96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

--- | --- | --- | --- | --- | --- | --- | ---
120 & 277 Vac, 220 to 240 Vac | 96 W | 12, 24, 48 Vdc | 8, 4, 2 A | up to 92% typical | 90°C (measured at the hot spot) | < 20% | > 0.9

Models with Flying Leads, Aluminum Case (VLM100W Models):
L 137 x W 26.0 x H 19.8 mm
(L 5.39 x W 1.02 x H 0.77 in)
VLM100E dimensions on page 14

Models with “-S” Suffix, Bottom Leads with Studs, Aluminum Case:
L 137 x W 26.0 x H 23.85 mm
(L 5.39 x W 1.02 x H 0.94 in)

Models with “-T” Suffix (Terminal Blocks), Aluminum Case:
L 193.2 x W 26.2 x H 19.85 mm
(L 7.60 x W 1.03 x H 0.78 in)

FEATURES
- Very high power density of 24 W/in³
- Class 2 power supply
- Class II power supply per IEC 61347
- IP20-rated case with silicone-based potting
- 90°C maximum case hot spot temperature
- Complies with ENERGY STAR®, DLC (DesignLight Consortium®) and CA Title 24 technical requirements
- Lifetime: 50,000 hours min at 70°C case temperature
- UL Class P
- Worldwide safety approvals
 - SELV Class 2
 - RoHS
 - cUL Listed
 - CE
 - CB
- Additional safety approvals when using the optional strain reliefs for models with “-T” suffix

TYPICAL APPLICATIONS
- Strip lights
- Pendants
- Linears
- Cove Lights
1 - ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ERP Part Number</th>
<th>Nominal Input Voltage (Vac)</th>
<th>Pout Max (W)</th>
<th>Vout Nom (Vdc)</th>
<th>Iout Min (A)</th>
<th>Iout Max (A)</th>
<th>Open Loop Voltage (No Load Vout Max) (Vdc)</th>
<th>Case</th>
<th>Safety, EMC Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLM100W-12(1)</td>
<td>120 & 277</td>
<td>96</td>
<td>12</td>
<td>0.2</td>
<td>8</td>
<td>12.84</td>
<td>Aluminum case with flying leads</td>
<td>UL, cUL, FCC</td>
</tr>
<tr>
<td>VLM100W-24</td>
<td>120 & 277</td>
<td>96</td>
<td>24</td>
<td>0.2</td>
<td>4</td>
<td>25.68</td>
<td>Aluminum case with flying leads</td>
<td>UL, cUL, FCC</td>
</tr>
<tr>
<td>VLM100W-48</td>
<td>120 & 277</td>
<td>96</td>
<td>48</td>
<td>0.1</td>
<td>2</td>
<td>51.36</td>
<td>Aluminum case with flying leads</td>
<td>UL, cUL, FCC</td>
</tr>
<tr>
<td>VLM100W-12-S(1)</td>
<td>120 & 277</td>
<td>96</td>
<td>12</td>
<td>0.2</td>
<td>8</td>
<td>12.84</td>
<td>Aluminum case with bottom leads and studs</td>
<td>UL, cUL, FCC</td>
</tr>
<tr>
<td>VLM100W-24-S</td>
<td>120 & 277</td>
<td>96</td>
<td>24</td>
<td>0.2</td>
<td>4</td>
<td>25.68</td>
<td>Aluminum case with bottom leads and studs</td>
<td>UL, cUL, FCC</td>
</tr>
<tr>
<td>VLM100W-48-S</td>
<td>120 & 277</td>
<td>96</td>
<td>48</td>
<td>0.1</td>
<td>2</td>
<td>51.36</td>
<td>Aluminum case with bottom leads and studs</td>
<td>UL, cUL, FCC</td>
</tr>
</tbody>
</table>

Notes:
1. VLM100W-12 is not Class 2 because the over-current protection of this model exceeds the 5A UL Class 2 limit.
2. Strain reliefs for "-T" models are not included and can be ordered separately using part number SR2. Order quantity for SR2 is per strain relief, and 2 strain reliefs are needed for each driver.
2 - INPUT SPECIFICATION (@25°C ambient temperature)

<table>
<thead>
<tr>
<th>Units</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range (Vin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- VLM100W models</td>
<td>Vac</td>
<td>90</td>
<td>120 & 277</td>
</tr>
<tr>
<td>- VLM100E models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Frequency Range</td>
<td>Hz</td>
<td>47</td>
<td>60</td>
</tr>
<tr>
<td>- VLM100W models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current (Iin)</td>
<td>A</td>
<td></td>
<td>1.05 A @ 120 Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.58 A @ 230 vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.48 A @ 277 Vac</td>
</tr>
<tr>
<td>Power Factor (PF)</td>
<td>0.9</td>
<td>> 0.9</td>
<td></td>
</tr>
<tr>
<td>Inrush Current</td>
<td>A</td>
<td></td>
<td>Meets NEMA-410 requirements</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>μA</td>
<td></td>
<td>400 μA @ 120 Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>880 μA @ 230 Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>920 μA @ 277 Vac</td>
</tr>
<tr>
<td>Input Harmonics Distortion (THD)</td>
<td></td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>%</td>
<td>-</td>
<td>up to 92%</td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
<td></td>
<td>The AC input to the main DC output is isolated</td>
</tr>
</tbody>
</table>

3 - MAIN OUTPUT SPECIFICATION (@25°C ambient temperature)

<table>
<thead>
<tr>
<th>Units</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (Vout)</td>
<td>Vdc</td>
<td>12, 24, 48</td>
<td>See ordering information for details</td>
<td></td>
</tr>
<tr>
<td>Output Current (Iout)</td>
<td>A</td>
<td></td>
<td>12 Vdc: 8 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 Vdc: 4 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 Vdc: 2 A</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>%</td>
<td>-5</td>
<td>5</td>
<td>At nominal AC line voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Includes load and current set point variations.</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Overshoot</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Ripple Voltage</td>
<td></td>
<td></td>
<td>≤ 5% of rated output voltage for each model</td>
<td></td>
</tr>
<tr>
<td>Start-up Time</td>
<td>ms</td>
<td></td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

• The rated output voltage for each model is achieved at Vin ≥ 105 Vac & Vin ≥ 249 Vac for VLM100W models, and at Vin ≥ 209 Vac for VLM100E models.
• At maximum load, as specified in section 1.
• At nominal AC line voltage
• From 100% to 60% of rated power
• At any point on the sine wave and 25°C
• Measured per IEC60950-1
• At nominal input voltage
• From 100% to 60% of rated power
• Complies with DLC (Design Light Consortium) technical requirements
• Measured with nominal input voltage
• Measured from application of AC line voltage to 100% light output
• Measured with ENERGY STAR® luminaire specification.
4 - ENVIRONMENTAL CONDITIONS

<table>
<thead>
<tr>
<th>Operating Ambient Temperature (Ta)</th>
<th>Units</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td></td>
<td>-20</td>
<td>50</td>
<td></td>
<td>50°C is the non-derated temperature (Refer to section 7 “Output power de-rating at higher temperatures”.)</td>
</tr>
<tr>
<td>Maximum Case Temperature (Tc)</td>
<td>°C</td>
<td>-90</td>
<td></td>
<td>+90</td>
<td>Case temperature measured at the hot spot •tc (see label in page 13)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>°C</td>
<td>-40</td>
<td></td>
<td>+85</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>%</td>
<td>5</td>
<td>-</td>
<td>95</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Convection cooled</td>
</tr>
<tr>
<td>Acoustic Noise</td>
<td>dBA</td>
<td>22</td>
<td></td>
<td></td>
<td>Measured at a distance of 1 foot (30 cm)</td>
</tr>
<tr>
<td>Mechanical Shock Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per EN60068-2-27</td>
</tr>
<tr>
<td>Vibration Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per EN60068-2-6 & EN60068-2-64</td>
</tr>
<tr>
<td>MTBF</td>
<td></td>
<td>> 200,000 hours when operated at nominal input and output conditions, and at Tc ≤ 70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td></td>
<td>50,000 hours at Tc ≤ 70°C maximum case hot spot temperature (see hot spot •tc on label in page 13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 - EMC COMPLIANCE AND SAFETY APPROVALS

EMC Compliance

- **Conducted and Radiated EMI**
 - VLM100W models: Compliant with FCC CFR Title 47 Part 15 Class B at 120 Vac & Class A at 277 Vac
 - VLM100E models: Compliant with EN55015 (CISPR 15) at 220, 230, and 240 Vac

Immunity Compliance

- **ESD (Electrostatic Discharge)**
 - IEC61000-4-2
 - 6 kV contact discharge, 8 kV air discharge, level 3

- **RF Electromagnetic Field Susceptibility**
 - IEC61000-4-3
 - 3 V/m, 80 - 1000 MHz, 80% modulated at a distance of 3 meters

- **Electrical Fast Transient**
 - IEC61000-4-4
 - ± 2 kV on AC power port for 1 minute, ±1 kV on signal/control lines

- **Surge**
 - IEC61000-4-5
 - ± 2 kV line to line (differential mode) /± 2 kV line to common mode ground (tested to secondary ground) on AC power port, ±0.5 kV for outdoor cables

- **Conducted RF Disturbances**
 - ANSI/IEEE c62.41.1-2002 & c62.41.2-2002 category A, 2.5 kV ring wave
 - IEC61000-4-6
 - 3V, 0.15-80 MHz, 80% modulated

- **Voltage Dips**
 - IEC61000-4-11
 - >95% dip, 0.5 period; 30% dip, 25 periods; 95% reduction, 250 periods

Safety Agency Approvals

- **UL**
 - VLM100W models: UL8750 listed Class 2
- **cUL**
 - VLM100W models: CAN/CSA C22.2 No. 250.13-14 LED equipment for lighting applications
- **CE**
 - VLM100E models: IEC61347-2-13 electronic control gear for LED Modules & EN55015 (EMC compliance)
- **CB**
 - VLM100E models
- **ENEC**
 - VLM100E models

Safety

<table>
<thead>
<tr>
<th>Hi Pot (High Potential) or Dielectric Voltage-withstand</th>
<th>Units</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- VLM100W models</td>
<td>Vdc</td>
<td>2500</td>
<td></td>
<td></td>
<td>•Insulation between the input (AC line and Neutral) and the output •Tested at the RMS voltage equivalent of 1768 Vac</td>
</tr>
<tr>
<td>- VLM100E models</td>
<td></td>
<td></td>
<td></td>
<td>4242</td>
<td>•Tested at the RMS voltage equivalent of 3000 Vac •Meets class II reinforced/double insulation</td>
</tr>
</tbody>
</table>

SaveEnergy@erp-power.com www.erp-power.com
6 - PROTECTION FEATURES

Under-Voltage (Brownout)
The VLM100 series provides protection circuitry such that an application of an input voltage below the minimum stated in section 1 (Input Specification) shall not cause damage to the driver.

Short Circuit and Over Current Protection
The VLM100 series is protected against short-circuit such that a short from any output to return shall not result in a fire hazard or shock hazard. The driver shall hiccup as a result of a short circuit or over current fault. Removal of the fault will return the driver to within normal operation. The driver shall recover, with no damage, from a short across the output for an indefinite period of time.

Internal Over temperature Protection
The VLM100 is equipped with an internal temperature sensor on the primary power train. Failure to stay within the convection power rating will cause the driver to shut down. The main output current will be resumed when the temperature of the built-in temperature sensor cools adequately.

Output Open Load
An no load condition will not damage the VLM100 or cause a hazardous condition. The driver will remain stable and operate normally after application of a load. When the LED load is removed, the output voltage of the VLM100 series is limited to 7% about the output voltage of each model.

Over Power Protection
The VLM100 will shut down and auto recover in the event of an over-power condition. This condition will cause no damage to the power supply.

Input Over Current Protection
The VLM100 series incorporates a primary AC line fuse for input over current protection.

7 - OUTPUT POWER DE-RATING AT ELEVATED TEMPERATURES
The VLM100 series can be operated with cooling air temperatures above 50°C by linearly de-rating the total maximum output power (or current) by 2.5%°C from 50°C to 70°C (see figure 1).

![Figure 1](https://via.placeholder.com/150)
8 - PREDICTED LIFETIME VERSUS CASE AND AMBIENT TEMPERATURE

Lifetime is defined by the measurement of the temperatures of all the electrolytic capacitors whose failure would affect light output under the nominal LED load and worst case AC line voltage. The graphs in figures 2 and 3 are determined by the electrolytic capacitor with the shortest lifetime, among all electrolytic capacitors. It represents a worst case scenario in which the LED driver is powered 24 hours/day, 7 days/week. The lifetime of an electrolytic capacitor is measured when any of the following changes in performance are observed:

1) Capacitance changes more than 20% of initial value
2) Dissipation Factor (tan δ): 150% or less of initial specified value
3) Equivalent Series Resistance (ESR): 150% or less of initial specified value
4) Leakage current: less of initial specified value

Notes:
- The ambient temperature $T_{ambient}$ and the differential between $T_{ambient}$ and T_{case} mentioned in the above graphs are relevant only as long as both the driver and the light fixture are exposed to the same ambient room temperature. If the LED driver is housed in an enclosure or covered by insulation material, then the ambient room temperature is no longer valid. In this situation, please refer only to the case temperature T_{case}.
- It should be noted the graph “Lifetime vs. Ambient Temperature” may have an error induced in the final application if the mounting has restricted convection flow around the case. For applications where this is evident, the actual case temperature measured at the T_c point in the application should be used for reliability calculations.

Figure 2

VLM100W-24
At 120 Vac and with baseplate dimensions of 195 x 60 x 3 mm (7.68 x 2.36 x 0.12 in.)

Predicted Lifetime (k Hours)

<table>
<thead>
<tr>
<th>$T_{ambient}$ (°C)</th>
<th>T_{case} (°C)</th>
<th>Predicted Lifetime (k Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 60 40 70 60 65</td>
<td>90.1 63.4 44.7 31.4 22.1 15.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

VLM100W-48
At 120 Vac and with baseplate dimensions of 195 x 60 x 3 mm (7.68 x 2.36 x 0.12 in.)

Predicted Lifetime (k Hours)

<table>
<thead>
<tr>
<th>$T_{ambient}$ (°C)</th>
<th>T_{case} (°C)</th>
<th>Predicted Lifetime (k Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 30 35 40 45 50 55</td>
<td>115.1 81.1 57.1 40.2 28.3 19.9 14.0</td>
<td></td>
</tr>
</tbody>
</table>
VLM100 Series

96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

9 – EFFICIENCY VERSUS LOAD

Figure 4

VLM100W-12

- Efficiency vs. Load Current (A) for 120 Vac and 277 Vac

Figure 5

VLM100W-24

- Efficiency vs. Load Current (A) for 120 Vac and 277 Vac

Figure 6

VLM100W-48

- Efficiency vs. Load Current (A) for 120 Vac and 277 Vac
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

9 – EFFICIENCY VERSUS LOAD (CONTINUED)

Figure 7

- **VLM100E-12-T**
 - 220VAC
 - 230VAC
 - 240VAC

Figure 8

- **VLM100E-24-T**
 - 220VAC
 - 230VAC
 - 240VAC

Figure 9

- **VLM100E-48-T**
 - 220VAC
 - 230VAC
 - 240VAC
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

10 – POWER FACTOR VERSUS LOAD

VLM100W-12

- Power Factor vs. Load Current
- Load Current (A): 4 to 8
- Power Factor: 0.90 to 1.00

- 120 Vac
- 277 Vac

VLM100W-24

- Power Factor vs. Load Current
- Load Current (A): 2.0 to 4.0
- Power Factor: 0.90 to 1.00

- 120 Vac
- 277 Vac

VLM100W-48

- Power Factor vs. Load Current
- Load Current (A): 1 to 2
- Power Factor: 0.90 to 1.00

- 120 Vac
- 277 Vac

SaveEnergy@erp-power.com

www.erp-power.com
10 – POWER FACTOR VERSUS LOAD (CONTINUED)

Figure 13

Figure 14

Figure 15
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

11 – THD VERSUS LOAD

Figure 16

VLM100W-12

- 120 Vac
- 277 Vac

Figure 17

VLM100W-24

- 120 Vac
- 277 Vac

Figure 18

VLM100W-48

- 120 Vac
- 277 Vac
VLM100 Series

96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

11 – THD VERSUS LOAD (CONTINUED)

Figure 19

Figure 20

Figure 21
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

12 - MECHANICAL DETAILS

- Packaging Options: Aluminum case
- I/O Connections:
 - Models with flying leads: 18 AWG on all leads, 203mm (8 in) long, 105°C rated, stranded, stripped by approximately 9.5mm, and tinned. All the wires, on both input and output, have a 300 V insulation rating.
 - Models with "S" suffix: 9.5mm, and tinned. All the wires, on both input and output, have a 300 V insulation rating.
 - Models with "T" suffix: Terminal Blocks
- Ingress Protection: IP20 rated
- Mounting Instructions: The VLM100 driver case must be secured on a flat surface through the two mounting tabs, shown here below in the case outline drawings. We recommended mounting the VLM100 on a baseplate with dimensions of 195 x 60 x 3 mm (7.68 x 2.36 x 0.12 in.).

13 - OUTLINE DRAWINGS (VLM100W MODELS WITH FLYING LEADS)

Dimensions: L 137 x W 26.0 x H 19.8 mm (L 5.39 x W 1.02 x H 0.78 in)
Volume: 70.53 cm³ (4.30 in³)
Weight: 159 g (5.60 oz)

All dimensions are in mm

Figure 22
14 - OUTLINE DRAWINGS (VLM100E MODELS WITH FLYING LEADS)

Dimensions: L 151 x W 26.0 x H 19.8 mm (L 5.94 x W 1.03 x H 0.78 in)
Weight: 162 g (5.71 oz)

All dimensions are in mm

Figure 23
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

Dimensions: L 193.2 x W 26.2 x H 19.85 mm (L 7.60 x W 1.03 x H 0.78 in)
Weight: 165 g (5.82 oz)

All dimensions are in mm

Figure 24
96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

16 - OUTLINE DRAWINGS (MODELS WITH “-T” SUFFIX AND STRAIN RELIEFS)

Dimensions: L 251.6 x W 26.2 x H 19.85 mm (L 9.91 x W 1.03 x H 0.78 in)

Notes:

1. Strain reliefs for “-T” models are not included and can be ordered separately using part number SR2.
2. Strain reliefs allow the driver to operate as independent control gear. This designation allows the driver to be mounted outside of the luminaire. Without strain reliefs the driver must be mounted inside the luminaire.
3. Order quantity for SR2 is per strain relief, and 2 strain reliefs are needed for each driver.
4. Additional information regarding strain reliefs can be found under the accessories section on the ERP website.

Figure 25
VLM100 Series

96 W, Efficient, Compact Non-Dimmable CV Class 2 / Class II LED Drivers

17 - OUTLINE DRAWINGS (MODELS WITH “-S” SUFFIX)

Dimensions: L 137 x W 26.0 x H 23.85 mm (L 5.39 x W 1.02 x H 0.94 in)
Weight: 188 g (6.63 oz)

All dimensions are in mm

Figure 26
18 - LABELING

The VLM100W-48 and VLM100E-24-T are used in figure 27 as examples to illustrate typical labels.

Figure 27

ERP Power, LLC (ERP) reserves the right to make changes without further notice to any products herein. ERP makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ERP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in ERP data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ERP does not convey any license under its patent rights nor the rights of others. ERP products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the ERP product could create a situation where personal injury or death may occur. Should Buyer purchase or use ERP products for any such unintended or unauthorized application, Buyer shall indemnify and hold ERP and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ERP was negligent regarding the design or manufacture of the part. ERP is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13FEB2019</td>
<td>• Pg1: render files to stamped sheet metal</td>
</tr>
<tr>
<td></td>
<td>• Pg2: changed UL limit to correct 5A</td>
</tr>
<tr>
<td></td>
<td>• Pg10-13: changed MCO to stamped sheet metal</td>
</tr>
<tr>
<td>20MAR2019</td>
<td>• Pg2: added strain relief info</td>
</tr>
<tr>
<td></td>
<td>• Pg12: added strain relief info</td>
</tr>
<tr>
<td>09APR2019</td>
<td>• Added euro flying leads MCO</td>
</tr>
<tr>
<td></td>
<td>• Added weights</td>
</tr>
<tr>
<td></td>
<td>• Added euro characterization charts</td>
</tr>
<tr>
<td>29OCT2019</td>
<td>• Pg2: added safety, EMC compliance column</td>
</tr>
<tr>
<td>10MAR2020</td>
<td>• Pg18: updated label image</td>
</tr>
<tr>
<td>23APR2020</td>
<td>• Pg2: added strain relief note</td>
</tr>
<tr>
<td></td>
<td>• Pg16: added strain relief notes</td>
</tr>
</tbody>
</table>