PRODUCT SPECIFICATIONS

Model: SGC3S Series (ver 4.0)

Customer:

<table>
<thead>
<tr>
<th>Approved</th>
<th>Checked</th>
<th>Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
-CONTENTS-

1. SCOPE

2. PART NUMBERING & APPLICATION

3. DIMENSIONS, PCB LAND PATTERNS & PACKING METHOD

4. CHARACTERISTICS
 4.1. Electrical Specifications Table
 4.2. Mechanical Specifications Table
 4.3. Environmental Specifications Table

5. TEST CONDITION
 5.1 Normal Test Condition
 5.2 Standard Test Condition

6. TEST METHOD
 6.1. Capacitance
 6.2. Capacitance Drift
 6.3. "Q" Factor
 6.4. Insulation Resistance
 6.5. Rated Voltage
 6.6. Rotation Torque
 6.7. Rotation Life
 6.8. Temperature coefficient
 6.9. Vibration Test
 6.10. Free Drop
 6.11. Solderability
 6.12. High Temperature Test
 6.13. Resistance to soldering heat
 6.15. Low Temperature Test
 6.16. Cleaning Test
 6.17. Submersion Test

7. PACKING AND REEL DIMENSION

8. CAUTIONS
1. **SCOPE**
This specification covers the general electrical, mechanical and environmental parameters for qualification of the Ceramic Trimmer Capacitor model SGC3S.

2. **PART NUMBERING & APPLICATION**

 ▶ Part numbering

<table>
<thead>
<tr>
<th>S</th>
<th>G</th>
<th>C</th>
<th>3S</th>
<th>A</th>
<th>60</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

 ① SMD

 ② Trimmer Capacitor

 ③ Product Size (Mold) 3S : 3mm

 ④ Temperature Coefficient (ppm / °C)

 A : NPO B : N600 C : N750 D : N1000 E : N1300

 ⑤ Nominal Maximum Capacitance

 ⑥ Packing Method T1 : 1,000 pcs / reel (12mm Tape & Reel)

 BO : Bulk Type

3. **DIMENSIONS, PCB LAND PATTERNS**

 Dimension (unit: mm)

 Land Pattern

 Product specifications V4.0 3/13
4. CHARACTERISTICS

4.1 Electrical Specifications Table

[TABLE-1]

<table>
<thead>
<tr>
<th>Item</th>
<th>SGC35030 3pf</th>
<th>SGC35060 6pf</th>
<th>SGC35100 10pf</th>
<th>SGC35200 20pf</th>
<th>SGC35300 30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (pF Min)</td>
<td>1.5 max</td>
<td>2.0 max</td>
<td>3.0 max</td>
<td>5.8 max</td>
<td>8.0 max</td>
<td></td>
</tr>
<tr>
<td>Capacitance (pF Max)</td>
<td>3.0 ±10⁻⁵ο₂ %</td>
<td>6.0 ±10⁻⁵ο₂ %</td>
<td>10.0 ±10⁻⁵ο₂ %</td>
<td>20.0 ±10⁻⁵ο₂ %</td>
<td>29.0 ±10⁻⁵ο₂ %</td>
<td></td>
</tr>
<tr>
<td>Capacitance Drift (Max)</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 3%</td>
<td>± 3%</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient (ppm / °C)</td>
<td>N00±300</td>
<td>N00±200</td>
<td>N600±400</td>
<td>N1200±400</td>
<td>N1200±400</td>
<td></td>
</tr>
<tr>
<td>Q value at 1 MHz, C max</td>
<td>300 Min</td>
<td>500 Min</td>
<td>600 Min</td>
<td>250 Min</td>
<td>250 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>10⁴ MO Min</td>
<td></td>
</tr>
<tr>
<td>DC Rated Voltage</td>
<td>100 VDC</td>
<td>100 VDC</td>
<td>100 VDC</td>
<td>100 VDC</td>
<td>100 VDC</td>
<td></td>
</tr>
<tr>
<td>DC Withstanding Voltage</td>
<td>220 VDC</td>
<td>220 VDC</td>
<td>220 VDC</td>
<td>220 VDC</td>
<td>220 VDC</td>
<td></td>
</tr>
<tr>
<td>Rotation Torque</td>
<td>15 ~ 72 gf.cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solderability: More than 75% of soldering wetting area shall be continuously wet with solder.

4.2 Mechanical Specifications Table

[TABLE-2]

<table>
<thead>
<tr>
<th>Item</th>
<th>SGC35030 3pf</th>
<th>SGC35060 6pf</th>
<th>SGC35100 10pf</th>
<th>SGC35200 20pf</th>
<th>SGC35300 30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to Soldering heat</td>
<td>±3%</td>
<td>±3%</td>
<td>±4%</td>
<td>±6%</td>
<td>±6%</td>
<td></td>
</tr>
<tr>
<td>TEST METHOD 6-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>±2%</td>
<td>±2%</td>
<td>±2%</td>
<td>±5%</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>TEST METHOD 6-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Drop</td>
<td>±2%</td>
<td>±2%</td>
<td>±2%</td>
<td>±5%</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>TEST METHOD 6-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation Life</td>
<td>±3%</td>
<td>±3%</td>
<td>±4%</td>
<td>±10%</td>
<td>±10%</td>
<td></td>
</tr>
<tr>
<td>TEST METHOD 6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-25°C to 85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product specifications V4.0
4.3 Environmental Specifications Table

<table>
<thead>
<tr>
<th>Item</th>
<th>3pf</th>
<th>6pf</th>
<th>10pf</th>
<th>20pf</th>
<th>30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temp Test (Test Method 6-12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap' Change (%)</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 3%</td>
<td>± 3%</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>Min Q Value</td>
<td>400 Min</td>
<td>400 Min</td>
<td>500 Min</td>
<td>500 Min</td>
<td>300 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>3pf</th>
<th>6pf</th>
<th>10pf</th>
<th>20pf</th>
<th>30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity Test (Test Method 6-14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap' Change (%)</td>
<td>±2%</td>
<td>±2%</td>
<td>±3%</td>
<td>±5%</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>Min Q Value</td>
<td>300 Min</td>
<td>300 Min</td>
<td>500 Min</td>
<td>200 Min</td>
<td>200 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>3pf</th>
<th>6pf</th>
<th>10pf</th>
<th>20pf</th>
<th>30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Temp Test (Test Method 6-15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap' Change (%)</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 3%</td>
<td>± 3%</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>Min Q Value</td>
<td>300 Min</td>
<td>300 Min</td>
<td>500 Min</td>
<td>200 Min</td>
<td>200 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>3pf</th>
<th>6pf</th>
<th>10pf</th>
<th>20pf</th>
<th>30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Test (Test Method 6-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap' Change (%)</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 3%</td>
<td>± 3%</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>Min Q Value</td>
<td>400 Min</td>
<td>500 Min</td>
<td>500 Min</td>
<td>200 Min</td>
<td>200 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>3pf</th>
<th>6pf</th>
<th>10pf</th>
<th>20pf</th>
<th>30pf</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submersion Test (Test Method 6-17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap' Change (%)</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 2%</td>
<td>± 3%</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>Min Q Value</td>
<td>400 Min</td>
<td>400 Min</td>
<td>500 Min</td>
<td>200 Min</td>
<td>200 Min</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td>10^4 Min</td>
<td></td>
</tr>
</tbody>
</table>
5. TEST CONDITION

5.1 Normal Test Condition
Unless otherwise specified, test and measurement shall be performed under the standard condition:
- Ordinary temperature : 15 ~ 30 °C
- Humidity : Relative humidity 45 ~ 85 %

5.2 Standard Test Condition
If there is any doubts arise about the results, measurements shall be made under the following condition:
- Ordinary temperature : 20 ± 2 °C
- Humidity : Relative humidity 65 ± 5 %

6. TEST METHOD

6.1. Capacitance
When measured at a frequency of 1.0±0.2MHz, Minimum capacitance shall not be greater than that of specified, and Maximum capacitance shall not be less than the specified maximum capacitance.

6.2. Capacitance Drift
The capacitor shall be measured at the maximum capacitance position with test frequency of 1.0±0.2MHz. (Rotate the rotor at the speed of 10r/min. by one direction.)
After then set the initial value in 5seconds and leave it for 120±20 minutes.

6.3. “Q” Factor
The capacitor shall be measured at the maximum capacitance position with test frequency of 1.0±0.2MHz. (Measurement voltage is 1V±0.1Vrms)

6.4. Insulation Resistance
Insulation resistance shall be measured at the Maximum capacitance position with 300V voltage.
The charge time is 60±5sec.
6.5. Rated Voltage

The capacitor shall be measured at the maximum capacitance position. Measurement voltage is DC 150V for 1 hours. No short, damage or deterioration shall be found after finishing the test.

6.6. Rotation Torque

The rotor shall be turned 360° clockwise and counter-clockwise before measurement. Rotate the rotor at the speed “10 round/min”, clockwise and counter-clockwise while the test the torque shall be measured.

6.7. Rotation Life

The capacitor shall be measured at the maximum capacitance position. Rotate the rotor 180° clockwise and turn it back. And then rotate the rotor 180° counter clockwise and turn it back to original position. This is one cycle. After repeating 60cycle, measure the capacitance. (Rotation speed is "10 round/min")

6.8. Temperature coefficient

Capacitance adjust measurement at 80 ~ 90 percent of maximum rated capacitance shall be made at the temperatures specified in the [Table-1] and the capacitance shall be made after the capacitor has reached thermal stability.

<table>
<thead>
<tr>
<th>Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>20±2°C</td>
<td>-25±2°C</td>
<td>20±2°C</td>
<td>85±3°C</td>
<td>20±2°C</td>
</tr>
</tbody>
</table>

The temperature coefficient shall be calculated in accordance with the following formula

\[
TC = \frac{(C2 - C1)}{(T2 - T1)} \times C1 \times 10^6
\]

TC : Temperature coefficient (ppm/°C) in temperature T2
C1 : Initial capacitance value (pF) at step 3.
C2 : Capacitance (pF) at specified temperature.
T1 : 20°C (step 3)
T2 : Test temperature (step 3 or 4)

Capacitance-change shall be within the limits that of specified in [Table-1] & [figure-1]
* Temperature characteristics

3pf CURVE

6pf CURVE

10pf CURVE

20pf CURVE

30pf CURVE
6.9. Vibration Test

The capacitor shall be measured at the maximum capacitance position.
The capacitor shall be kept under the condition of the full amplitude of 1.8mm for 2hours.
(120 cycles)
Test is performed under Traverse method: 1cycle = 1 minute, 10Hz(Start) ~ 50Hz ~ 10Hz(End)

6.10. Free Drop

The capacitor shall be measured at the maximum capacitance position.
The samples shall be attached on 50g jig. And then drop it onto wood board from 1.2m height
3 times in each mutually perpendicular direction. Total 6 times.

6.11. Solderability

Dip the terminal in the solder bath set at the solder temperature 230 ± 5°C for 3 ± 1sec.
The terminal shall be dipped more than 75% of portion.
Solder: 3C05, 5A35 (sn-ag)

6.12. High Temperature Test

The capacitor shall be measured at the maximum capacitance position.
The chamber temperature shall be kept 85±3°C. Keep the sample capacitor in the chamber for
48 ± 2 hours.
After then, keep the sample capacitor in normal condition for 2hours before measure it.

6.13. Resistance to soldering heat

The capacitor shall be measured at the maximum capacitance position. Do the reflow
of [Figure-2].
After then, keep the capacitor in "NORMAL TEST CONDITION" for 2hours before measure it.

[Figure-2]

The capacitor shall be measured at the maximum capacitance position.
The chamber temperature shall be kept 40±2°C with 90–95% RH.
Keep the sample capacitor in the chamber for 48 ±2 hours.
After then, keep the sample capacitor in normal condition for 2 hours before measure it.

6.15. Low Temperature Test

The capacitor shall be measured at the maximum capacitance position.
The chamber temperature shall be kept -25±3°C. Keep the sample capacitor in the chamber for 48 ±2 hours.
After then, keep the sample capacitor in normal condition for 2 hours before measure it.

6.16. Cleaning Test

The capacitor shall be set approximately maximum capacitance position.
Put the capacitor in toluene, and washer for 10 min
Put the capacitor at the normal condition for drying for 1 hour for measurement.

6.17. Submersion Test

The capacitor shall be set approximately maximum capacitance position.
Put the capacitor in water for 20 min.
Put the capacitor at the normal condition for drying for 2 hours for measurement.
7. PACKING AND REEL DIMENSION

*TAPING SPECIFICATION

*REEL DIMENSION

<table>
<thead>
<tr>
<th>Part No</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7~12mm</td>
<td>178.00±0.0</td>
<td>2.00±0.5</td>
<td>13.00±0.5</td>
<td>60.00±2.0</td>
<td>12.40±2.0</td>
</tr>
</tbody>
</table>
8. CAUTIONS

Adjustment:
1) Maximum pressure of screwdriver should be less than 100gf.
 High pressure can lead to extensive setting drift or damage to internal elements.
2) Use recommended screwdriver. VESSEL 9000, or the tip of screwdriver shall be insulated such as ceramic.
 If a screwdriver is not suitable for trimmer capacitor, it can lead function failure or spoil or degrade the characteristics.
3) After removing from the reflow soldering, cool it down at the room temperature at least 4 hrs.
 If cool down time is insufficient, capacitance drift can be larger due to expansion and shrink caused by the heat of resin used for the product, and thermal characteristics of dielectric ceramic.

Soldering:
1) Please refer recommended solder profile [Figure-2]. If the soldering conditions are not suitable, the trimmer capacitor may deviate from the specified performances characteristic.
2) Please use proper amount of Solder. The amount of solder is critical. Insufficient amounts of solder can lead to insufficient soldering strength on the PCB. Excessive amounts of solder may cause the bridging between the terminals or the contact failure due to flux invasion into the moveable part and contact area.
 Flux invasion can cause the degrading of products characteristics.
3) Do not touch a trimmer capacitor body and terminal directly by a soldering iron. If soldering iron contacts it, the trimmer capacitor may be seriously damaged.
4) Do not use flow-soldering (dipping soldering).
5) Do not use inappropriate adhesives, such as bond and instant glue.
 It might penetrate into trimmer cap.
6) When recommended land-pattern is not used, please check mounting alignment

Store:
1) It is recommended to use within 6 months after delivery.
2) Components should be stored under temperature of -10~40°C and Humidity of 30~70% RH.
3) Do not store the trimmer capacitor in corrosive condition.
4) Do not open the package until just prior to using
5) Do not store under direct sunlight or dewy environment.

Others:
1) Before using trimmer capacitors, please test and make prototype product after assembly in your particular mass productions line.
2) Do not warp and / or bend PCB to prevent trimmer capacitor from breakage.
3) Do not use locking paint or any substance to secure the rotor position.