}}$ measured at identical V_{CC}, temperature, and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of R_{ON} over the specified range of conditions.

AC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min.	Typ.	Max.	Units
t_{ON}	Turn-On Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		35	60	ns
			2.7 to 3.6		50	75	
			2.3 to 2.7		75	90	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		25	40	ns
			2.7 to 3.6		30	50	
			2.3 to 2.7		40	60	
$t_{\text {BBM }}$	Break-Before-Make Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		20		ns
			2.7 to 3.6		30		
			2.3 to 2.7		40		
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	3.6 to 4.3		22		pC
			2.7 to 3.6		15		
			2.3 to 2.7		10		
OIRR	Off Isolation	$f=100 k H z, R_{L}=50 \Omega, C_{L}=5 p F$	3.6 to 4.3		-70		dB
			2.7 to 3.6		-70		
			2.3 to 2.7		-70		
Xtalk	Crosstalk	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.6 to 4.3		-70		dB
			2.7 to 3.6		-70		
			2.3 to 2.7		-70		
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.3 to 4.3		>55		MHz
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$	3.6 to 4.3		0.01		\%
			2.7 to 3.6		0.01		
			2.3 to 2.7		0.01		

Capacitance

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathbf{V}_{\text {CC }}$ (V)	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0.0		2.0		pF
$\mathrm{C}_{\text {OFF }}$	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		16		pF
$\mathrm{C}_{\text {ON }}$	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		116		pF

AC Loading and Waveforms

Figure 1. Turn-On/Turn-Off Timing

Figure 2. Break-Before-Make Timing

Figure 3. Off Isolation

Figure 4. Crosstalk

AC Loading and Waveforms (continued)

Figure 5. Charge Injection

Figure 6. ON/Off Capacitance Measurement

Figure 7. Bandwidth

Figure 8. Harmonic Distortion

Package Dimensions, QFN 3×3

TOP VIEW

RECOMMENDED LAND PATTERN

BOTTOM VIEW

Dimensions in millimeters

Symbols	Min.	Nom.	Max.		
A	0.70	0.75	0.80		
A1	0.00	-	0.05		
b	0.20	0.25	0.30		
A3	0.203 Ref.				
D	2.95	3.00	3.05		
E	2.95	3.00	3.05		
D1	1.60	1.65	1.70		
E1	1.60	1.65	1.70		
e	0.50 BSC				
L	0.35	0.40			0.45
L1	0.275 Ref.				

Dimensions in inches

Symbols	Min.	Nom.	Max.	
A	0.028	0.0 .30	0.032	
A1	0.000	-	0.002	
b	0.008	0.010	0.012	
A3	0.008 Ref.			
D	0.116	0.118	0.120	
E	0.116	0.118	0.120	
D1	0.063	0.065	0.067	
E1	0.063	0.065	0.067	
e	0.020 BSC			
L	0.014	0.016	0.018	
L1	0.011 Ref.			

Note:

1. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Tape and Reel Dimensions, QFN 3×3

Carrier Tape

UNIT: mm

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
DFN 3x3 EP	3.40	3.35	1.10	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.30
± 0.10	± 0.10	± 0.10	$+0.10 /-0$	$+0.10 /-0$	+0.30	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.05	

Reel

UNIT: mm

Tape Size	Reel Size	\mathbf{M}	\mathbf{N}	\mathbf{W}	$\mathbf{W} 1$	\mathbf{H}	\mathbf{K}	\mathbf{S}	\mathbf{G}	\mathbf{R}	\mathbf{V}
12 mm	$\varnothing 330$	$ø 330.0$	$\varnothing 97.00$	13.00	17.40	$\varnothing 13.0$	10.60	2.00	-	-	-
		± 0.50	± 0.10	± 0.30	± 1.00	$+0.50 /-0.20$		± 0.50			

Leader/Trailer and Orientation

Part Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
