Features
- 18.1 SPECint95, Estimates 12.3 SPECfp95 at 400 MHz (PC755)
- 15.7 SPECint95, 9 SPECfp95 at 350 MHz (PC745)
- 733 MIPS at 400 MHz (PC755) at 641 MIPS at 350 MHz (PC745)
- Selectable Bus Clock (12 CPU Bus Dividers up to 10x)
- P0 Typical 6.4W at 400 MHz, Full Operating Conditions
- Nap, Doze and Sleep Modes for Power Savings
- Superscalar (3 Instructions per Clock Cycle) Two Instruction + Branch
- 4 Beta Byte Virtual Memory, 4-GByte of Physical Memory
- 64-bit Data and 32-bit Address Bus Interface
- 32-KB Instruction and Data Cache
- Six Independent Execution Units
- Write-back and Write-through Operations
- \(f_{\text{INT}} \text{ max} = 400 \text{ MHz} \) (TBC)
- \(f_{\text{BUS}} \text{ max} = 100 \text{ MHz} \)
- Voltage I/O 2.5V/3.3V; Voltage Int 2.0V

Description
The PC755 and PC745 PowerPC® microprocessors are high-performance, low-power, 32-bit implementations of the PowerPC Reduced Instruction Set Computer (RISC) architecture, especially enhanced for embedded applications.

The PC755 and PC745 microprocessors differ only in that the PC755 features an enhanced, dedicated L2 cache interface with on-chip L2 tags. The PC755 is a drop-in replacement for the award winning PowerPC 750 microprocessor and is footprint and user software code compatible with the MPC7400 microprocessor with AltiVec technology. The PC745 is a drop-in replacement for the PowerPC 740 microprocessor and is also footprint and user software code compatible with the PowerPC 603e microprocessor. PC755/745 microprocessors provide on-chip debug support and are fully JTAG-compliant.

The PC745 microprocessor is pin compatible with the TSPC603e family.
Screening

This product is manufactured in full compliance with:

- HITCE CBGA according to Atmel standards
- CBGA + CI-CGA + FC-PBGA up screenings based upon Atmel standards
- Full military temperature ranges ($T_j = -55^\circ C, +125^\circ C$)
- Industrial temperature ranges ($T_j = -40^\circ C, +110^\circ C$)

1. General Description

1.1 Simplified Block Diagram

The PC755 is targeted for low power systems and supports power management features such as doze, nap, sleep, and dynamic power management. The PC755 consists of a processor core and an internal L2 Tag combined with a dedicated L2 cache interface and a 60x bus.

Figure 1-1. PC755 Block Diagram
1.2 General Parameters

The following list provides a summary of the general parameters of the PC755:

- **Technology**: 0.22 µm CMOS, five-layer metal, 1 layer poly
- **Die size**: 6.61 mm x 7.73 mm (51 mm²)
- **Transistor count**: 6.75 million
- **Logic design**: Fully-static Packages
- **PC745**
 - Surface mount 255 Plastic Ball Grid Array (PBGA)
 - Surface mount 255 Ceramic Ball Grid Array (Hi-TCE)
- **PC755**
 - Surface mount 360 Plastic Ball Grid Array (PBGA)
 - Surface mount 360 Ceramic Ball Grid Array (CI-CGA, CBGA, HiTCE)
- **Core power supply**: 2V ± 100 mV DC (nominal; some parts support core voltages down to 1.8V; see “Recommended Operating Conditions” on page 16
- **I/O power supply**: 2.5V ± 100 mV DC or 3.3V ± 165 mV DC (input thresholds are configuration pin selectable)

1.3 Features

This section summarizes features of the PC755’s implementation of the PowerPC architecture. Major features of the PC755 are as follows:

- **Branch Processing Unit**
 - Four instructions fetched per clock
 - One branch processed per cycle (plus resolving 2 speculations)
 - Up to 1 speculative stream in execution, 1 additional speculative stream in fetch
 - 512-entry Branch History Table (BHT) for dynamic prediction
 - 64-entry, 4-way set associative Branch Target Instruction Cache (BTIC) for eliminating branch delay slots

- **Dispatch Unit**
 - Full hardware detection of dependencies (resolved in the execution units)
 - Dispatch two instructions to six independent units (system, branch, load/store, fixed-point unit 1, fixed-point unit 2, floating-point)
 - Serialization control (predispatch, postdispatch, execution serialization)

- **Decode**
 - Register file access
 - Forwarding control
 - Partial instruction decode

- **Completion**
 - 6 entry completion buffer
 - Instruction tracking and peak completion of two instructions per cycle
 - Completion of instructions in program order while supporting out-of-order instruction execution, completion serialization and all instruction flow changes
• Fixed Point Units (FXUs) that share 32 GPRs for Integer Operands
 – Fixed Point Unit 1 (FXU1)-multiply, divide, shift, rotate, arithmetic, logical
 – Fixed Point Unit 2 (FXU2)-shift, rotate, arithmetic, logical
 – Single-cycle arithmetic, shifts, rotates, logical
 – Multiply and divide support (multi-cycle)
 – Early out multiply

• Floating-point Unit and a 32-entry FPR File
 – Support for IEEE-754 standard single and double precision floating point arithmetic
 – Hardware support for divide
 – Hardware support for denormalized numbers
 – Single-entry reservation station
 – Supports non-IEEE mode for time-critical operations

• System Unit
 – Executes CR logical instructions and miscellaneous system instructions
 – Special register transfer instructions

• Load/Store Unit
 – One cycle load or store cache access (byte, half-word, word, double-word)
 – Effective address generation
 – Hits under misses (one outstanding miss)
 – Single-cycle unaligned access within double word boundary
 – Alignment, zero padding, sign extend for integer register file
 – Floating point internal format conversion (alignment, normalization)
 – Sequencing for load/store multiples and string operations
 – Store gathering
 – Cache and TLB instructions
 – Big and Little-endian byte addressing supported
 – Misaligned Little-endian supported
 – Level 1 Cache structure
 – 32K, 32 bytes line, 8-way set associative instruction cache (iL1)
 – 32K, 32 bytes line, 8-way set associative data cache (dL1)
 – Cache locking for both instruction and data caches, selectable by group of ways
 – Single-cycle cache access
 – Pseudo least-recently used (PLRU) replacement
 – Copy-back or Write Through data cache (on a page per page basis)
 – Supports all PowerPC memory coherency modes
 – Non-Blocking instruction and data cache (one outstanding miss under hits)
 – No snooping of instruction cache

• Level 2 (L2) Cache Interface (not implemented on PC745)
 – Internal L2 cache controller and tags; external data SRAMs
 – 256K, 512K, and 1-Mbyte 2-way set associative L2 cache support
– Copyback or write-through data cache (on a page basis, or for all L2)
– Instruction-only mode and data-only mode.
– 64 bytes (256K/512K) or 128 bytes (1M) sectored line size
– Supports flow through (register-buffer) synchronous burst SRAMs, pipelined (register-register) synchronous burst SRAMs (3-1-1-1 or strobeless 4-1-1-1) and pipelined (register-register) late-write synchronous burst SRAMs
– L2 configurable to direct mapped SRAM interface or split cache/direct mapped or private memory
– Core-to-L2 frequency divisors of 1, 1.5, 2, 2.5, and 3 supported
– 64-bit data bus
– Selectable interface voltages of 2.5V and 3.3V
– Parity checking on both L2 address and data

• Memory Management Unit
 – 128 entry, 2-way set associative instruction TLB
 – 128 entry, 2-way set associative data TLB
 – Hardware reload for TLBs
 – Hardware or optional software tablewalk support
 – 8 instruction BATs and 8 data BATs
 – 8 SPRGs, for assistance with software tablewalks
 – Virtual memory support for up to 4 hexabytes (2^{52}) of virtual memory
 – Real memory support for up to 4 gigabytes (2^{32}) of physical memory

• Bus Interface
 – Compatible with 60X processor interface
 – 32-bit address bus
 – 64-bit data bus, 32-bit mode selectable
 – Bus-to-core frequency multipliers of 2x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x, 10x supported
 – Selectable interface voltages of 2.5V and 3.3V.
 – Parity checking on both address and data busses

• Power Management
 – Low-power design with thermal requirements very similar to PC740/750.
 – Selectable interface voltage of 1.8V/2.0V can reduce power in output buffers (compared to 3.3V)
 – Three static power saving modes: doze, nap, and sleep
 – Dynamic power management

• Testability
 – LSSD scan design
 – IEEE 1149.1 JTAG interface

• Integrated Thermal Management Assist Unit
 – One-ship thermal sensor and control logic
 – Thermal Management Interrupt for software regulation of junction temperature
2. Pin Assignments

Figure 2-1 (in part A) shows the pinout of the PC745, 255PBGA and HiTCE CBGA packages as viewed from the top surface. Part B shows the side profile of the PBGA package to indicate the direction of the top surface view.

Figure 2-1. Pinout of the PC745, 255 PBGA and HiTCE CBGA Packages as Viewed from the Top Surface

Figure 2-2 (in part A) shows the pinout of the PC755, 360 PBGA packages as viewed from the top surface. Part B shows the side profile of the PBGA package to indicate the direction of the top surface view.
Figure 2-2. Pinout of the PC755, 360 PBGA, CBGA, HiTCE CBGA and CI-CGA Packages as Viewed from the Top Surface
2.1 Pinout Listings

Table 2-1 provides the pinout listing for the PC745, 255 PBGA package.

Table 2-1. Pinout Listing for the PC745, 255 PBGA and HiTCE CBGA Packages

| Signal Name | Pin Number | Active | I/O | I/F Voltages Supported
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A[0-31]</td>
<td>C16, E4, D13, F2, D14, G1, D15, E2, D16, D4, E13, G2, D15, H1, E16, H2, F13, J1, F14, J2, F15, H3, F16, F4, G13, K1, G15, K2, H16, M1, J15, P1</td>
<td>High</td>
<td>I/O</td>
<td>1.8V/2.0V 3.3V</td>
</tr>
<tr>
<td>AACK</td>
<td>L2</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>ABB</td>
<td>K4</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>AP[0-3]</td>
<td>C1, B4, B3, B2</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>ARTRY</td>
<td>J4</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>AVDD</td>
<td>A10</td>
<td>–</td>
<td>–</td>
<td>2V</td>
</tr>
<tr>
<td>BG</td>
<td>L1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>BR</td>
<td>B6</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>BVSEL(3)(4)(5)</td>
<td>B1</td>
<td>High</td>
<td>Input</td>
<td>GND</td>
</tr>
<tr>
<td>CI</td>
<td>E1</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>CKSTP_IN</td>
<td>D8</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>CKSTP_OUT</td>
<td>A6</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>CLK_OUT</td>
<td>D7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DBB</td>
<td>J14</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>DBG</td>
<td>N1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>DBDIS</td>
<td>H15</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>DBWO</td>
<td>G4</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>DH[0-31]</td>
<td>P14, T16, R15, T15, R13, R12, P11, N11, R11, T12, T11, R10, P9, N9, T10, R9, T9, P8, N8, R8, T8, N7, R7, T7, P6, N6, R6, T6, R5, N5, T5, T4</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>DP[0-7]</td>
<td>M2, L3, N2, L4, R1, P2, M4, R2</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>DRTRY</td>
<td>G16</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>GBL</td>
<td>F1</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>GND</td>
<td>C5, C12, E3, E6, E8, E9, E11, E14, F5, F7, F10, F12, G6, G8, G9, G11, H5, H7, H10, H12, J5, J7, J10, J12, K6, K8, K9, K11, L5, L7, L10, L12, M3, M6, M8, M9, M11, M14, P5, P12</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HRESET</td>
<td>A7</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>INT</td>
<td>B15</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>L1_TSTCLK(2)</td>
<td>D11</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>L2_TSTCLK(2)</td>
<td>D12</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>LSSD_MODE(2)</td>
<td>B10</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2-1. Pinout Listing for the PC745, 255 PBGA and HiTCE CBGA Packages (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Active</th>
<th>I/O</th>
<th>1.8V/2.0V</th>
<th>3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>C13</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NC (No-Connect)</td>
<td>B7, B8, C3, C6, C8, D5, D6, H4, J16, A4, A5, A2, A3, B5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>OVDD</td>
<td>C7, E5, E7, E10, E12, G3, G5, G12, G14, K3, K5, K12, K14, M5, M7, M10, M12, P7, P10</td>
<td>–</td>
<td>–</td>
<td>1.8V/2.0V</td>
<td>3.3V</td>
</tr>
<tr>
<td>PLL_CFG[0-3]</td>
<td>A8, B9, A9, D9</td>
<td>High</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>QACK</td>
<td>D3</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>QREQ</td>
<td>J3</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RSRV</td>
<td>D1</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SMI</td>
<td>A16</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SRESET</td>
<td>B14</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SYSCLK</td>
<td>C9</td>
<td>–</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TA</td>
<td>H14</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TBEN</td>
<td>C2</td>
<td>High</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TBST</td>
<td>A14</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TCK</td>
<td>C11</td>
<td>High</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TDO</td>
<td>A12</td>
<td>High</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TEA</td>
<td>H13</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TLBISYNC</td>
<td>C4</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TRST[5]</td>
<td>C10</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TS</td>
<td>J13</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TSIZE[0-2]</td>
<td>A13, D10, B12</td>
<td>High</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TT[0-4]</td>
<td>B13, A15, B16, C14, C15</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WT</td>
<td>D2</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>VDD[2]</td>
<td>F6, F8, F9, F11, G7, G10, H6, H8, H9, H11, J6, J8, J9, J11, K7, K10, L6, L8, L9, L11</td>
<td>–</td>
<td>–</td>
<td>2V</td>
<td>2V</td>
</tr>
<tr>
<td>VOLTDDET[6]</td>
<td>F3</td>
<td>High</td>
<td>Output</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. OVDD supplies power to the processor bus, JTAG, and all control signals and VDD supplies power to the processor core and the PLL (after filtering to become AVDD). These columns serve as a reference for the nominal voltage supported on a given signal as selected by the BVSEL pin configuration of Table 5-1 on page 15 and the voltage supplied. For actual recommended value of VDD or supply voltages see “Absolute Maximum Ratings(1)” on page 14.
2. These are test signals for factory use only and must be pulled up to OVDD for normal machine operation.
3. To allow for future I/O voltage changes, provide the option to connect BVSEL independently to either OVDD (selects 3.3V) or to OGND (selects 1.8V/2.0V).
4. Uses one of 15 existing no-connects in PC745’s 255-BGA package.
5. Internal pull up on die.
6. Internally tied to GND in the PC745 255-BGA package to indicate to the power supply that a low-voltage processor is present. This signal is not a power supply input.
Table 2-2 provides the pinout listing for the PC755, 360 PBGA, CBGA, HiTCE CBGA and CI-CGA Packages

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Active</th>
<th>I/O</th>
<th>I/F Voltages Supported</th>
<th>1.8V/2.0V</th>
<th>3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACK</td>
<td>N3</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ABB</td>
<td>L7</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AP[0-3]</td>
<td>C4, C5, C6, C7</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ARTRY</td>
<td>L6</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AVDD</td>
<td>A8</td>
<td>Low</td>
<td>–</td>
<td>2V</td>
<td>2V</td>
<td>–</td>
</tr>
<tr>
<td>BG</td>
<td>H1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>BR</td>
<td>E7</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>BVSEL(3)(5)(6)</td>
<td>W1</td>
<td>High</td>
<td>Input</td>
<td>GND</td>
<td>3.3V</td>
<td>–</td>
</tr>
<tr>
<td>CI</td>
<td>C2</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CKSTP_IN</td>
<td>B8</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CKSTP_OUT</td>
<td>D7</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CLK_OUT</td>
<td>E3</td>
<td>–</td>
<td>Output</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DBB</td>
<td>K5</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DBDIS</td>
<td>G1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DBG</td>
<td>K1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DBWO</td>
<td>D1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DH[0-31]</td>
<td>W12, W11, V11, T9, W10, U9, U10, M11, M9, P8, W7, P9, W9, R10, W6, V7, V6, U8, V9, T7, U7, R7, U6, W5, U5, W4, P7, V5, V4, W3, U4, R5</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DL[0-31]</td>
<td>M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11, V13, U12, P12, T13, W13, U13, V10, W8, T11, U11, V12, V8, T1, P1, V1, U1, N1, R2, V3, U3, W2</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DP[0-7]</td>
<td>L1, P2, M2, V2, M1, N2, T3, R1</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DRTRY</td>
<td>H6</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GBL</td>
<td>B1</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GND</td>
<td>D10, D14, D16, D4, D6, E12, E8, F4, F6, F10, F14, F16, G9, G11, H5, H8, H10, H12, H15, J9, J11, K4, K6, K8, K10, K12, K14, K16, L9, L11, M5, M8, M10, M12, M15, N9, N11, P4, P6, P10, P14, P16, R8, R12, T4, T6, T10, T14, T16</td>
<td>–</td>
<td>–</td>
<td>GND</td>
<td>GND</td>
<td>–</td>
</tr>
<tr>
<td>HRESET</td>
<td>B6</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>INT</td>
<td>C11</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>L1_TSTCLK(2)</td>
<td>F8</td>
<td>High</td>
<td>Input</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>L2ADDR[0-16]</td>
<td>L17, L18, L19, M19, K18, K17, K15, J19, J18, J17, J16, H18, H17, J14, J13, H19, G18</td>
<td>High</td>
<td>Output</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2-2. Pinout Listing for the PC755, 360 PBGA, CBGA, HiTCE CBGA and CI-CGA Packages (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Active</th>
<th>I/O</th>
<th>I/F Voltages Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8V/2.0V</td>
</tr>
<tr>
<td>L2AVDD</td>
<td>L13</td>
<td>–</td>
<td>–</td>
<td>2V</td>
</tr>
<tr>
<td>L2CE</td>
<td>P17</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>L2CLKOUTA</td>
<td>N15</td>
<td>–</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>L2CLKOUTB</td>
<td>L16</td>
<td>–</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>L2DATA[0-63]</td>
<td>U14, R13, W14, V15, U15, W16, V16, W17, V17, U17, W18, V18, U18, V19, U19, T18, T17, R19, R18, R17, R15, P19, P18, P13, N14, N13, N19, N17, M17, M13, M18, H13, G19, G16, G15, G14, G13, F19, F18, F13, E19, E18, E17, E15, D19, D18, D17, C18, C17, B19, B18, B17, A18, A17, A16, B16, C16, A14, A15, C15, B14, C14, E13</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>L2DP[0-7]</td>
<td>V14, U16, T19, N18, H14, F17, C19, B15</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>L2OVDD</td>
<td>D15, E14, E16, H16, J15, L15, M16, P15, R14, R16, T15, F15</td>
<td>–</td>
<td>–</td>
<td>1.8V/2V</td>
</tr>
<tr>
<td>L2SYNC_IN</td>
<td>L14</td>
<td>–</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>L2SYNC_OUT</td>
<td>M14</td>
<td>–</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>L2_TSTCLK(2)</td>
<td>F7</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>L2VSEL(1)(3)(5)(6)</td>
<td>A19</td>
<td>High</td>
<td>Input</td>
<td>GND</td>
</tr>
<tr>
<td>L2WE</td>
<td>N16</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>L2ZZ</td>
<td>G17</td>
<td>High</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>LSSD_MODE(2)</td>
<td>F9</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>MCP</td>
<td>B11</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>NC (No-Connect)</td>
<td>B3, B4, B5, W19, K9, K11^4, K19^4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>OVDD</td>
<td>D5, D8, D12, E4, E6, E9, E11, F5, H4, J5, L5, M4, P5, R4, R6, R9, R11, T5, T8, T12</td>
<td>–</td>
<td>–</td>
<td>1.8V/2V</td>
</tr>
<tr>
<td>PLL_CFG[0-3]</td>
<td>A4, A5, A6, A7</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>QACK</td>
<td>B2</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>QREQ</td>
<td>J3</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>RSRV</td>
<td>D3</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>SMI</td>
<td>A12</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>SRESET</td>
<td>E10</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>SYSCLK</td>
<td>H9</td>
<td>–</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TA</td>
<td>F1</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TBEN</td>
<td>A2</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TBST</td>
<td>A11</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>TCK</td>
<td>B10</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TDI(6)</td>
<td>B7</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TDO</td>
<td>D9</td>
<td>High</td>
<td>Output</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2-2. Pinout Listing for the PC755, 360 PBGA, CBGA, HiTCE CBGA and CI-CGA Packages (8) (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Active</th>
<th>I/O</th>
<th>I/F Voltages Supported (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA</td>
<td>J1</td>
<td>Low</td>
<td>Input</td>
<td>1.8V/2.0V</td>
</tr>
<tr>
<td>TLBISYNC</td>
<td>A3</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TMS(6)</td>
<td>C8</td>
<td>High</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TRST(6)</td>
<td>A10</td>
<td>Low</td>
<td>Input</td>
<td>–</td>
</tr>
<tr>
<td>TS</td>
<td>K7</td>
<td>Low</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>TSIZ[0-2]</td>
<td>A9, B9, C9</td>
<td>High</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>TT[0-4]</td>
<td>C10, D11, B12, C12, F11</td>
<td>High</td>
<td>I/O</td>
<td>–</td>
</tr>
<tr>
<td>WT</td>
<td>C3</td>
<td>Low</td>
<td>Output</td>
<td>–</td>
</tr>
<tr>
<td>VDD</td>
<td>G8, G10, G12, J8, J10, J12, L8, L10, L12, N8, N10, N12</td>
<td>–</td>
<td>–</td>
<td>2V</td>
</tr>
<tr>
<td>VOLTDET(7)</td>
<td>K13</td>
<td>High</td>
<td>Output</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. OVDD supplies power to the processor bus, JTAG, and all control signals except the L2 cache controls (L2CE, L2WE, and L2ZZ); L2OVDD supplies power to the L2 cache interface (L2ADDR[0-16], L2DATA[0-63], L2DP[0-7] and L2SYNC-OUT) and the L2 control signals; and VDD supplies power to the processor core and the PLL and DLL (after filtering to become AVDD and L2AVDD respectively). These columns serve as a reference for the nominal voltage supported on a given signal as selected by the BVSEL/L2VSEL pin configurations of Table 5-1 on page 15 and the voltage supplied. For actual recommended value of VIN or supply voltages see “Recommended Operating Conditions” (1) on page 16.
2. These are test signals for factory use only and must be pulled up to OVDD for normal machine operation.
3. To allow for future I/O voltage changes, provide the option to connect BVSEL and L2VSEL independently to either OVDD (selects 3.3V) or to OGND (selects 1.8V/2.0V).
4. These pins are reserved for potential future use as additional L2 address pins.
5. Uses one of 9 existing no-connects in PC750’s 360-BGA package.
6. Internal pull up on die.
7. Internally tied to L2OVDD in the PC755 360-BGA package to indicate the power present at the L2 cache interface. This signal is not a power supply input.
8. This is different from the PC745 255-BGA package.
3. Signal Description

Figure 3-1. PC755 Microprocessor Signal Groups

- **ADDRESS ARBITRATION**
 - BR
 - BG
 - ABB

- **ADDRESS START**
 - TS

- **ADDRESS BUS**
 - A[0-31]
 - AP[0-3]

- **TRANSFER ATTRIBUTE**
 - TT[0-4]
 - TBST
 - TS1Z[0-2]
 - GBL
 - WT
 - CI

- **ADDRESS TERMINATION**
 - AACK
 - ARTRY

- **DATA ARBITRATION**
 - DBG
 - DBWO
 - DBB

- **DATA TRANSFER**
 - D[0-63]
 - D[P0-7]
 - DBDIS

- **DATA TERMINATION**
 - TA
 - DRTRY
 - TEA

- **VOLTAGE SUPPLY**
 - VDD
 - OVDD
 - AVDD
 - GND

- **PC755B**
 - INT
 - SMI
 - MCP
 - SRESET
 - HRESET
 - CKSTP_IN
 - CKSTP_OUT
 - RSRV
 - TBEN
 - TLBISYNC
 - QREQ
 - QACK
 - SYSCLK
 - PLL_CFG[0-3]
 - CLK_OUT
 - JTAG:COP
 - Factory Test
 - VOLTDDET

- **L2 CACHE**
 - L2 ADDR [16-0]
 - L2 DATA [0-63]
 - L2DP [0-7]
 - L2CE
 - L2WE
 - L2CLK-OUT [A-B]
 - L2SYNC_OUT
 - L2SYNC_IN
 - L2 VSEL
 - L2 CACHE ADDRESS/DATA
 - L2 CACHE CLOCK/CONTROL
 - INTERRUPTS
 - RESET
 - PROCESSOR STATUS CONTROL
 - CLOCK CONTROL
 - TEST INTERFACE

- **PC745B**
 - Not supported in the PC745B

- **FACTORY TEST**
 - JTAG:COP
4. Detailed Specifications

This specification describes the specific requirements for the microprocessor PC755, in compliance with Atmel Grenoble standard screening.

5. Applicable Documents

1) MIL-STD-883: Test methods and procedures for electronics.
2) MIL-PRF-38535 appendix A: General specifications for microcircuits.

The microcircuits are in accordance with the applicable documents and as specified herein.

5.1 Design and Construction

5.1.1 Terminal Connections

Depending on the package, the terminal connections is shown in Table 2-1 on page 8, Table 2-2 on page 10 and Figure 3-1 on page 13.

5.1.2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Maximum Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core supply voltage</td>
<td>(V_{DD})</td>
<td>-0.3 to 2.5</td>
<td>V</td>
</tr>
<tr>
<td>PLL supply voltage</td>
<td>(AV_{DD})</td>
<td>-0.3 to 2.5</td>
<td>V</td>
</tr>
<tr>
<td>L2 DLL supply voltage</td>
<td>(L2AV_{DD})</td>
<td>-0.3 to 2.5</td>
<td>V</td>
</tr>
<tr>
<td>Processor bus supply voltage</td>
<td>(OV_{DD})</td>
<td>-0.3 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>L2 bus supply voltage</td>
<td>(L2OV_{DD})</td>
<td>-0.3 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{IN})</td>
<td>-0.3 to (OV_{DD} + 0.3V)</td>
<td>V</td>
</tr>
<tr>
<td>Processor bus</td>
<td>(V_{IN})</td>
<td>-0.3 to (L2OV_{DD} + 0.3V)</td>
<td>V</td>
</tr>
<tr>
<td>L2 Bus</td>
<td>(V_{IN})</td>
<td>-0.3 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>JTAG Signals</td>
<td>(V_{IN})</td>
<td>-0.3 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>(T_{STG})</td>
<td>-55/+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. Functional and tested operating conditions are given in “Recommended Operating Conditions” on page 16. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
2. Caution: \(V_{IN} \) must not exceed \(OV_{DD} \) or \(L2OV_{DD} \) by more than 0.3V at any time including during power-on reset.
3. Caution: \(L2OV_{DD}/OV_{DD} \) must not exceed \(V_{DD}/AV_{DD}/L2AV_{DD} \) by more than 1.6V during normal operation. During power-on reset and power-down sequences, \(L2OV_{DD}/OV_{DD} \) may exceed \(V_{DD}/AV_{DD}/L2AV_{DD} \) by up to 3.9V for up to 20 ms, or by 2.5V for up to 40 ms. Excursions beyond 3.3V or 40 ms are not supported.
4. Caution: \(V_{DD}/AV_{DD}/L2AV_{DD} \) must not exceed \(L2OV_{DD}/OV_{DD} \) by more than 0.4V during normal operation. During power-on reset and power-down sequences, \(V_{DD}/AV_{DD}/L2AV_{DD} \) may exceed \(L2OV_{DD}/OV_{DD} \) by up to 1.0V for up to 20 ms, or by 0.7V for up to 40 ms. Excursions beyond 1.0V or 40 ms are not supported.
5. This is a DC specifications only. \(V_{IN} \) may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 5-1 on page 15.
Figure 5-1 shows the allowable undershoot and overshoot voltage on the PC755 and PC745.

The PC755 provides several I/O voltages to support both compatibility with existing systems and migration to future systems. The PC755 core voltage must always be provided at nominal 2.0V (see “Recommended Operating Conditions” on page 16 for actual recommended core voltage). Voltage to the L2 I/Os and Processor Interface I/Os are provided through separate sets of supply pins and may be provided at the voltages shown in Table 5-1. The input voltage threshold for each bus is selected by sampling the state of the voltage select pins BVSEL and L2VSEL during operation. These signals must remain stable during part operation and cannot change. The output voltage will swing from GND to the maximum voltage applied to the OVDD or L2OVDD power pins.

Table 5-1 describes the input threshold voltage setting.

<table>
<thead>
<tr>
<th>Part Revision</th>
<th>BVSEL Signal</th>
<th>Processor Bus Interface Voltage</th>
<th>L2VSEL Signal</th>
<th>L2 Bus Interface Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0</td>
<td>Not Available</td>
<td>0</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.5V/3.3V</td>
<td>1</td>
<td>2.5V/3.3V</td>
</tr>
</tbody>
</table>

Notes:
1. Caution: The input threshold selection must agree with the OVDD/L2OVDD voltages supplied.
2. The input threshold settings above are different for all revisions prior to Rev. 2.8 (Rev. E). For more information, contact your local Atmel sales office.
5.1.3 Recommended Operating Conditions (1)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Recommended Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>300 MHz, 350 MHz</td>
<td>400 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Core supply voltage (3)</td>
<td>V_{DD}</td>
<td>1.80</td>
<td>2.10</td>
</tr>
<tr>
<td>PLL supply voltage (3)</td>
<td>AV_{DD}</td>
<td>1.80</td>
<td>2.10</td>
</tr>
<tr>
<td>L2 DLL supply voltage (3)</td>
<td>$L2AV_{DD}$</td>
<td>1.80</td>
<td>2.10</td>
</tr>
<tr>
<td>Processor bus supply voltage (2)(4)(5)</td>
<td>$BVSEL = 1$</td>
<td>OV_{DD}</td>
<td>2.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.135</td>
<td>3.465</td>
</tr>
<tr>
<td>L2 bus supply voltage (2)(4)(5)</td>
<td>$L2VSEL = 1$</td>
<td>$L2OV_{DD}$</td>
<td>2.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.135</td>
<td>3.465</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_{IN}</td>
<td>Processor bus</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2 Bus</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JTAG Signals</td>
<td>GND</td>
</tr>
<tr>
<td>Die-junction temperature</td>
<td>T_J</td>
<td>Military temperature range</td>
<td>-55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial temperature</td>
<td>-40</td>
</tr>
</tbody>
</table>

Notes: 1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.
2. Revisions prior to Rev. 2.8 (Rev. E) offered different I/O voltage support.
3. 2.0V nominal.
4. 2.5V nominal.
5. 3.3V nominal.
6. Thermal Characteristics

6.1 Package Characteristics

Table 6-1 provides the package thermal characteristics for the PC755.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance, natural convection</td>
<td>$R_{θJA}$</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance, natural convection, four-layer</td>
<td>$R_{θJMA}$</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance, 200 ft./min. airflow, single-layer</td>
<td>$R_{θJMA}$</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance, 200 ft./min. airflow, four-layer</td>
<td>$R_{θJMA}$</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>$R_{θJB}$</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Junction-to-case thermal resistance</td>
<td>$R_{θJC}$</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
</tbody>
</table>

Notes: 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of $R_{θJC}$ for the part is less than 0.1°C/W.

Note: Refer to Section 6.1.3 “Thermal Management Information” on page 19 for more details about thermal management.

6.1.1 Package Thermal Characteristics for HiTCE

Table 6-2 provides the package thermal characteristics for the PC755, HiTCE.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-bottom of balls</td>
<td>$R_{θJ}$</td>
<td>6.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance, natural convection, four-layer</td>
<td>$R_{θJMA}$</td>
<td>20.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Junction to board thermal resistance</td>
<td>$R_{θJB}$</td>
<td>11.0</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Notes: 1. Simulation, no convection air flow

2. Per JEDEC JESD51-6 with the board horizontal

3. Per JEDEC JESD51-8

4. Per JEDEC JESD51-2 with the board horizontal
The board designer can choose between several types of heat sinks to place on the PC755. There are several commercially-available heat sinks for the PC755 provided by the following vendors.

For the exposed-die packaging technology, shown in “Recommended Operating Conditions” on page 16, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case (or top-of-die for exposed silicon) thermal resistance
- The die junction-to-ball thermal resistance

Figure 6-1 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon may be neglected. Thus, the heat sink attach material and the heat sink conduction/convective thermal resistances are the dominant terms.

Figure 6-1. C4 Package with Head Sink Mounted to a Printed-circuit Board

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to board thermal resistance</td>
<td>$R_{\theta JB}$</td>
<td>8.42</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Table 6-3. Package Thermal Characteristics for CI-CGA

Note the internal versus external package resistance.
6.1.2 Thermal Management Assistance

The PC755 incorporates a thermal management assist unit (TAU) composed of a thermal sensor, digital-to-analog converter, comparator, control logic, and dedicated special-purpose registers (SPRs). Specifications for the thermal sensor portion of the TAU are found in Table 6-4. More information on the use of this feature is given in the Freescale PC755 RISC Microprocessor User’s manual.

Table 6-4. Thermal Sensor Specifications at Recommended Operating Conditions (see “Recommended Operating Conditions(1)” on page 16)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range(^{(1)})</td>
<td>0</td>
<td>127</td>
<td>°C</td>
</tr>
<tr>
<td>Comparator settling time(^{(2)}(3))</td>
<td>20</td>
<td>–</td>
<td>s</td>
</tr>
<tr>
<td>Resolution(^{(3)})</td>
<td>4</td>
<td>–</td>
<td>°C</td>
</tr>
<tr>
<td>Accuracy(^{(3)})</td>
<td>-12</td>
<td>+12</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. The temperature is the junction temperature of the die. The thermal assist unit’s raw output does not indicate an absolute temperature, but must be interpreted by software to derive the absolute junction temperature. For information about the use and calibration of the TAU, see Freescale Application Note AN1800/D, “Programming the Thermal Assist Unit in the PC750 Microprocessor”.
2. The comparator settling time value must be converted into the number of CPU clocks that need to be written into the THRM3 SPR.
3. Guaranteed by design and characterization.

6.1.3 Thermal Management Information

This section provides thermal management information for air-cooled applications. Proper thermal control design is primarily dependent upon the system-level design—the heat sink, airflow and thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several methods—adhesive, spring clip to holes in the printed-circuit board or package, and mounting clip and screw assembly; see Figure 6-2. This spring force should not exceed 5.5 pounds of force.

Figure 6-2. Package Exploded Cross-Sectional View with Several Heat Sink Options
Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

6.1.4 Adhesives and Thermal Interface Materials

Figure 6-3. Thermal Performance of Select Thermal Interface Material

A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 6-3 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately 7 times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 6-2 on page 19). This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure.

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based upon high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements.
6.1.5 Heat Sink Selection Example

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

\[T_J = T_A + T_R + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_D \]

Where:
- \(T_J \) is the die-junction temperature
- \(T_A \) is the inlet cabinet ambient temperature
- \(T_R \) is the air temperature rise within the computer cabinet
- \(\theta_{JC} \) is the junction-to-case thermal resistance
- \(\theta_{INT} \) is the adhesive or interface material thermal resistance
- \(\theta_{SA} \) is the heat sink base-to-ambient thermal resistance
- \(P_D \) is the power dissipated by the device

During operation the die-junction temperatures (\(T_J \)) should be maintained less than the value specified in "Recommended Operating Conditions" on page 16. The temperature of the air cooling the component greatly depends upon the ambient inlet air temperature and the temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (\(T_A \)) may range from 30 to 40°C. The air temperature rise within a cabinet (\(T_R \)) may be in the range of 5 to 10°C. The thermal resistance of the thermal interface material (\(\theta_{INT} \)) is typically about 1°C/W. Assuming a \(T_A \) of 30°C, a \(T_R \) of 5°C, a CBGA package \(\theta_{JC} = 0.03 \), and a power consumption (\(P_D \)) of 5.0 watts, the following expression for \(T_J \) is obtained:

\[T_J = 30°C + 5°C + (0.03°C/W + 1.0°C/W + \theta_{SA}) \times 5.0 \text{ W} \]

For a Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (\(\theta_{SA} \)) versus airflow velocity is shown in Figure 6-4.

Figure 6-4. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity
Assuming an air velocity of 0.5 m/s, we have an effective R_{sa} of 7°C/W, thus

$$T_J = 30°C + 5°C + (0.03°C/W + 1.0°C/W + 7°C/W) \times 5.0 \text{ W}$$

resulting in a die-junction temperature of approximately 81°C which is well within the maximum operating temperature of the component.

Other heat sinks offered by Chip Coolers, IERC, Thermalloy, Wakefield Engineering, and Aavid Engineering offer different heat sink-to-ambient thermal resistances, and may or may not need air flow.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature, is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component’s power consumption, a number of factors affect the final operating die-junction temperature — airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today’s microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board, as well as, system-level designs. To expedite system-level thermal analysis, several “compact” thermal-package models are available within FLO-THERM®. These are available upon request.

7. Power consideration

7.1 Power management

The PC755 provides four power modes, selectable by setting the appropriate control bits in the MSR and HIDO registers. The four power modes are as follows:

- **Full-power**: This is the default power state of the PC755. The PC755 is fully powered and the internal functional units operate at the full processor clock speed. If the dynamic power management mode is enabled, functional units that are idle will automatically enter a low-power state without affecting performance, software execution, or external hardware.

- **Doze**: All the functional units of the PC755 are disabled except for the time base/decrementer registers and the bus snooping logic. When the processor is in doze mode, an external asynchronous interrupt, a system management interrupt, a decrementer exception, a hard or soft reset, or machine check brings the PC755 into the full-power state. The PC755 in doze mode maintains the PLL in a fully powered state and locked to the system external clock input (SYSCLK) so a transition to the full-power state takes only a few processor clock cycles.

- **Nap**: The nap mode further reduces power consumption by disabling bus snooping, leaving only the time base register and the PLL in a powered state. The PC755 returns to the full-power state upon receipt of an external asynchronous interrupt, a system management interrupt, a decrementer exception, a hard or soft reset, or a machine check input (MCP). A return to full-power state from a nap state takes only a few processor clock cycles.
When the processor is in nap mode, if QACK is negated, the processor is put in doze mode to support snooping.

- **Sleep:** Sleep mode minimizes power consumption by disabling all internal functional units, after which external system logic may disable the PPL and SUSCLK. Returning the PC755 to the full-power state requires the enabling of the PPL and SYSCLK, followed by the assertion of an external asynchronous interrupt, a system management interrupt, a hard or soft reset, or a machine check input (MCP) signal after the time required to relock the PPL.

7.2 Power Dissipation

Table 7-1. Power Consumption for PC755

<table>
<thead>
<tr>
<th></th>
<th>Processor (CPU) Frequency</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 MHz</td>
<td>350 MHz</td>
</tr>
<tr>
<td>Full-Power Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>3.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Maximum</td>
<td>4.5</td>
<td>6</td>
</tr>
<tr>
<td>Doze Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>Nap Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sleep Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Sleep Mode-PLL and DLL Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>510</td>
<td>510</td>
</tr>
</tbody>
</table>

Notes:
1. These values apply for all valid processor bus and L2 bus ratios. The values do not include I/O supply power (OVDD and L2OVDD) or PLL/DLL supply power (AVDD and L2AVDD). OVDD and L2OVDD power is system dependent, but is typically < 10% of VDD power. Worst case power consumption for AVDD = 15 mW and L2AVDD = 15 mW.
2. Maximum power is measured at nominal VDD (see "Recommended Operating Conditions(1)" on page 16) while running an entirely cache-resident, contrived sequence of instructions which keep the execution units maximally busy.
3. Typical power is an average value measured at the nominal recommended VDD (see "Recommended Operating Conditions(1)" on page 16) and 65°C in a system while running a typical code sequence.
4. Not 100% tested. Characterized and periodically sampled.
8. Electrical Characteristics

8.1 Static Characteristics

Table 8-1. DC Electrical Specifications at Recommended Operating Conditions (see “Recommended Operating Conditions(1)” on page 16)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nominal bus Voltage(1)</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input high voltage (all inputs except SYSCLK)(2)(3)</td>
<td>2.5</td>
<td>V_{IH}</td>
<td>1.6</td>
<td>$L2OV_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>V_{IH}</td>
<td>2</td>
<td>$L2OV_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage (all inputs except SYSCLK)(2)</td>
<td>2.5</td>
<td>V_{IL}</td>
<td>-0.3</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>V_{IL}</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>SYSCLK input high voltage</td>
<td>2.5</td>
<td>KV_{IH}</td>
<td>1.8</td>
<td>$OV_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>KV_{IH}</td>
<td>2.4</td>
<td>$OV_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>SYSCLK input low voltage</td>
<td>2.5</td>
<td>KV_{IL}</td>
<td>-0.3</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>KV_{IL}</td>
<td>-0.3</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current, (2)(3)</td>
<td>$V_{in} = L2OV_{DD}/OV_{DD}$</td>
<td>I_{in}</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Hi-Z (off-state) leakage current, (2)(3)(5)</td>
<td>$V_{in} = L2OV_{DD}/OV_{DD}$</td>
<td>I_{TSI}</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output high voltage, $I_{OH} = -6$ mA</td>
<td>2.5</td>
<td>V_{OH}</td>
<td>1.7</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>V_{OH}</td>
<td>2.4</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage, $I_{OL} = 6$ mA</td>
<td>2.5</td>
<td>V_{OL}</td>
<td>–</td>
<td>0.45</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>V_{OL}</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Capacitance, $V_{in} = 0V, f = 1$ MHz (3)(4)</td>
<td>–</td>
<td>C_{in}</td>
<td>–</td>
<td>5</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
1. Nominal voltages; See “Recommended Operating Conditions(1)” on page 16.
2. For processor bus signals, the reference is OV_{DD} while $L2OV_{DD}$ is the reference for the L2 bus signals.
3. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK) and IEEE 1149.1 boundary scan (JTAG) signals.
4. Capacitance is periodically sampled rather than 100% tested.
5. The leakage is measured for nominal OV_{DD} and V_{DD}, or both OV_{DD} and V_{DD} must vary in the same direction (for example, both OV_{DD} and V_{DD} vary by either +5% or -5%).

8.2 Dynamic Characteristics

After fabrication, parts are sorted by maximum processor core frequency as shown in “Clock AC Specifications” on page 25 and tested for conformance to the AC specifications for that frequency. These specifications are for 275, 300, 333 MHz processor core frequencies. The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0-3] signals. Parts are sold by maximum processor core frequency.
8.2.1 Clock AC Specifications

Table 8-2 provides the clock AC timing specifications as defined in “Absolute Maximum Ratings(1)” on page 14.

Table 8-2. Clock AC Timing Specifications at Recommended Operating Conditions (See “Recommended Operating Conditions(1)” on page 16)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Minimum Frequency</th>
<th>Maximum Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor frequency(1)</td>
<td>(f_{\text{core}})</td>
<td>200 MHz</td>
<td>300 MHz</td>
</tr>
<tr>
<td>VCO frequency(1)</td>
<td>(f_{\text{VCO}})</td>
<td>400 MHz</td>
<td>600 MHz</td>
</tr>
<tr>
<td>SYSCLK frequency(1)</td>
<td>(f_{\text{SYSCLK}})</td>
<td>25 MHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>SYSCLK cycle time</td>
<td>(t_{\text{SYSCLK}})</td>
<td>10 nsec</td>
<td>40 nsec</td>
</tr>
<tr>
<td>SYSCLK rise and fall time(2)</td>
<td>(t_{\text{KR}}) & (t_{\text{KF}})</td>
<td>– nsec</td>
<td>– nsec</td>
</tr>
<tr>
<td>SYSCLK duty cycle measured at (\text{OV}_{\text{DD}}/2)(3)</td>
<td>(t_{\text{KHKL}}/t_{\text{SYSCLK}})</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Internal PLL relock time(3)(5)</td>
<td>–</td>
<td>100 µs</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. Caution: The SYSCLK frequency and PLL_CFG[0-3] settings must be chosen such that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0-3] signal description in Table 9-1 on page 39, for valid PLL_CFG[0-3] settings.
2. Rise and fall times measurements are now specified in terms of slew rates, rather than time to account for selectable I/O bus interface levels. The minimum slew rate of 1V/ns is equivalent to a 2ns maximum rise/fall time measured at 0.4V and 2.4V or a rise/fall time of 1ns measured at 0.4V to 1.4V.
3. Timing is guaranteed by design and characterization.
4. This represents total input jitter – short term and long term combined and is guaranteed by design.
5. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL lock after a stable \(V_{\text{DD}} \) and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that \(\text{HRESET} \) must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

Figure 8-1 provides the SYSCLK input timing diagram.

Figure 8-1. SYSCLK Input Timing Diagram

![SYSCLK Timing Diagram](image)

VM = Midpoint Voltage (\(\text{OV}_{\text{DD}}/2 \))

8.2.1.1 Processor Bus AC Specifications

Table 8-3 on page 26 provides the processor bus AC timing specifications for the PC755 as defined in Figure 8-2 on page 26 and Figure 8-4 on page 28. Timing specifications for the L2 bus are provided in “L2 Clock AC Specifications” on page 28.
Table 8-3. Processor Bus Mode Selection AC Timing Specifications(1)
At $V_{DD} = AV_{DD} = 2.0V 100 mV; -55 \leq T_J \leq +125^\circ C$, $OV_{DD} = 3.3V 165 mV$ and $OV_{DD} = 1.8V \pm 100 mV$ and $OV_{DD} = 2.0V 100 mV$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbols(2)</th>
<th>All Speed Grades</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode select input setup to H_{RESET}</td>
<td>t_{MVRH}</td>
<td>8</td>
<td>t_{SYSCLK}</td>
</tr>
<tr>
<td>H_{RESET} to mode select input hold</td>
<td>t_{MXRH}</td>
<td>0</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal in question. All output timings assume a purely resistive 50Ω load (See Figure 8-2). Input and output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
2. The symbology used for timing specifications herein follows the pattern of $t_{(signal)(state)(reference)(state)}$ for inputs and $t_{(reference)(state)(signal)(state)}$ for outputs. For example, $t_{I_{KH}}$ symbolizes the time input signals (I) reach the valid state (V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And $t_{O_{HV}}$ symbolizes the time from SYSCLK(K) going high until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the signal (I) went invalid (X) with respect to the rising clock edge (KH) - note the position of the reference and its state for inputs – and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX). For additional explanation of AC timing specifications in Freescale PowerPC microprocessors, see the application note “Understanding AC Timing Specifications for PowerPC Microprocessors.”
3. The setup and hold time is with respect to the rising edge of H_{RESET} (see Figure 8-2).
4. This specification is for configuration mode select only. Also note that the H_{RESET} must be held asserted for a minimum of 255 bus clocks after the PLL re-lock time during the power-on reset sequence.
5. t_{SYSCLK} is the period of the external clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in nanoseconds) of the parameter in question.
6. Mode select signals are BVSEL, L2VSEL, PLL_CFG[0-3]
7. Guaranteed by design and characterization.
8. Bus mode select pins must remain stable during operation. Changing the logic states of BVSEL or L2VSEL during operation will cause the bus mode voltage selection to change. Changing the logic states of the PLL_CFG pins during operation will cause the PLL division ratio selection to change. Both of these conditions are considered outside the specification and are not supported. Once H_{RESET} is negated the states of the bus mode selection pins must remain stable.

Figure 8-2 provides the mode select input timing diagram for the PC755.

Figure 8-2. Mode Input Timing Diagram

Figure 8-3 provides the AC test load for the PC755.

Figure 8-3. AC Test Load

Table 8-3.
Table 8-4. Processor Bus AC Timing Specifications\(^{(1)}\) at Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbols</th>
<th>All Speed Grades Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup Times: All Inputs</td>
<td>(t_{IVKH})</td>
<td>2.5 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Hold Times: (\text{TLBISYNC, MCP, SMI})</td>
<td>(t_{IXKH})</td>
<td>0.6 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Hold Times: All Inputs, except (\text{TLBISYNC, MCP, SMI})</td>
<td>(t_{IXKH})</td>
<td>0.2 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid Times: All Outputs</td>
<td>(t_{KHOV})</td>
<td>– 4.1 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Hold Times: All Outputs</td>
<td>(t_{KHOX})</td>
<td>1 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK to Output Enable(^{(2)})</td>
<td>(t_{KHOE})</td>
<td>0.5 – ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK to Output High Impedance (all except (\text{ABB, ARTRY, DBB}))</td>
<td>(t_{KHZ})</td>
<td>– 6 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK to (\text{ABB, DBB}) High Impedance After Precharge(^{(2)(3)(4)})</td>
<td>(t_{KHABPZ})</td>
<td>– 1 (t_{SYSCLK})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Delay to ARTRY Precharge(^{(2)(3)(5)})</td>
<td>(t_{KHARP})</td>
<td>– 1 (t_{SYSCLK})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK to ARTRY High Impedance After Precharge(^{(2)(3)(5)})</td>
<td>(t_{KHARPZ})</td>
<td>– 2 (t_{SYSCLK})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Revisions prior to Rev 2.8 (Rev E) were limited in performance and did not conform to this specification. Contact your local Freescale sales office for more information.
2. Guaranteed by design and characterization.
3. \(t_{SYSCLK} \) is the period of the external clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
4. Per the 60x bus protocol, TS, ABB and DBB are driven only by the currently active bus master. They are asserted low then precharged high before returning to high-Z as shown in Figure 6-1 on page 18. The nominal precharge width for TS, ABB or DBB is 0.5 \(t_{SYSCLK} \) i.e., less than the minimum \(t_{SYSCLK} \) period, to ensure that another master asserting TS, ABB, or DBB on the following clock will not contend with the precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.
5. Per the 60x bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following AACK. Bus contention is not an issue since any master asserting ARTRY will be driving it low. Any master asserting it low in the first clock following AACK will then go to high-Z for one clock before precharging it high during the second cycle after the assertion of AACK. The nominal precharge width for ARTRY is 1.0 \(t_{SYSCLK} \); i.e., it should be high-Z as shown in Figure 6-1 on page 18 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge. The high-Z and precharge behavior is guaranteed by design.
Figure 8-4 provides the input/output timing diagram for the PC755.

Figure 8-4. Input/Output Timing Diagram

8.2.1.2 L2 Clock AC Specifications

The L2CLK frequency is programmed by the L2 Configuration Register (L2CR[4:6]) core-to-L2 divisor ratio. See Table 8-5 on page 29 for example core and L2 frequencies at various divisors. Table 8-5 provides the potential range of L2CLK output AC timing specifications as defined in Figure 8-5 on page 30.

The minimum L2CLK frequency of Table 8-5 is specified by the maximum delay of the internal DLL. The variable-tap DLL introduces up to a full clock period delay in the L2CLKOUTA, L2CLKOUTB, and L2SYNC_OUT signals so that the returning L2SYNC_IN signal is phase aligned with the next core clock (divided by the L2 divisor ratio). Do not choose a core-to-L2 divisor which results in an L2 frequency below this minimum, or the L2CLKOUT signals provided for SRAM clocking will not be phase aligned with the PC755 core clock at the SRAMs.

The maximum L2CLK frequency shown in Table 8-5 is the core frequency divided by one. Very few L2 SRAM designs will be able to operate in this mode. Most designs will select a greater core-to-L2 divisor to provide a longer L2CLK period for read and write access to the L2 SRAMs. The maximum L2CLK frequency for any application of the PC755 will be a function of the AC timings of the PC755, the AC timings for the SRAM, bus loading, and printed circuit board trace length.

Freescale is similarly limited by system constraints and cannot perform tests of the L2 interface on a socketed part on a functional tester at the maximum frequencies of Table 8-5. Therefore functional operation and AC timing information are tested at core-to-L2 divisors of 2 or greater.
Functionality of core-to-L2 divisors of 1 or 1.5 is verified at less than maximum rated frequencies.

L2 input and output signals are latched or enabled respectively by the internal L2CLK (which is SYSCLK multiplied up to the core frequency and divided down to the L2CLK frequency). In other words, the AC timings of Table 8-6 on page 31 and Table 8-7 on page 32 are entirely independent of L2SYNC_IN. In a closed loop system, where L2SYNC_IN is driven through the board trace by L2SYNC_OUT, L2SYNC_IN only controls the output phase of L2CLKOUTA and L2CLKOUTB which are used to latch or enable data at the SRAMs. However, since in a closed loop system L2SYNC_IN is held in phase alignment with the internal L2CLK, the signals of Table 8-6 and Table 8-7 are referenced to this signal rather than the not-externally-visible internal L2CLK. During manufacturing test, these times are actually measured relative to SYSCLK.

The L2SYNC_OUT signal is intended to be routed halfway out to the SRAMs and then returned to the L2SYNC_IN input of the PC755 to synchronize L2CLKOUT at the SRAM with the processor’s internal clock. L2CLKOUT at the SRAM can be offset forward or backward in time by shortening or lengthening the routing of L2SYNC_OUT to L2SYNC_IN. See Freescale Application Note AN179/D “PowerPC™ Backside L2 Timing Analysis for the PCB Design Engineer.”

The L2CLKOUTA and L2CLKOUTB signals should not have more than two loads.

Table 8-5. L2CLK Output AC Timing Specification. At $V_{DD} = AV_{DD} = 2.0V$ 100 mV; $-55 \leq T_J \leq +125^\circ C$, $OV_{DD} = 3.3V$ 165 mV and $OV_{DD} = 1.8V$ 100 mV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbols</th>
<th>All Speed Grades</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2CLK frequency$^{(1),(4)}$</td>
<td>f_{L2CLK}</td>
<td>80</td>
<td>450</td>
</tr>
<tr>
<td>L2CLK cycle time</td>
<td>t_{L2CLK}</td>
<td>2.5</td>
<td>12.5</td>
</tr>
<tr>
<td>L2CLK duty cycle$^{(2),(7)}$</td>
<td>t_{CHL}/t_{L2CLK}</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>Internal DLL-relock time$^{(3),(7)}$</td>
<td>–</td>
<td>640</td>
<td>–</td>
</tr>
<tr>
<td>DLL capture window$^{(5),(7)}$</td>
<td>–</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>L2CLKOUT output-to-output skew$^{(6),(7)}$</td>
<td>t_{L2CSKW}</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>L2CLKOUT output jitter$^{(6),(7)}$</td>
<td>–</td>
<td>–</td>
<td>±150</td>
</tr>
</tbody>
</table>

Notes: 1. L2CLK outputs are L2CLK_OUTA, L2CLK_OUTB, L2CLK_OUT and L2SYNC_OUT pins. The L2CLK frequency to core frequency settings must be chosen so that the resulting L2CLK frequency and core frequency do not exceed their respective maximum or minimum operating frequencies. The maximum L2LCK frequency will be system dependent. L2CLK_OUTA and L2CLK_OUTB must have equal loading.

2. The nominal duty cycle of the L2CLK is 50% measured at midpoint voltage.

3. The DLL re-lock time is specified in terms of L2CLKS. The number in the table must be multiplied by the period of L2CLK to compute the actual time duration in nanoseconds. Re-lock timing is guaranteed by design and characterization.

4. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 110 MHz. This adds more delay to each tap of the DLL.

5. Allowable skew between L2SYNC_OUT and L2SYNC_IN.

6. This output jitter number represents the maximum delay of one tap forward or one tap back from the current DLL tap as the phase comparator seeks to minimize the phase difference between L2SYNC_IN and the internal L2CLK. This number must be comprehended in the L2 timing analysis. The input jitter on SYSCLK affects L2CLKOUT and the L2 address/data/control signals equally and therefore is already comprehended in the AC timing and does not have to be considered in the L2 timing analysis.

7. Guaranteed by design.
The L2CLK_OUT timing diagram is shown in Figure 8-5.

Figure 8-5. L2CLK_OUT Output Timing Diagram

![L2CLK_OUT Timing Diagram](image)
8.2.1.3 L2 Bus Input AC Specifications

Table 8-6 provides the L2 bus interface AC timing specifications for the PC755 as defined in Figure 8-6 on page 32 and Figure 8-7 on page 32 for the loading conditions described in Figure 8-8 on page 32.

Table 8-6. L2 Bus Interface AC Timing Specifications at Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>All Speed Grades</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>L2SYNC_IN rise and Fall Time (^1)</td>
<td>(t_{L2CR} & t_{L2CF})</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>Setup Times: Data and Parity (^2)</td>
<td>(t_{DV2L2CH})</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>Input Hold Times: Data and Parity (^2)</td>
<td>(t_{DV2L2CH})</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Valid Times: (^3)((^4))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 00</td>
<td>(t_{L2CHOV})</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 01</td>
<td>(t_{L2CHOV})</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 10</td>
<td>(t_{L2CHOX})</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 11</td>
<td>(t_{L2CHOX})</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 11</td>
<td>(t_{L2CHOX})</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 11</td>
<td>(t_{L2CHOX})</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>L2SYNC_IN to High Impedance (^3)((^5))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 00</td>
<td>(t_{L2CHOZ})</td>
<td>-</td>
<td>2.4</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 01</td>
<td>(t_{L2CHOZ})</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 10</td>
<td>(t_{L2CHOZ})</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>All Outputs when L2CR[14-15] = 11</td>
<td>(t_{L2CHOZ})</td>
<td>-</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Notes:
1. Rise and fall times for the L2SYNC_IN input are measured from 20% to 80% of L2OVDD.
2. All input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising edge of the input L2SYNC_IN (see Figure 6-3 on page 20). Input timings are measured at the pins.
3. All output specifications are measured from the midpoint voltage of the rising edge of L2SYNC_IN to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50Ω load (See Figure 8-1 on page 25).
4. The outputs are valid for both single-ended and differential L2CLK modes. For pipelined registered synchronous BurstRAMs, L2CR[14-15] = 01 or 10 is recommended. For pipelined late write synchronous BurstRAMs, L2CR[14-15] = 11 is recommended.
5. Guaranteed by design and characterization.
6. Revisions prior to Rev 2.8 (Rev E) were limited in performance and did not conform to this specification. Contact your local Atmel sales office for more information.
Figure 8-6 shows the L2 bus input timing diagrams for the PC755.

Figure 8-6. L2 Bus Input Timing Diagrams

![L2 Bus Input Timing Diagrams](image1)

Figure 8-7 shows the L2 bus output timing diagrams for the PC755.

Figure 8-7. L2 Bus Output Timing Diagrams

![L2 Bus Output Timing Diagrams](image2)

Figure 8-8 provides the AC test load for L2 interface of the PC755.

Figure 8-8. AC Test Load for the L2 Interface

![AC Test Load for the L2 Interface](image3)

8.2.2 IEEE 1149.1 AC Timing Specifications

Table 8-7 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in Figure 8-9 on page 33, Figure 8-10 on page 33, Figure 8-11 on page 34, and Figure 8-12 on page 34.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCK Frequency of operation</td>
<td>(f_{TCLK})</td>
<td>0</td>
<td>16</td>
<td>MHz</td>
</tr>
<tr>
<td>TCK Cycle time</td>
<td>(f_{TCLK})</td>
<td>62.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>TCK Clock pulse width measured at 1.4V</td>
<td>(t_{JHL})</td>
<td>31</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>TCK Rise and fall times</td>
<td>(t_{JR}) & (t_{JF})</td>
<td>0</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>TRST Assert time(2)</td>
<td>(t_{TRST})</td>
<td>25</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 8-7. JTAG AC Timing Specifications (Independent of SYSCLK)(1) (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Setup Times:(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Boundary-scan data</td>
<td>t_{DVJH}</td>
<td>4</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>- TMS, TDI</td>
<td>t_{IVJH}</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Input Hold Times:(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Boundary-scan data</td>
<td>t_{DXJH}</td>
<td>15</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>- TMS, TDI</td>
<td>t_{IXJH}</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Valid Times:(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Boundary-scan data</td>
<td>t_{ULDV}</td>
<td>-</td>
<td>4</td>
<td>ns</td>
</tr>
<tr>
<td>- TDO</td>
<td>t_{ULOV}</td>
<td>-</td>
<td>4</td>
<td>ns</td>
</tr>
<tr>
<td>Output Hold Times:(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Boundary-scan data</td>
<td>t_{ULDV}</td>
<td>25</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>- TDO</td>
<td>t_{ULOV}</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>TCK to output high impedance:(4)(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Boundary-scan data</td>
<td>t_{ULDZ}</td>
<td>3</td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>- TDO</td>
<td>t_{ULOZ}</td>
<td>3</td>
<td>9</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50Ω load (See Figure 8-9). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
3. Non-JTAG signal input timing with respect to TCK.
4. Non-JTAG signal output timing with respect to TCK.
5. Guaranteed by design and characterization.

Figure 8-9 provides the AC test load for TDO and the boundary-scan outputs of the PC755.

Figure 8-9. Alternate AC Test Load for the JTAG Interface

![Figure 8-9](image1)

Figure 8-10 provides the JTAG clock input timing diagram.

Figure 8-10. JTAG Clock Input Timing Diagram

![Figure 8-10](image2)
Figure 8-11 provides the TRST timing diagram.

Figure 8-11. TRST Timing Diagram

![TRST Timing Diagram](image)

Figure 8-12 provides the boundary-scan timing diagram.

Figure 8-12. Boundary-Scan Timing Diagram

![Boundary-Scan Timing Diagram](image)

Figure 8-13 provides the test access port timing diagram.

Figure 8-13. Test Access Port Timing Diagram

![Test Access Port Timing Diagram](image)
JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 8-14 on page 36 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, TRST should be tied to HRESET through a 0Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted ensuring that the JTAG scan chain is initialized during power-on. While Freescale recommends that the COP header be designed into the system as shown in Figure 8-14, if this is not possible, the isolation resistor will allow future access to TRST in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 8-14 adds many benefits — breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features are possible through this interface — and can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.
Figure 8-14. JTAG Interface Connection

Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the PC755. Connect pin 5 of the COP header to OV_DD with a 10 kΩ pull-up resistor.
2. Key location; pin 14 is not physically present on the COP header.
3. Component not populated. Populate only if debug tool does not drive QACK.
4. Populate only if debug tool uses an open-drain type output and does not actively deassert QACK.
5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header through an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0Ω isolation resistor.

The COP header shown in Figure 8-15 on page 37 adds many benefits—breakpoints, watchpoints, register and memory examination/modification and other standard debugger features are possible through this interface—and can be as inexpensive as an unpopulated footprint for a header to be added when needed.
The COP interface has a standard header for connection to the target system, based on the 0.025” square-post 0.100” centered header assembly (often called a “Berg” header). The connector typically has pin 14 removed as a connector key.

Figure 8-15 shows the COP connector diagram.

Figure 8-15. COP Connector Diagram

There is no standardized way to number the COP header shown in Figure 8-15; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin one (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 8-15 is common to all known emulators.

The QACK signal shown in Table 8-7 on page 32 is usually hooked up to the PCI bridge chip in a system and is an input to the PC755 informing it that it can go into the quiescent state. Under normal operation this occurs during a low power mode selection. In order for COP to work the PC755 must see this signal asserted (pulled down). While shown on the COP header, not all emulator products drive this signal. To preserve correct power down operation, QACK should be merged so that it also can be driven by the PCI bridge.
9. Preparation for Delivery

9.1 Packaging

Microcircuits are prepared for delivery in accordance with MIL-PRF-38535.

9.2 Certificate of Compliance

Atmel offers a certificate of compliance with each shipment of parts, affirming the products are in compliance either with MIL-PRF-883 and guarantying the parameters not tested at temperature extremes for the entire temperature range.

9.3 Handling

MOS devices must be handled with certain precautions to avoid damage due to accumulation of static charge. Input protection devices have been designed in the chip to minimize the effect of static buildup. However, the following handling practices are recommended:

1. Devices should be handled on benches with conductive and grounded surfaces
2. Ground test equipment, tools and operator
3. Do not handle devices by the leads
4. Store devices in conductive foam or carriers
5. Avoid use of plastic, rubber, or silk in MOS areas
6. Maintain relative humidity above 50 percent if practical
7. For CI-CGA packages, use specific tray to take care of the highest height of the package compared with the normal CBGA
9.4 Clock Relationship Choices

The PC755’s PLL is configured by the PLL_CFG[0-3] signals. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL configuration for the PC755 is shown in Figure 10-2 on page 41 for example frequencies.

Table 9-1. PC755 Microprocessor PLL Configuration

<table>
<thead>
<tr>
<th>PLL_CFG[0-3]</th>
<th>Bus-to-Core Multiplier</th>
<th>Core-to VCO Multiplier</th>
<th>Bus 33 MHz</th>
<th>Bus 50 MHz</th>
<th>Bus 66 MHz</th>
<th>Bus 75 MHz</th>
<th>Bus 80 MHz</th>
<th>Bus 100 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>2x</td>
<td>2x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200 (400)</td>
</tr>
<tr>
<td>1000</td>
<td>3x</td>
<td>2x</td>
<td>-</td>
<td>-</td>
<td>200 (400)</td>
<td>225 (450)</td>
<td>240 (480)</td>
<td>300 (600)</td>
</tr>
<tr>
<td>1110</td>
<td>3.5x</td>
<td>2x</td>
<td>-</td>
<td>-</td>
<td>233 (466)</td>
<td>263 (525)</td>
<td>280 (560)</td>
<td>350 (700)</td>
</tr>
<tr>
<td>1010</td>
<td>4x</td>
<td>2x</td>
<td>-</td>
<td>200 (400)</td>
<td>266 (533)</td>
<td>300 (600)</td>
<td>320 (640)</td>
<td>400 (800)</td>
</tr>
<tr>
<td>0111</td>
<td>4.5x</td>
<td>2x</td>
<td>-</td>
<td>225 (450)</td>
<td>300 (600)</td>
<td>338 (675)</td>
<td>360 (720)</td>
<td>-</td>
</tr>
<tr>
<td>1011</td>
<td>5x</td>
<td>2x</td>
<td>-</td>
<td>250 (500)</td>
<td>333 (666)</td>
<td>375 (750)</td>
<td>400 (800)</td>
<td>-</td>
</tr>
<tr>
<td>1001</td>
<td>5.5x</td>
<td>2x</td>
<td>-</td>
<td>275 (550)</td>
<td>366 (5733)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1101</td>
<td>6x</td>
<td>2x</td>
<td>200 (400)</td>
<td>300 (600)</td>
<td>400 (800)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>6.5x</td>
<td>2x</td>
<td>216 (433)</td>
<td>325 (650)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>7x</td>
<td>2x</td>
<td>233 (466)</td>
<td>350 (700)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>7.5x</td>
<td>2x</td>
<td>250 (500)</td>
<td>375 (750)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>8x</td>
<td>2x</td>
<td>266 (533)</td>
<td>400 (800)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0110</td>
<td>10x</td>
<td>2x</td>
<td>333 (666)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0011</td>
<td>PLL off/bypass</td>
<td>PLL off/bypass</td>
<td>200 (400)</td>
<td>300 (600)</td>
<td>400 (800)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1111</td>
<td>PLL off</td>
<td>PLL off</td>
<td>200 (400)</td>
<td>300 (600)</td>
<td>400 (800)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. PLL_CFG[0-3] settings not listed are reserved.
2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the PC755; see “Clock AC Specifications” on page 25 for valid SYSCLK, core, and VCO frequencies.
3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use and emulator tool use only. Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.
4. In PLL off mode, no clocking occurs inside the PC755 regardless of the SYSCLK input.
The PC755 generates the clock for the external L2 synchronous data SRAMs by dividing the core clock frequency of the PC755. The divided-down clock is then phase-adjusted by an on-chip delay-lock-loop (DLL) circuit and should be routed from the PC755 to the external RAMs. A separate clock output, L2SYNC_OUT is sent out half the distance to the SRAMs and then returned as an input to the DLL on pin L2SYNC_IN so that the rising-edge of the clock as seen at the external RAMs can be aligned to the clocking of the internal latches in the L2 bus interface.

The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the L2CR register. Generally, the divisor must be chosen according to the frequency supported by the external RAMs, the frequency of the PC755 core, and the phase adjustment range that the L2 DLL supports. Figure 8-9 on page 33 shows various example L2 clock frequencies that can be obtained for a given set of core frequencies. The minimum L2 frequency target is 80 MHz.

Table 9-2. Sample Core-to-L2 Frequencies

<table>
<thead>
<tr>
<th>Core Frequency in MHz</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>166</td>
<td>125</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>266</td>
<td>266</td>
<td>177</td>
<td>133</td>
<td>106</td>
<td>89</td>
</tr>
<tr>
<td>275</td>
<td>275</td>
<td>183</td>
<td>138</td>
<td>110</td>
<td>92</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>200</td>
<td>150</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>325</td>
<td>325</td>
<td>217</td>
<td>163</td>
<td>130</td>
<td>108</td>
</tr>
<tr>
<td>333</td>
<td>333</td>
<td>222</td>
<td>167</td>
<td>133</td>
<td>111</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>233</td>
<td>175</td>
<td>140</td>
<td>117</td>
</tr>
<tr>
<td>366</td>
<td>366</td>
<td>244</td>
<td>183</td>
<td>146</td>
<td>122</td>
</tr>
<tr>
<td>375</td>
<td>375</td>
<td>250</td>
<td>188</td>
<td>150</td>
<td>125</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>266</td>
<td>200</td>
<td>160</td>
<td>133</td>
</tr>
</tbody>
</table>

Note: The core and L2 frequencies are for reference only. Some examples may represent core or L2 frequencies which are not useful, not supported, or not tested for by the PC755; see “L2 Clock AC Specifications” on page 28 for valid L2CLK frequencies. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 110 MHz.
10. System Design Information

10.1 PLL Power Supply Filtering

The AV$_{DD}$ and L2AV$_{DD}$ power signals are provided on the PC755 to provide power to the clock generation phase-locked loop and L2 cache delay-locked loop respectively. To ensure stability of the internal clock, the power supplied to the AV$_{DD}$ input signal should be filtered of any noise in the 500 kHz to 10 MHz resonant frequency range of the PLL. A circuit similar to the one shown in Figure 10-2 using surface mount capacitors with minimum Effective Series Inductance (ESL) is recommended. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

The circuit should be placed as close as possible to the AV$_{DD}$ pin to minimize noise coupled from nearby circuits. An identical but separate circuit should be placed as close as possible to the L2AV$_{DD}$ pin. It is often possible to route directly from the capacitors to the AV$_{DD}$ pin, which is on the periphery of the 360 BGA footprint, without the inductance of vias. The L2AV$_{DD}$ pin may be more difficult to route but is proportionately less critical.

Figure 10-1. PLL Power Supply Filter Circuit

10.2 Power Supply Voltage Sequencing

The notes in Figure 10-3 on page 43 contain cautions about the sequencing of the external bus voltages and core voltage of the PC755 (when they are different). These cautions are necessary for the long term reliability of the part. If they are violated, the ESD (Electrostatic Discharge) protection diodes will be forward biased and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit of Figure 10-3 can be added to meet these requirements. The MUR420 Schottky diodes of Figure 10-3 control the maximum potential difference between the external bus and core power supplies on power-up and the 1N5820 diodes regulate the maximum potential difference on power-down.

Figure 10-2. Example Voltage Sequencing Circuit
10.3 Decoupling Recommendations

Due to the PC755's dynamic power management feature, large address and data buses, and high operating frequencies, the PC755 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the PC755 system, and the PC755 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each \(V_{DD} \), \(OV_{DD} \), and \(L2OV_{DD} \) pin of the PC755. It is also recommended that these decoupling capacitors receive their power from separate \(V_{DD}, \) \((L2)OV_{DD}\) and GND power planes in the PCB, utilizing short traces to minimize inductance.

These capacitors should have a value of 0.01 \(\mu F \) or 0.1 \(\mu F \). Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0508 or 0603 orientations where connections are made along the length of the part.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the \(V_{DD}, L2OV_{DD}, \) and \(OV_{DD} \) planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors – 100-330 \(\mu F \) (AVX TPS tantalum or Sanyo OSCON).

10.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level through a resistor. Unused active low inputs should be tied to \(OV_{DD} \). Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external \(V_{DD}, OV_{DD}, L2OV_{DD}, \) and GND pins of the PC755.

10.5 Output Buffer DC Impedance

The PC755 60x and L2 I/O drivers are characterized over process, voltage, and temperature. To measure \(Z_0 \), an external resistor is connected from the chip pad to \((L2)OV_{DD}\) or GND. Then, the value of each resistor is varied until the pad voltage is \((L2)OV_{DD}/2\) (See Figure 10-4 on page 43).

The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When Data is held low, SW2 is closed (SW1 is open), and \(R_N \) is trimmed until the voltage at the pad equals \((L2)OV_{DD}/2\). \(R_N \) then becomes the resistance of the pull-down devices. When Data is held high, SW1 is closed (SW2 is open), and \(R_P \) is trimmed until the voltage at the pad equals \((L2)OV_{DD}/2\). \(R_P \) then becomes the resistance of the pull-up devices.

NO TAG describes the driver impedance measurement circuit described above.
Figure 10-3. Driver Impedance Measurement Circuit

Alternately, the following is another method to determine the output impedance of the PC755. A voltage source, \(V_{\text{force}} \), is connected to the output of the PC755 as in Figure 10-4. Data is held low, the voltage source is set to a value that is equal to \((L2)OV_{DD}/2 \) and the current sourced by \(V_{\text{force}} \) is measured. The voltage drop across the pull-down device, which is equal to \((L2)OV_{DD}/2 \), is divided by the measured current to determine the output impedance of the pull-down device, \(R_N \). Similarly, the impedance of the pull-up device is determined by dividing the voltage drop of the pull-up, \((L2)OV_{DD}/2 \), by the current sank by the pull-up when the data is high and \(V_{\text{force}} \) is equal to \((L2)OV_{DD}/2 \). This method can be employed with either empirical data from a test set up or with data from simulation models, such as IBIS.

\(R_P \) and \(R_N \) are designed to be close to each other in value. Then \(Z_0 = (R_P + R_N)/2 \).

Figure 10-4 describes the alternate driver impedance measurement circuit.

Figure 10-4. Alternate Driver Impedance Measurement Circuit
Table 10-1 summarizes the signal impedance results. The driver impedance values were characterized at 0°C, 65°C, and 105°C. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

Table 10-1. Impedance Characteristics. \(V_{DD} = 2.0V, OV_{DD} = 3.3V, T_c = 0 - 105°C \)

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Processor bus</th>
<th>L2 bus</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN</td>
<td>25-36</td>
<td>25-36</td>
<td>(Z_0)</td>
<td>W</td>
</tr>
<tr>
<td>RP</td>
<td>26-39</td>
<td>26-39</td>
<td>(Z_0)</td>
<td>W</td>
</tr>
</tbody>
</table>

10.6 Pull-up Resistor Requirements

The PC755 requires pull-up resistors (1 kΩ – 5 kΩ) on several control pins of the bus interface to maintain the control signals in the negated state after they have been actively negated and released by the processor or other bus masters. These pins are TS, ABB, AACK, ARTRY, DBB, DBWO, TA, TEA, and DBDIS. DRTRY should also be connected to a pull-up resistor (1 kΩ – 5 kΩ) if it will be used by the system; otherwise, this signal should be connected to HRESET to select NO-DRTRY mode.

Three test pins also require pull-up resistors (100Ω – 1 kΩ). These pins are L1_TSTCLK, L2_TSTCLK, and LSSD_MODE. These signals are for factory use only and must be pulled up to \(OV_{DD} \) for normal machine operation.

In addition, CKSTP_OUT is an open-drain style output that requires a pull-up resistor (1 kΩ – 5 kΩ) if it is used by the system.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, therefore, float in the high-impedance state for relatively long periods of time. Since the processor must continually monitor these signals for snooping, this float condition may cause additional power draw by the input receivers on the processor or by other receivers in the system. These signals can be pulled up through weak (10 kΩ) pull-up resistors by the system or may be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw, but address bus pull-up resistors are not necessary for proper device operation.

The snooped address and transfer attribute inputs are: \(A[0:31], AP[0:3], TT[0:4], TBST, \) and \(GBL. \)

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require pull-ups, or that those signals be otherwise driven by the system during inactive periods by the system. The data bus signals are: \(DH[0:31], DL[0:31], \) and \(DP[0:7]. \)

If 32-bit data bus mode is selected, the input receivers of the unused data and parity bits will be disabled, and their outputs will drive logic zeros when they would otherwise normally be driven. For this mode, these pins do not require pull-up resistors, and should be left unconnected by the system to minimize possible output switching.

If address or data parity is not used by the system, and the respective parity checking is disabled through HID0, the input receivers for those pins are disabled, and those pins do not require pull-up resistors and should be left unconnected by the system. If all parity generation is disabled through HID0, then all parity checking should also be disabled through HID0, and all parity pins may be left unconnected by the system.
11. Package Mechanical Data

The following sections provide the package parameters and mechanical dimensions for the PC745, 255 PBGA package as well as the PC755, 360 CBGA and PBGA packages. While both the PC755 plastic and the ceramic packages are described here, both packages are not guaranteed to be available at the same time. All new designs should allow for either ceramic or plastic BGA packages for this device. For more information on designing a common footprint for both plastic and ceramic package types, please contact your local Atmel sales office.

11.1 Package Parameters for the PC745

The package parameters are as provided in the following list. The package type is 21 x 21 mm, 255-lead plastic ball grid array (PBGA).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HITCE</th>
<th>PBGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package outline</td>
<td>21 x 21 mm</td>
<td>21 x 21 mm</td>
</tr>
<tr>
<td>Interconnects</td>
<td>255 (16 x 16 ball array – 1)</td>
<td>255 (16 x 16 ball array – 1)</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.27 mm (50 mil)</td>
<td>1.27 mm (50 mil)</td>
</tr>
<tr>
<td>Minimum module height</td>
<td>2.42</td>
<td>2.25 mm</td>
</tr>
<tr>
<td>Maximum module height</td>
<td>3.08</td>
<td>2.80 mm</td>
</tr>
<tr>
<td>Ball diameter (typical)</td>
<td>0.89 mm (35 mil)</td>
<td>0.75 mm (29.5 mil)</td>
</tr>
</tbody>
</table>
11.1.1 Mechanical Dimensions of the PC745 HiTCE Package

Figure 11-1 provides the mechanical dimensions and bottom surface nomenclature of the PC745, 255 HiTCE package.

Figure 11-1. Mechanical Dimensions and Bottom Surface Nomenclature of the PC745 HiTCE

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array
4. Capacitor Pads may be unpopulated

<table>
<thead>
<tr>
<th>Dim</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.42</td>
<td>3.08</td>
</tr>
<tr>
<td>A1</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>A2</td>
<td>0.90</td>
<td>1.14</td>
</tr>
<tr>
<td>b</td>
<td>0.82</td>
<td>0.93</td>
</tr>
<tr>
<td>D</td>
<td>21.00 BSC</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>21.00 BSC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
</tr>
</tbody>
</table>
11.1.2 Mechanical Dimensions of the PC745 PBGA Package

Figure 11-2 provides the mechanical dimensions and bottom surface nomenclature of the PC745, 255 PBGA package.

Figure 11-2. Mechanical Dimensions and Bottom Surface Nomenclature of the PC745 PBGA

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array
4. Capacitor Pads may be unpopulated

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.25</td>
<td>2.80</td>
</tr>
<tr>
<td>A1</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>A2</td>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>b</td>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>D</td>
<td>21.00 BSC</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>21.00 BSC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
</tr>
</tbody>
</table>

11.2 Package Parameter for the PC755

The package parameters are as provided in the following list. The package type is 25 x 25 mm, 360-lead plastic ball grid array (PBGA).

Table 11-2. Package Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HITCE-CBGA</th>
<th>PBGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Outline</td>
<td>25 mm x 25 mm</td>
<td>25 mm x 25 mm</td>
</tr>
<tr>
<td>Interconnects</td>
<td>360 (19 x 19 ball array – 1)</td>
<td>360 (19 x 19 ball array – 1)</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.27 mm (50 mil)</td>
<td>1.27 mm (50 mil)</td>
</tr>
<tr>
<td>Minimum module height</td>
<td>2.65 mm</td>
<td>2.22 mm</td>
</tr>
<tr>
<td>Maximum module height</td>
<td>3.2 mm</td>
<td>2.77 mm</td>
</tr>
<tr>
<td>Ball diameter</td>
<td>0.89 mm (35 mil)</td>
<td>0.75 mm (29.5 mil)</td>
</tr>
</tbody>
</table>
11.2.1 Mechanical Dimensions of the PC755 PBGA

Figure 11-3 provides the mechanical dimensions and bottom surface nomenclature of the PC755, 360 PBGA package.

Figure 11-3. Mechanical Dimensions and Bottom Surface Nomenclature of the PC755 PBGA

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array

<table>
<thead>
<tr>
<th>DIM</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.22</td>
<td>2.77</td>
</tr>
<tr>
<td>A1</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>A2</td>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>A3</td>
<td>—</td>
<td>0.60</td>
</tr>
<tr>
<td>b</td>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>D</td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
</tr>
</tbody>
</table>
11.2.2 Mechanical Dimensions of the PC755 CBGA Package

Figure 11-4 provides the mechanical dimensions and bottom surface nomenclature of the PC755, 360 CBGA package.

Figure 11-4. Mechanical Dimensions and Bottom Surface Nomenclature of PC755 (CBGA)

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array.

<table>
<thead>
<tr>
<th>DIM</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.65</td>
<td>3.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>A2</td>
<td>1.10</td>
<td>1.30</td>
</tr>
<tr>
<td>A3</td>
<td>—</td>
<td>0.60</td>
</tr>
<tr>
<td>b</td>
<td>0.82</td>
<td>0.93</td>
</tr>
<tr>
<td>D</td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
</tr>
</tbody>
</table>
11.2.3 Mechanical Dimensions of the PC755 HiTCE Package

Figure 11-5 provides the mechanical dimensions and bottom surface nomenclature of the PC755, 360 HiTCE package.

Figure 11-5. Mechanical Dimensions and Bottom Surface Nomenclature of PC755 (HiTCE)

<table>
<thead>
<tr>
<th>Millimeters</th>
<th>Dim</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>2.65</td>
<td>3.24</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>1.10</td>
<td>1.30</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>—</td>
<td>0.60</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0.82</td>
<td>0.93</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>25.00 BSC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>1.27 BSC</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array.
11.2.4 Mechanical Dimensions of the PC755 CI-CGA Package

Figure 11-6 provides the mechanical dimensions and bottom surface nomenclature of PC755, 360 CI-CGA package.

Figure 11-6. Mechanical Dimensions and Bottom Surface Nomenclature of PC755 (CI-CGA)

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M, 1994
2. Dimensions in millimeters
3. Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array

<table>
<thead>
<tr>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
</tr>
<tr>
<td>A6</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E1</td>
</tr>
<tr>
<td>e</td>
</tr>
</tbody>
</table>
12. Ordering Information

Figure 12-1. Ordering Information

<table>
<thead>
<tr>
<th>xx</th>
<th>Part Identifier</th>
<th>Temperature Range TJ (1)</th>
<th>Package (1)</th>
<th>Screening Level</th>
<th>Max internal processor speed (1)</th>
<th>Bus divider (to be confirmed)</th>
<th>Revision Level (1)</th>
</tr>
</thead>
</table>

Notes:
1. For availability of the different versions, contact your local Atmel sales office.
2. The letter X in the part number designates a "Prototype" product that has not been qualified by Atmel. Reliability of a PCX part-number is not guaranteed and such part-number shall not be used in Flight Hardware. Product changes may still occur while shipping prototypes.
13. Definitions

13.1 Life Support Applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Atmel customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Atmel for any damages resulting from such improper use or sale.

13.2 Differences with Commercial Part

<table>
<thead>
<tr>
<th>Commercial part</th>
<th>Military part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>$T_J = 0$ to $105^\circ C$</td>
</tr>
</tbody>
</table>

14. Document Revision History

Table 14-1 provides a revision history for this hardware specification.

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date</th>
<th>Substantive Change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2138G</td>
<td>04/2006</td>
<td>Increased power specification for 350 MHz full-power mode in Table 7-1 on page 23.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated ordering information to new Template.</td>
</tr>
<tr>
<td>2138F</td>
<td>05/2005</td>
<td>Added HiTCE package for PowerPC 745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed phrase "for the ceramic ball grid array (CBGA) package" from Section 6.1.3 on page 19; this information applies to devices in all packages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 8-14 on page 36: updated COP Connector Diagram to recommend a weak pull-up resistor on TCK</td>
</tr>
<tr>
<td>2138E</td>
<td>10/2004</td>
<td>Product specification release subsequent to product qualification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motorola changed to Freescale</td>
</tr>
<tr>
<td>2138D</td>
<td>06/2003</td>
<td>Preliminary β-site</td>
</tr>
</tbody>
</table>
Table of Contents

Features ... 1

Description ... 1

Screening ... 2

1 General Description .. 2
 1.1 Simplified Block Diagram 2
 1.2 General Parameters 3
 1.3 Features ... 3

2 Pin Assignments .. 6
 2.1 Pinout Listings ... 8

3 Signal Description .. 13

4 Detailed Specifications .. 14

5 Applicable Documents ... 14
 5.1 Design and Construction 14

6 Thermal Characteristics ... 17
 6.1 Package Characteristics 17

7 Power consideration .. 22
 7.1 Power management 22
 7.2 Power Dissipation ... 23

8 Electrical Characteristics .. 24
 8.1 Static Characteristics 24
 8.2 Dynamic Characteristics 24

9 Preparation for Delivery ... 38
 9.1 Packaging .. 38
 9.2 Certificate of Compliance 38
 9.3 Handling .. 38
 9.4 Clock Relationship Choices 39

10 System Design Information 41
 10.1 PLL Power Supply Filtering 41
 10.2 Power Supply Voltage Sequencing 41
 10.3 Decoupling Recommendations 42
10.4 Connection Recommendations ... 42
10.5 Output Buffer DC Impedance .. 42
10.6 Pull-up Resistor Requirements ... 44

11 Package Mechanical Data .. 45
 11.1 Package Parameters for the PC745 .. 45
 11.2 Package Parameter for the PC755 ... 47

12 Ordering Information .. 52

13 Definitions .. 53
 13.1 Life Support Applications .. 53
 13.2 Differences with Commercial Part .. 53

14 Document Revision History ... 53