
'7 6+((7 /=6����&
9HUVLRQ � 'DWD

&RPSUHVVLRQ 6RIWZDUH

 LZS221-C Version 6 Data Compression Software

Page 2 DS-0006-00 DATA SHEET

Hi/fnTM supplies two of the Internet’s most important raw materials: compres-
sion and encryption. Hi/fn is also the world’s first company to put both on a
single chip, creating a processor that performs compression and encryption at
a faster speed than a conventional CPU alone could handle, and for much less
than the cost of a Pentium or comparable processor.

As of October 1, 1998, our address is:

Hi/fn, Inc.
750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant informa-
tion to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or
other proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product may require a license from Motorola. A license agreement for the right to
use Motorola patents may be obtained through Hi/fn or directly from Motorola.

DS-0006-00 (9/98) © 1997-1998 by Hi/fn, Inc., including one or more U.S.
patents No.: 4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425,
5,414,850, 5,463,390, 5,506,580, 5,532,694. Other patents pending.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 3

Table of Contents
1 Product Description..5
2 LZS221-C Files ..6
3 Function Summary..6
4 Compile-Time Options ...7

4.1 HIFN_FAR..7
4.2 LZS_C_FOOTPRINT ...7
4.3 Byte Ordering..8
4.4 HIFN_ALIGNED..8
4.5 LZS_C_PERFORMANCE..8

5 Constants, Types, & Bits ..9
6 Performance..9
7 Hi/fn LZS Compression..10
8 Compression & Decompression Histories ..10

8.1 History Maintenance ...11
9 LZS_C_SizeOfCompressionHistory...11
10 LZS_C_InitializeCompressionHistory..12
11 LZS_C_Compress ..12
12 LZS_C_SizeOfDecompressionHistory...16
13 LZS_C_InitializeDecompressionHistory..16
14 LZS_C_Decompress...16

Figures
Figure 1. Typical speed ...9
Figure 2. Effect of performance parameters ..10
Figure 3. LZS_Compress flags parameter ...13
Figure 4. LZS_C_Compress example pseudocode ..15
Figure 5. LZS_C_Compress return value ..15
Figure 6. LZS_C_Decompress flags parameter ...17
Figure 7. LZS_C_Decompress pseudocode example ..18
Figure 8. LZS_C_Decompress return value ..18

 LZS221-C Version 6 Data Compression Software

Page 4 DS-0006-00 DATA SHEET

THIS PAGE INTENTIONALLY BLANK

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 5

1 Product Description
The LZS221-C Data Compression Software Library provides a processor inde-
pendent software implementation of the Hi/fn LZS® algorithm in a C source code
format. The software is compatible with ANSI C.

Figure 1 on page 9 illustrates the compression speed of this library.

This library supports the simultaneous use of multiple compression and decom-
pression histories. Each history is completely independent of other histories. In
addition, this software is re-entrant.

LZS221-C is fully compatible with Hi/fn’s data compression compressor chips
along with the multi-history features. This library is also compatible with other
members of the LZS221 software family. Files compressed or decompressed
with hardware or software may be compressed or decompressed interchangeably
with hardware or software.

Assembly language optimized implementations for some specific processors are
also available. Consult Hi/fn for more information.

Features
• Hi/fn LZS compression format
• Multiple history support
• Adjustable compression speed vs. ratio
• High performance
• Cross compatible with other Hi/fn LZS compression software and hardware
• Interface similar to Version 4

New in version 6
• Special faster modes
• Flexible memory requirements
• Able to process fragments buffers

 LZS221-C Version 6 Data Compression Software

Page 6 DS-0006-00 DATA SHEET

2 LZS221-C Files
The LZS221-C library is composed of several files. They are summarized be-
low:

LZS.H - This header file contains the function prototypes and constant defini-
tions. This header file should be included in all source modules that access the
LZS221-C library. This file may be modified by the implementor. There are
some compile-time switches that may be selected based on the characteristics of
the processor and of the application. These switches may be implemented by
modifying this file, or by using compiler options. These settings are described in
detail in the Compile-Time Options section.

HIFNUTIL.H – This file contains function prototypes of functions inside
HIFNUTIL.C. This file may be modified by the implementor.

HIFNDEFS.H – This file contains machine specific definitions used by LZS221-
C, and the algorithm libraries. This file may be modified by the implementor,
for example, to redefine non-machine specific constants such as u32b, and to
define the switches needed to change the endianess and alignment.

HIFNUTIL.C - This file includes code which utilizes ANSI-C utilities that are
required by LZS221-C, which may not be available in an embedded environ-
ment. Implementers may modify this file to redefine functions to call their own
routines.

LZSI.H – This file includes internal function prototypes and constant definitions.
This file must not be modified by the implementor.

LZSC.C - This source file contains the functions required for compression op-
erations. This file must not be modified by the implementor.

LZSD.C - This source file contains the functions required for decompression
operations. This file must not be modified by the implementor.

3 Function Summary
Functions related to data compression processing are:

LZS_C_SizeOfCompressionHistory - Returns amount of memory required for
each compression history.

LZS_C_InitializeCompressionHistory - Initializes a compression history.

LZS_C_Compress - Compresses a block of data.

Functions related to data decompression are:

LZS_C_SizeOfDecompressionHistory - Returns amount of memory required for
each decompression history.

LZS_C_InitializeDecompressionHistory - Initializes a decompression history.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 7

LZS_C_Decompress - Decompresses a block of data.

4 Compile-Time Options
There are several user-selectable compile-time options available in the LZS.H
and HIFNDEFS.H header files. These switches may be implemented by modi-
fying this file, or by using compiler options.

Please note that no compiler options affect Hi/fn product cross compatibility.

4.1 HIFN_FAR
This constant (in the HIFNDEFS.H file) is used as a pointer type modifier for
memory access. Suggested values are listed below. This constant can contain
any value and should be based on the requirements of the compiler being used.
For example, to access the type: unsigned char *, some compilers need the first
example and other compilers need the second example.

[blank] - If left blank, then no modifier is used. This would produce “unsigned
char *” as a memory pointer. This is the default.

__far - This would produce “unsigned char __far *” as a memory pointer. This
may be useful for Intel target CPUs.

4.2 LZS_C_FOOTPRINT
This constant (in the LZS.H file) affects the size of the memory requirements per
context. The performance of the object code and the compression ratio are af-
fected in a minor way. Figure 2 summarizes the effects of LZS_C_FOOTPRINT
on performance and history size.

LZS_C_FOOTPRINT_10 - This footprint setting is a fairly high speed, high
compression ratio setting that takes up a modest amount of memory for its his-
tory. This is the default setting.

LZS_C_FOOTPRINT_20 - This setting is nearly identical to the
LZS_C_FOOTPRINT_10 except that the history size of
LZS_C_FOOTPRINT_10 varies widely with respect to the integer size of the
platform that the code is compiled on. When using a 32 bit or greater platform
this setting provides a substantial savings in history size over
LZS_C_FOOTPRINT_10, with no loss in compression ratio and a moderate loss
of speed.

LZS_C_FOOTPRINT_30 - This setting yields a smaller footprint, but it is
slower than the LZS_C_FOOTPRINT_20 setting. It also has poorer compres-
sion ratios for performance settings 0-2.

LZS_C_FOOTPRINT_40 - This setting yields an even smaller footprint than the
LZS_C_FOOTPRINT30 setting, and is a little bit slower (especially with small
buffers). However it should yield the same compression ratio as the
LZS_C_FOOTPRINT30.

LZS_C_FOOTPRINT_50 - This setting has the absolutely smallest per-history
memory footprint, with the cost of having the worst speed and compression ratio.

 LZS221-C Version 6 Data Compression Software

Page 8 DS-0006-00 DATA SHEET

Figure 2 shows that the memory footprints requirements change when

LZS_C_PERFORMANCE is less than or equal to 2 and when
LZS_C_PERFORMANCE is greater than or equal to 3. There is a footprint size
difference between LZS_C_PERFORMANCE is set to 2 and when
LZS_C_PERFORMANCE is set to 3.

The default value of this compiler option is LZS_C_FOOTPRINT_10.

The system memory requirements are set to one of five footprint settings by
defining the LZS_C_FOOTPRINT switch either inside the LZS.H file or by
compiler option.

4.3 Byte Ordering
One of the following two constants (in the HIFNDEFS.H file) must be defined
to the byte ordering used by the processor. The only valid values for this con-
stant are the following:

HIFN_LITTLE_ENDIAN - Least significant bytes first. This is the default.

HIFN_BIG_ENDIAN - Most significant bytes first.

4.4 HIFN_ALIGNED
This constant (in the HIFNDEFS.H file), if defined, will produce a version of the
library that defines type-aligned memory accesses. A type-aligned memory ac-
cess restricts accesses to memory addresses that are evenly divisible by the size
of the data being accessed. A u8b may reside at any address, a u16b only at even
addresses, and a u32b only on a quad byte boundary. This is required for some
RISC processors. The default is that HIFN_ALIGNED is not defined. Defining
this constant may slow performance slightly.

4.5 LZS_C_PERFORMANCE
This constant (in the LZS.H file) specifies an compile time setting for controlling
the amount of time that the Compress function will spend compressing the cur-
rent buffer of data. Smaller values for the LZS_C_PERFORMANCE switch will
force faster execution of the Compress function at the cost of compression ratio.

There is a footprint size difference between LZS_C_PERFORMANCE is set to
2 and when LZS_C_PERFORMANCE is set to 3. The memory footprints re-
quirements change when LZS_C_PERFORMANCE is less than or equal to 2
and when LZS_C_PERFORMANCE is greater than or equal to 3. A value of 0
in the LZS_C_PERFORMANCE column of Figure 2 reflects the footprint size
for LZS_C_PERFORMANCE settings of 0 to 2. A value of 6 in the
LZS_C_PERFORMANCE column of Figure 2 reflects the footprint size for
LZS_C_PERFORMANCE settings of 3 to 6.

The LZS_C_PERFORMANCE compile-time switch has seven possible value
settings. The valid range for the LZS_C_PERFORMANCE switch is 0 through
LZS_C_MAXIMUM_ PERFORMANCE_VALUE. The default value of this
compiler option is LZS_C_MAXIMUM_ PERFORMANCE_VALUE.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 9

Note: the value of LZS_C_MAXIMUM_ PERFORMANCE_VALUE for this
version of code is 6.

5 Constants, Types, & Bits
In addition to the compile-time options described previously, there are many
constants defined in the LZS221-C source code that are referred to in this docu-
ment. A complete list of such constants is in the HIFNDEFS.H and LZS.H
header files. See the function definitions in this document for further informa-
tion concerning these constants.

LZS_C_DESTINATION_EXHAUSTED
LZS_C_DESTINATION_FLUSH
LZS_C_DESTINATION_MINIMUM
LZS_C_END_MARKER
LZS_C_FLUSHED
LZS_C_INVALID
LZS_C_SAVE_HISTORY
LZS_C_SOURCE_EXHAUSTED
LZS_C_SOURCE_FLUSH
LZS_C_UPDATE_HISTORY

Note: All unused bits in function return values must be ignored. All unused bits
in input parameters must be set to zero.

u32b is a type definition which is defined to be a 32-bit unsigned data type for
the target compiler.

u8b is a type definition which is defined to be a 8-bit unsigned data type for the
target compiler.

All bits that are reserved must be written with zeros and ignored when read.

6 Performance
Figure 1 lists the approximate speed of compression and decompression. This
performance is based on compressing a typical ASCII text file. The LZS _
C_PERFORMANCE is set to zero, and the LZS_C_FOOTPRINT variable is set
to LZS_C_FOOTPRINT_10 constant.

Processor compress
(Kbytes/s)

decompress
(Kbytes/s)

Pentium 200 MMX 5,020 6,374

Figure 1. Typical speed

The LZS_C_PERFORMANCE and LZS_C_FOOTPRINT settings control speed
vs. compression ratio and history size trade-off within the LZS_C_Compress
function. Figure 2 demonstrates how these parameters affect the overall perform-
ance of compression.

 LZS221-C Version 6 Data Compression Software

Page 10 DS-0006-00 DATA SHEET

The LZS_C_PERFORMANCE and LZS_C_FOOTPRINT settings affect neither
the decompression speed nor the decompression memory requirements.

These two examples use the standard text file of the U.S. Constitution in 1500
byte packet sizes running on a Pentium 200 MMX CPU. The code was com-
piled under Microsoft’s Visual C++ v4.20 with full speed optimizations turn on
using the “Pentium” processor model.

LZS_C_PERFORMANCE LZS_C_FOOTPRINT Compress
speed

(Kbytes/s)

Compression
ratio

Approximate
compress/decompress
history size (Kbytes)

0 FOOOTPRINT_10 5,020 1.69
12/4 (32-bit compiler)
8/4 (16-bit compiler)

0 FOOOTPRINT_20 4,345 1.69 8/4 (16- or 32-bit compiler)
0 FOOOTPRINT_30 4,273 1.67 6/4 (16- or 32-bit compiler)
0 FOOOTPRINT_40 4,206 1.67 5/4 (16- or 32-bit compiler)
0 FOOOTPRINT_50 4,012 1.60 3.5/4 (16- or 32-bit compiler)

6 FOOOTPRINT_10 1,281 2.34
20/4 (32-bit compiler)
12/4 (16-bit compiler)

6 FOOOTPRINT_20 1,276 2.34 12/4 (16- or 32-bit compiler)
6 FOOOTPRINT_30 1,237 2.34 10/4 (16- or 32-bit compiler)
6 FOOOTPRINT_40 1,224 2.34 9/4 (16- or 32-bit compiler)
6 FOOOTPRINT_50 1,373 2.08 5.5/4 (16- or 32-bit compiler)

Figure 2. Effect of performance parameters

7 Hi/fn LZS Compression
The Hi/fn LZS compression algorithm compresses and decompresses data with-
out sacrificing data integrity. Hi/fn LZS compression reduces the size of data by
replacing redundant sequences of characters with tokens that represent those
sequences. When the data is decompressed, the original sequences are substi-
tuted for the tokens in a manner that preserves the integrity of all data. Hi/fn
LZS is “lossless” and differs significantly from “lossy” schemes, such as those
used often for video images, which discard information that is deemed unneces-
sary.

The efficiency of data compression depends on the degree of redundancy within
a given file. Compression ratios of up to 30:1 are possible, but an average com-
pression ratio for mass storage applications is typically 2:1. For data communi-
cation applications, a compression ratio of 3:1 is more common. The compres-
sion ratio, CPU performance, and system resources can be adjusted to yield op-
timal system throughput. Refer to App-0022, “Data Compression Performance
Analysis in Data Communications” for details.

8 Compression & Decompression Histories
This software requires a reserved block of memory in order to calculate and
maintain compression information. This is referred to as a “history”. The com-
pression operation requires a compression history, and the decompression op-
eration requires a separate decompression history.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 11

Some applications may want to maintain multiple compression and decompres-
sion histories. For example a data communications product may associate a dif-
ferent history for each data channel. This may be used to maximize the redun-
dancy in each individual history, which in turn maximizes the compression ratio
that is obtained.

8.1 History Maintenance
Before a history may be used for the first time, it must be initialized. This is
accomplished using the LZS_C_InitializeCompressionHistory or
LZS_C_InitializeDecompressionHistory commands. This will place the history
in a start state. A start state allows the history to be used when starting to proc-
ess a new block of data. For multiple histories, each history must be initialized
to the start state before it can be used for compression or decompression.

To properly finish compressing a block of data, a flush operation must be per-
formed. A flush operation forces the compression algorithm to complete the
compression of all the data it has read from the source buffer, and to append a
unique end marker at the end of the compressed data. A flush operation guaran-
tees that all the data read by the compression algorithm will be represented in the
compressed data stream. A flush operation also places a compression history
into a start state.

Sometimes, it is desirable to process a block of data in several smaller blocks (or
sub-blocks). This allows the use of smaller source and destination buffers. The
LZS_C_Compress function allows for this if both the
LZS_C_SOURCE_FLUSH and LZS_C_DESTINATION_FLUSH flags are set
to zero. It is important to note that when the LZS_C_Compress function returns
in this condition, the compression history is not in a start state, but rather in a
continue state. The LZS_C_Compress function can be called multiple times
without requiring a flush operation. In order to properly terminate processing
the complete block of data, the LZS_C_SOURCE_FLUSH or
LZS_C_DESTINATION_FLUSH bit must be set to one in the
LZS_C_Compress function call for the last sub-block of data. If this is not done
during the last call to LZS_C_Compress, an alternative is to make an additional
call to LZS_C_Compress with the size of the source buffer set to zero, and the
LZS_C_SOURCE_FLUSH bit set to one. Note: This last call will produce des-
tination data.

In some situations, you may need to set a compression history into a start state
without regard to the data that has already been compressed. In this case, the
LZS_C_Compress function can be called with the size of the source buffer set to
zero, the size of the dest buffer to LZS_C_DESTINATION_MINIMUM, and the
LZS_C_SOURCE_FLUSH bit set to one and the LZS_C_SAVE_HISTORY bit
set to zero. Alternatively, the LZS_C_InitializeCompressionHistory function
may be called (which is slightly slower).

9 LZS_C_SizeOfCompressionHistory

u32b HIFN_FAR LZS_C_SizeOfCompressionHistory(void);

 LZS221-C Version 6 Data Compression Software

Page 12 DS-0006-00 DATA SHEET

This function must be called to determine the number of bytes required for one
compression history. If multiple compression histories are to be used, simply
multiply the value returned by this function by the number of compression histo-
ries desired.

Note: For informational purposes only, the approximate size of each compres-
sion history is provided in Figure 2. This is informational only, and subject to
change. The LZS_C_SizeOfCompressionHistory function must be used to de-
termine the actual byte count.

10 LZS_C_InitializeCompressionHistory

void HIFN_FAR LZS_C_InitializeCompressionHistory(
void HIFN_FAR *history /* Pointer to compression history */
);

This function must be called to initialize a compression history before it can be
used with the LZS_C_Compress function. Each compression history must be
initialized separately. Each history is typically only initialized once, although a
compression history may be initialized at any time if desired.

If this function is called with a compression history that has been used previ-
ously, the history will be re-initialized to its beginning state. Any pending com-
pression data within this compression history will be lost.

The *history parameter is a pointer to the memory previously allocated by the
user for a compression history. The size of this allocated memory must be de-
termined by the LZS_C_SizeOfCompressionHistory function.

11 LZS_C_Compress

u32b HIFN_FAR LZS_C_Compress(
u8b HIFN_FAR * HIFN_FAR *source, /* Pointer to pointer to source buffer */
u8b HIFN_FAR * HIFN _FAR *destination, /* Pointer to pointer to destination buffer */
u32b HIFN _FAR *sourceCount, /* Pointer to source count */
u32b HIFN _FAR *destinationCount, /* Pointer to destination buffer size */
void HIFN _FAR *history, /* Pointer to compression history */
u32b flags /* Special flags */
);

This function will compress data from the source buffer into the destination
buffer. The function will stop when sourceCount bytes have been read from the
source buffer or when destinationCount bytes (or slightly less than destination-
Count bytes) have written to the destination buffer. A flush operation may occur
under certain circumstances defined below.

The value of sourceCount will decrement and *source will increment for each
byte that is read from the source buffer. The value of destinationCount will dec-
rement and *destination will increment for each byte that is written to the desti-
nation buffer.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 13

The valid range of sourceCount is 0 through 0x07FFFFFF. The valid range of
destinationCount is LZS_C_DESTINATION_MINIMUM through
0x07FFFFFF. If this function is called with destinationCount less than
LZS_C_DESTINATION_ MINIMUM, the function will immediately terminate
without performing any compression and the return value will be
LZS_C_INVALID.

If the source buffer exhausts (meaning all data has been read from the source
buffer), then the LZS_C_SOURCE_EXHAUSTED flag in the return value will
be set when the function returns. If the destination buffer exhausts (meaning all
data has been written to the destination buffer), then the
LZS_C_DESTINATION_EXHAUSTED flag in the return value will be set
when the function returns. Both conditions may be set simultaneously.

If the LZS_C_SOURCE_FLUSH bit in the flags parameter is set and the source
buffer exhausts (sourceCount reaches zero), then a flush operation will occur. If
the LZS_C_DESTINATION_FLUSH bit in the flags parameter is set and the
destination buffer exhausts (destinationCount less than
LZS_C_DESTINATION_MINIMUM), then a flush operation will also occur.
The value of destinationCount may not reach zero when the LZS_C_Compress
function returns. This is due to the unknown amount of extra bytes that the com-
pression engine needs to output during the flush operation.

If both LZS_C_SOURCE_FLUSH and LZS_C_DESTINATION_FLUSH bits
are set, then when either source or destination buffers exhaust a flush operation
will occur.

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

0 0 0 0 0
LZS_C_SAVE_

HISTORY
LZS_C_DEST_

FLUSH
LZS_C_SOURCE_

FLUSH

Figure 3. LZS_Compress flags parameter

The values of the flush bits cannot be changed between successive
LZS_C_Compress function calls until the corresponding buffer is exhausted.
That is, the LZS_C_SOURCE_FLUSH bit cannot change until after the
LZS_C_SOURCE_EXHAUSTED flag is returned, and the
LZS_C_DESTINATION_FLUSH bit cannot change until after the
LZS_C_DESTINATION_EXHAUSTED flag is returned. This is independent
of whether a flush operation actually occurs.

A flush operation will force any intermediate data out to the destination buffer,
and will append an end marker to the destination buffer.

When the function returns after a flush operation occurs, both the *source and
*destination pointers, as well as the sourceCount and destinationCount counters,
will be updated. The LZS_C_SOURCE_EXHAUSTED and the
LZS_C_DESTINATION_EXHAUSTED flags will be set appropriately. Also,
the LZS_C_FLUSHED bit in the return value will be set to 1.

 LZS221-C Version 6 Data Compression Software

Page 14 DS-0006-00 DATA SHEET

When the function returns without a flush operation having occurred, then the
following values are returned.

If the source buffer exhausts, then the sourceCount counter will be 0, the *source
pointer will point to 1 byte beyond the last byte processed in the source buffer,
and the LZS_C_SOURCE_EXHAUSTED flag will be set to one in the return
value.

If the source buffer does not exhaust, the *source pointer and sourceCount
counter return values will be returned as the values the function was called with.
The source buffer is still in use by the compression engine, and the original allo-
cated source buffer will be used in the next function call. The actual pointer and
counter values are stored in the compression history area, and the value of the
*source and sourceCount calling parameters for the next function call are a
“don’t care”. Also, the LZS_C_SOURCE_FLUSH bit must not change value in
the next call.

If the destination buffer exhausts, then the destinationCount counter will be 0,
the *destination pointer will point to 1 byte beyond the last byte processed in the
destination buffer, and the LZS_C_DESTINATION_ EXHAUSTED flag will be
set to one in the return value.

If the destination buffer does not exhaust, the *destination pointer and destinati-
onCount counter return values will be returned as the values the function was
called with. The destination buffer is still in use by the compression engine, and
the original allocated destination buffer will be used in the next function call.
The actual pointer and counter values are stored in the compression history area,
and the value of the *destination and destinationCount calling parameters for the
next function call are a “don’t care”. Also, the
LZS_C_DESTINATION_FLUSH bit must not change value in the next call.

If the function terminates with both source and destination buffers exhausted
then both the LZS_C_SOURCE_EXHAUSTED and
LZS_C_DESTINATION_EXHAUSTED flags will be set in the return value and
all counters and pointers will be updated.

Additional calls to the LZS_C_Compress function may be made to compress
additional data. When more than one call to the LZS_C_Compress function is
made, the compressed data (when appended together with the compressed data
of the other function calls) will appear as if a single call were made to the
LZS_C_Compress function.

The pseudocode in Figure 4 illustrates an example of how to call this function.
If the LZS_C_SAVE_HISTORY bit of the flags parameter is set to zero, the
Compression History will be cleared at the end of a flush operation. If this bit is
set to one, the Compression History will NOT be cleared. This will allow a
higher compression ratio for the next block to be compressed because it will
continue to use the same history information. Note: Blocks must be decom-
pressed in the same order as they were compressed if the Compression History
has not been cleared between blocks during compression. If
LZS_C_SOURCE_FLUSH and LZS_C_DESTINATION_FLUSH bits in the
flags parameter are both zero, the LZS_C_SAVE_HISTORY bit will be ignored.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 15

Figure 4. LZS_C_Compress example pseudocode

The return value will be LZS_C_INVALID (zero) if the any of the calling pa-
rameters are invalid. The LZS_C_SOURCE_EXHAUSTED bit in the return
value will be set to one if the function has been terminated by sourceCount
reaching zero. The LZS_C_DESTINATION_EXHAUSTED bit in the return
value will be set to one if the function has been terminated by destinationCount
reaching (or almost reaching) zero. Both of these bits may be set simultane-
ously. The LZS_C_FLUSHED bit will be set in the return value if a flush op-
eration has taken place. At termination *source and *destination pointers, and
sourceCount, and destinationCount values may be updated depending on the
conditions discussed above.

Note: For this version of the software, the value of
LZS_C_DESTINATION_MINIMUM is 16. This value is specified here for
information purposes only. This value may change in future versions. Do not
write software that relies on a particular value of
LZS_C_DESTINATION_MINIMUM.

15 14 13 12 11 10 9 8
x x x x x x x x
7 6 5 4 3 2 1 0

x x x x x
LZS_C_

FLUSHED
LZS_C_DESTINATION_

EXHAUSTED
LZS_C_SOURCE_

EXHAUSTED

Figure 5. LZS_C_Compress return value

returnCode = LZS_C_DESTINATION_EXHAUSTED | LZS_C_SOURCE_EXHAUSTED;
flags = flagDefault& ~LZS_C_SOURCE_FLUSH & ~LZS_C_DEST_FLUSH;
sourceSize = 0; destSize = 0;
while (!(returnCode & LZS_C_FLUSHED))
{

if (returnCode & LZS_C_SOURCE_EXHAUSTED)
{

Read a block of data into the source buffer;
sourceSize += sourceCount;
if (last block of data)

flags |= LZS_C_SOURCE_FLUSH;
}
if (returnCode & LZS_C_DESTINATION_EXHAUSTED)
{

Allocate a new destination buffer;
destinationCount = COMP_BUFFER_SIZE;

}
returnCode = LZS_C_Compress(&source, &destination, &sourceCount,

 &destinationCount, compHistory, flags, performance);
if (returnCode & (LZS_C_DESTINATION_EXHAUSTED | LZS_C_FLUSHED))
{

destinationCount = COMP_BUFFER_SIZE - destinationCount;
destSize += destinationCount;
Write destination buffer to output device;

}
}

 LZS221-C Version 6 Data Compression Software

Page 16 DS-0006-00 DATA SHEET

12 LZS_C_SizeOfDecompressionHistory

u32b HIFN_FAR LZS_C_SizeOfDecompressionHistory(void);

This function must be called to determine the number of bytes required for one
decompression history. If multiple decompression histories are to be used, sim-
ply multiply the value returned by this function by the number of decompression
histories desired.

Note: For informational purposes only, the approximate size of each decompres-
sion history is approximately 4K bytes. This is informational only, and subject
to change. The LZS_C_SizeOfDecompressionHistory function must be used to
determine the actual byte count.

13 LZS_C_InitializeDecompressionHistory

void HIFN_FAR LZS_C_InitializeDecompressionHistory(
void HIFN_FAR *history /* Pointer to decompression history */
);

This function must be called to initialize a decompression history before it can
be used with the LZS_C_Decompress function. Each decompression history
must be initialized separately. Each history is typically only initialized once,
although a decompression history may be initialized at any time if desired.

The *history parameter is a pointer to the memory previously allocated by the
user for a decompression history. The size of this allocated memory must be
determined by the LZS_C_SizeOfDecompressionHistory function.

14 LZS_C_Decompress

u32b HIFN_FAR LZS_C_Decompress(
u8b HIFN_FAR * HIFN _FAR *source, /* Pointer to pointer to source buffer */
u8b HIFN _FAR * HIFN _FAR *destination, /* Pointer to pointer to destination buffer */
u32b HIFN _FAR *sourceCount, /* Pointer to source count */
u32b HIFN _FAR *destinationCount, /* Pointer to destination buffer size */
void HIFN _FAR *history, /* Pointer to decompression history */
u32b flags /* Special flags */
);

This function will decompress data from the source buffer into the destination
buffer. The function will stop when sourceCount bytes have been read from the
source buffer or when destinationCount bytes have been written to the destina-
tion buffer or if an end marker is encountered.

sourceCount will decrement and *source will increment when each byte is read
from the source buffer. destinationCount will decrement and *destination will
increment when each byte is written to the destination buffer.
The valid range of sourceCount is 0 through 0x07FFFFFF. The valid range of
destinationCount is 0 through 0x07FFFFFF.

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 17

If the source buffer exhausts (meaning all data has been read from the source
buffer), the LZS_C_SOURCE_ EXHAUSTED bit in the return value will be set
to one. If destination buffer exhausts (meaning all data has been written to the
destination buffer), the LZS_C_DESTINATION_ EXHAUSTED bit in the re-
turn value will be set to one. If an end marker has been detected, the
LZS_C_END_MARKER bit in the return value will be set to one. More than
one bit may be set in the return value.

If the function terminates due to end marker being detected, then all counters and
pointers will be updated. In these cases *source and *destination pointers will
point to the next bytes to be processed, sourceCount will indicate the number of
bytes remaining in the source buffer to be processed, destinationCount will indi-
cate the number of unused bytes (free space) in the destination buffer.

If the function terminates due to source buffer being exhausted, *source pointer
will point to one byte beyond the last byte processed and sourceCount will be 0.
In this case the *destination pointer and the destinationCount counter return val-
ues will be returned as the values the function was called with. The destination
buffer is still in use by the decompression engine, and the original allocated des-
tination buffer will be used in the next function call. The actual pointer and
counter values are stored in the decompression history area, and the value of the
*destination and destinationCount calling parameters for the next function call
are a “don’t care”.

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

0 0 0 0 0
LZS_C_SAVE_

HISTORY
LZS_C_UPDATE_

HISTORY
0

Figure 6. LZS_C_Decompress flags parameter

If the function terminates due to the destination buffer being exhausted,
*destination pointer will point to one byte beyond the last byte processed and
destinationCount will be 0. In this case the *source pointer and the sourceCount
counter return values will be returned as the values the function was called with.
The source buffer is still in use by the compression engine, and the original allo-
cated source buffer will be used in the next function call. The actual pointer and
counter values are stored in the decompression history area, and the value of the
*source and sourceCount calling parameters for the next function call are a
“don’t care”.

If the function terminates with both source and destination buffers exhausted,
then all counters and pointers will be updated.

Additional calls to the LZS_C_Decompress function may be made to decom-
press additional data. When more than one call to the LZS_C_Decompress
function is made, the decompressed data (when appended together with the de-
compressed data of the other function calls) will appear as if a single call were
made to the LZS_C_Decompress function.

The pseudocode in Figure 7 illustrates an example of how to call this function.

 LZS221-C Version 6 Data Compression Software

Page 18 DS-0006-00 DATA SHEET

If it is desired to terminate processing a block of data prior to the end of the data
block, simply call the LZS_C_InitializeDecompressionHistory function.

Figure 7. LZS_C_Decompress pseudocode example

Normally, the LZS_C_SAVE_HISTORY bit in the flags parameter should be
set. This is required to ensure that the decompression history is properly up-
dated between calls. The LZS_C_SAVE_HISTORY bit may be set to zero, if it
is known that the compression history associated with the current decompression
history was cleared. This will improve decompression speed when not main-
taining history.

Note: Blocks must be decompressed in the same order as they were compressed
if the Compression History has not been cleared between blocks during com-
pression (i.e. the LZS_C_SAVE_HISTORY bit was set during
LZS_C_Compress function calls).

If the LZS_C_UPDATE_HISTORY bit in the flags parameter is set to one, the
source data is treated as if it were uncompressed data. The decompression his-
tory will be updated to reflect this data. The data in the source buffer will be
moved into the destination buffer. This bit may only be set after a decompres-
sion history is initialized or after an end marker is detected. The sourceCount
and destinationCount parameters must be set to the same value in the function
call when the LZS_C_UPDATE_HISTORY bit is set. All counters and pointers
will be updated when the function returns.

15 14 13 12 11 10 9 8
x x x x x x x x
7 6 5 4 3 2 1 0

x x x x x
LZS_C_END_

MARKER
LZS_C_DESTINATION_

EXHAUSTED
LZS_C_SOURCE_

EXHAUSTED

Figure 8. LZS_C_Decompress return value

Note: If the compressed data stream used as source for the LZS_C_Decompress
function has been corrupted (for example, due to a communication link error),
memory outside the range of the decompression history could be accessed

returnCode = LZS_C_DESTINATION_EXHAUSTED | LZS_C_SOURCE_EXHAUSTED;
flags = flagDefault;
sourceSize = 0; destSize = 0;
while (!(returnCode & LZS_C_END_MARKER))
{

if (returnCode & LZS_C_SOURCE_EXHAUSTED)
{

Read a block of data into the source buffer;
sourceSize += sourceCount;

}
if (returnCode & LZS_C_DESTINATION_EXHAUSTED)

Allocate a new destination buffer;
returnCode = LZS_C_Decompress(&source, &destination, &sourceCount,

&destinationCount, decompHistory, flags);
if (returnCode & (LZS_C_DESTINATION_EXHAUSTED | LZS_C_END_MARKER))
{

destinationCount = (RAW_BUFFER_SIZE - destinationCount);
destSize += destinationCount;
Write destination buffer to output device;

}
}

 LZS221-C Version 6 Data Compression Software

__
DATA SHEET DS-0006-00 Page 19

(read). Specifically, memory could be read up to 2 KBytes before the beginning
of the decompression history, or up to 2 KBytes before the beginning of the des-
tination buffer. If the compressed data stream has no errors, then memory out-
side the decompression history will not be accessed.

