General Description

The AOZ6275 is a dual Double-Pole, Double-Throw (DPDT) analog switch that is designed to operate from a single 1.65 V to 4.3 V supply. The AOZ6275 features an ultra-low on resistance, excellent Total Harmonic Distortion (THD) performance, and low power consumption.

The device also features fast switching and guaranteed Break-Before-Make (BBM) switching which interrupts one circuit before closing the other. This ensures the switches never shorts the driver.

Features

- Low On Resistance (R_{ON}) for +2.7 V supply (0.35Ω)
- Low $\mathrm{I}_{\mathrm{CCT}}$ current when nS input is lower than V_{CC}
- 0.25Ω maximum R_{ON} flatness for +2.7 V supply
- Small $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ 16-Lead QFN Package
- Broad 1.65 V to $4.30 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range
- Low THD (0.01\% typical for 32Ω load)

Applications

- Cell phone
- PDA
- Portable media player

Typical Application

Connection Diagram

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ6275QI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm} 16$-Lead QFN	Green

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Pin Description

Pin Name	Function
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 1 \mathrm{~B}_{0}, 1 \mathrm{~B}_{1}, 2 \mathrm{~B}_{0}, 2 \mathrm{~B}_{1}$, $3 \mathrm{~B}_{0}, 3 \mathrm{~B}_{1}, 4 \mathrm{~B}_{0}, 4 \mathrm{~B}_{1}$	Data Ports
$1 \mathrm{~S}, 2 \mathrm{~S}$	Control Input

Truth Table

Logic Input	Function
0	nB_{0} Connected to nA
1	nB_{1} Connected to nA

QFN-16
(Top Thru View)

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +4.6 V
V_{S}	Switch Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$	Input Voltage	-0.5 V to +4.6 V
I_{IK}	Minimum Input Diode Current	$-50 \mathrm{~mA}$
$\mathrm{I}_{\text {SW }}$	Switch Current	350 mA
$I_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1 ms duration, <10 \% Duty Cycle)	500 mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	$-65{ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
ESD	Human Body Model	8000 V

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Recommended Operating Ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	1.65 V to 4.3 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage ${ }^{(1)}$	0 V to V_{CC}
V_{SW}	Switch Input Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min.	Typ.	Max.	Units
V_{IH}	Input Voltage HIGH		4.3	1.4			V
			2.7 to 3.6	1.3			
			2.3 to 2.7	1.1			
			1.65 to 1.95	0.9			
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW		4.3			0.7	V
			2.7 to 3.6			0.5	
			2.3 to 2.7			0.4	
			1.65 to 1.95			0.4	
I_{IN}	Control Input Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	1.65 to 4.30	-0.5		0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{NO}(\text { OFF })}$, $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	Off-Leakage Current of Port nB_{0} and nB_{1}	$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or floating } \end{aligned}$	1.95 to 4.30	-50		50	nA
$\mathrm{I}_{\mathrm{A} \text { (ON) }}$	On Leakage Current of Port A	$\begin{aligned} & \mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{nB}_{0} \text { or } n B_{1}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or floating } \end{aligned}$	1.95 to 4.30	-60		60	nA
R_{ON}	Switch On Resistance ${ }^{(2)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 2.3 \mathrm{~V} \text {, or } 4.3 \mathrm{~V} \end{aligned}$	4.3		0.30	0.4	Ω
		$\begin{aligned} & \mathrm{I} \text { OUT }=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 2.3 \mathrm{~V} \text {, or } 3.0 \mathrm{~V} \\ & \hline \end{aligned}$	3.0		0.30	0.5	
		$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 2.0 \mathrm{~V} \text {, or } 2.7 \mathrm{~V} \end{aligned}$	2.7		0.35	0.5	
		$\begin{aligned} & \hline \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.6 \mathrm{~V} \text {, or } 2.3 \mathrm{~V} \\ & \hline \end{aligned}$	2.3		0.45	0.7	
		$\begin{aligned} & \mathrm{l} \mathrm{lout}=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 1.0 \mathrm{~V} \text {, or } 1.8 \mathrm{~V} \end{aligned}$	1.8		1.0	1.8	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching Between Channels ${ }^{(3)}$	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0.7 \mathrm{~V} \end{aligned}$	4.3		0.03	0.1	Ω
			3.0		0.03	0.1	
			2.7		0.03	0.1	
			2.3		0.03	0.1	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=100 \mathrm{~mA}, \\ & \mathrm{nB}_{0} \text { or } n \mathrm{BB}_{1}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	4.3		0.07	0.2	Ω
			3.0		0.07	0.2	
			2.7		0.09	0.25	
			2.3		0.16	0.3	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$	4.3	-500		500	nA
$\mathrm{I}_{\text {CCT }}$	Increase in I CC per Input Control Voltage	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	4.3		26.0	40.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2.6 \mathrm{~V}$			9.0	12.0	

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ONmax}}-\mathrm{R}_{\mathrm{ONmin}}$ measured at identical V_{CC}, temperature, and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of $R_{O N}$ over the specified range of conditions.

AC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min.	Typ.	Max.	Units
t_{ON}	Turn-On Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		35	70	ns
			2.7 to 3.6		50	95	
			2.3 to 2.7		75	105	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		25	55	ns
			2.7 to 3.6		30	60	
			2.3 to 2.7		40	75	
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	nB_{0} or $\mathrm{nB}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3.6 to 4.3		10		ns
			2.7 to 3.6		20		
			2.3 to 2.7		35		
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	3.6 to 4.3		35		pC
			2.7 to 3.6		28		
			2.3 to 2.7		18		
OIRR	Off Isolation	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.6 to 4.3		-70		dB
			2.7 to 3.6		-70		
			2.3 to 2.7		-70		
Xtalk	Crosstalk	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.6 to 4.3		-70		dB
			2.7 to 3.6		-70		
			2.3 to 2.7		-70		
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.3 to 4.3		70		MHz
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	3.6 to 4.3		0.01		\%
			2.7 to 3.6		0.01		
			2.3 to 2.7		0.01		

Capacitance

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathbf{V}_{\mathbf{C c}}(\mathbf{V})$	Min.	Typ.	Max.	Units
C_{IN}	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		2.0		pF
$\mathrm{C}_{\mathrm{OFF}}$	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		16	pF	
C_{ON}	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		116	pF	

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

AC Loading and Waveforms

C_{L} Includes Fixture and Stray Capacitance

Logic input waveform are inverted for switches with opposite logic sense

Figure 1. Turn-On/Turn-Off Timing

Figure 2. Break-Before-Make Timing

Figure 3. Off Isolation

Figure 4. Crosstalk

AC Loading and Waveforms (continued)

Figure 5. Charge Injection

Figure 6. ON/Off Capacitance Measurement

Figure 7. Bandwidth

Figure 8. Harmonic Distortion

Package Dimensions, QFN 1.8 mm x 2.6 mm, 16L

Notes:

1. Dimensioning and tolerancing per ASME Y14.5m, 1994.
2. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.
3. Dimension b applies to plated terminal and is measured between 0.25 mm and 0.30 mm from terminal.
4. Coplanarity applies to the exposed pad as well as the terminals.
5. Exposed pads connected to die flag. Used as test contacts.

Part Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
