Aluminum electrolytic capacitors

Capacitors with 4-/5-pin snap-in terminals and solder pins

Series/Type: B43510, B43520
Date: November 2012
Long-life grade capacitors

Applications
- Frequency converters
- Solar inverters
- Uninterruptible power supplies
- Professional power supplies
- Medical appliances

Features
- Voltage derating \((0.90 \cdot V_R \text{ for } V_R \leq 450 \text{ V})\) enables 105 °C operation, more details available upon request
- New diameter 50 mm available
- Extremely high volumetric efficiency
- High ripple current capability
- Many different case sizes
- Pinning ensures correct insertion
- RoHS-compatible

Construction
- Charge/discharge-proof, polar
- Aluminum case, fully insulated with PVC
- Version with additional PET insulation cap on terminal side available for insulating the capacitor from the PCB (B43510 only)
- Overload protection by safety vent on the case wall

Terminals
- 4-pin snap-in terminals (6.3 mm and 4.5 mm length) for diameter 35 to 45 mm
- 5-pin snap-in terminals (6.3 mm and 4.5 mm length) for diameter 50 mm
- Solder pin mounting on printed circuit boards, pins fit standardized spacings on PCB

Please read Cautions and warnings and Important notes at the end of this document.
Specifications and characteristics in brief

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage V_R</td>
<td>$385 \ldots 500$ V DC</td>
</tr>
<tr>
<td>Surge voltage V_S</td>
<td>$1.1 \cdot V_R$</td>
</tr>
<tr>
<td>Rated capacitance C_R</td>
<td>$330 \ldots 3300$ µF</td>
</tr>
<tr>
<td>Capacitance tolerance</td>
<td>$\pm 20% \leq M$</td>
</tr>
<tr>
<td>Dissipation factor $\tan \delta$</td>
<td>for case diameter $35 \ldots 45$ mm: $V_R \leq 400$ V DC: $\tan \delta \leq 0.15$</td>
</tr>
<tr>
<td></td>
<td>$V_R > 400$ V DC: $\tan \delta \leq 0.20$</td>
</tr>
<tr>
<td></td>
<td>for case diameter 50 mm: $\tan \delta \leq 0.20$</td>
</tr>
<tr>
<td>Leakage current I_{leak}</td>
<td>$(5\text{ min}, 20$ ºC$)$: $I_{\text{leak}} \leq 0.3 \mu A \cdot \left(\frac{C_R \cdot V_R}{\mu F \cdot V}\right)^{0.7} + 4 \mu A$</td>
</tr>
<tr>
<td>Self-inductance ESL</td>
<td>Approx. 20 nH</td>
</tr>
<tr>
<td>Useful life $1)$</td>
<td>Requirements:</td>
</tr>
<tr>
<td>85 ºC; $V_R; I_{\text{AC,R}}$</td>
<td>> 5000 h</td>
</tr>
<tr>
<td>40 ºC; $V_R; 1.1 \cdot I_{\text{AC,R}}$</td>
<td>> 250000 h</td>
</tr>
<tr>
<td>Voltage endurance test</td>
<td>Post test requirements:</td>
</tr>
<tr>
<td>85 ºC; V_R</td>
<td>2000 h</td>
</tr>
<tr>
<td>Vibration resistance test</td>
<td>To IEC 60068-2-6, test Fc: Frequency range $10 \ldots 55$ Hz, displacement amplitude 0.35 mm, acceleration max. 5 g, duration 3×2 h. Capacitor mounted by its body which is rigidly clamped to the work surface.</td>
</tr>
<tr>
<td>Characteristics at low temperature</td>
<td>Max. impedance ratio at 100 Hz</td>
</tr>
<tr>
<td></td>
<td>$V_R; d = 35 \ldots 45$ mm</td>
</tr>
<tr>
<td></td>
<td>$V_R; d = 50$ mm</td>
</tr>
<tr>
<td></td>
<td>≤ 400 V</td>
</tr>
<tr>
<td></td>
<td>$420 \ldots 450$ V</td>
</tr>
<tr>
<td></td>
<td>$385 \ldots 450$ V</td>
</tr>
<tr>
<td></td>
<td>500 V</td>
</tr>
<tr>
<td></td>
<td>$Z_{-25^\circ C} / Z_{20^\circ C}$</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$Z_{-40^\circ C} / Z_{20^\circ C}$</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>IEC climatic category</td>
<td>To IEC 60068-1:</td>
</tr>
<tr>
<td></td>
<td>for case diameter $35 \ldots 45$ mm: $V_R \leq 400$ V DC: $40/085/56$ (-40 ºC/+85 ºC/56 days damp heat test)</td>
</tr>
<tr>
<td></td>
<td>$V_R > 400$ V DC: $25/085/56$ (-25 ºC/+85 ºC/56 days damp heat test)</td>
</tr>
<tr>
<td></td>
<td>for case diameter 50 mm:</td>
</tr>
<tr>
<td></td>
<td>$25/085/56$ (-25 ºC/+85 ºC/56 days damp heat test)</td>
</tr>
<tr>
<td></td>
<td>The capacitors can be operated in the temperature range of -40 ºC to $+85$ ºC but the impedance at -40 ºC should be taken into consideration.</td>
</tr>
<tr>
<td>Detail specification</td>
<td>Similar to CECC 30301-805</td>
</tr>
<tr>
<td>Sectional specification</td>
<td>IEC 60384-4</td>
</tr>
</tbody>
</table>

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

Please read Cautions and warnings and Important notes at the end of this document.
Dimensional drawings

B43510, 4-pin snap-in terminals, PVC insulation

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Approx. weight (g)</th>
<th>Packing units (pcs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d +1</td>
<td>l +2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>60</td>
<td>76</td>
</tr>
<tr>
<td>35</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>35</td>
<td>80</td>
<td>101</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
<td>126</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>89</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>107</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>143</td>
</tr>
<tr>
<td>40</td>
<td>90</td>
<td>161</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>178</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>113</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>136</td>
</tr>
<tr>
<td>45</td>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>45</td>
<td>80</td>
<td>181</td>
</tr>
<tr>
<td>45</td>
<td>90</td>
<td>204</td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>226</td>
</tr>
</tbody>
</table>

Standard snap-in terminals:
length (6.3 ±1) mm.
Also available with length of (4.5 – 1) mm.
All pin holes must be drilled into the PC-board, since the unconnected pins serve as mountings. These pins must be soldered to isolated pads or pads with the same potential as the negative pole.
B43510, 4-pin snap-in terminals, PVC insulation and PET insulation cap on terminal side

Standard snap-in terminals:
length (6.3 +1/−1.4) mm. Also available with length of (4.5 −1.4) mm. PET insulation cap is positioned under the insulation sleeve.

All pin holes must be drilled into the PC-board, since the unconnected pins serve as mountings. These pins must be soldered to isolated pads or pads with the same potential as the negative pole.
B43510, 5-pin snap-in terminals, PVC insulation

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Approx. weight (g)</th>
<th>Packing units (pcs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d +1</td>
<td>l +2</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>117</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>148</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>176</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>204</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>234</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>263</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>292</td>
</tr>
</tbody>
</table>

Standard snap-in terminals:
length (6.3 ±1) mm.
Also available with length of (4.5 – 1) mm.

All pin holes must be drilled into the PC-board, since the unconnected pin serves as mounting. This pin must be soldered to an isolated pad or a pad with the same potential as the negative pole.

B43510, 5-pin snap-in terminals, PVC insulation and PET insulation cap on terminal side

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Approx. weight (g)</th>
<th>Packing units (pcs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d +1</td>
<td>l +2.2/2</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>117</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>148</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>176</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>204</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>234</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>263</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>292</td>
</tr>
</tbody>
</table>

Standard snap-in terminals:
length (6.3.1/–1.4) mm. Also available with length of (4.5 – 1.4) mm. PET insulation cap is positioned under the insulation sleeve.

All pin holes must be drilled into the PC-board, since the unconnected pin serves as mounting. This pin must be soldered to an isolated pad or a pad with the same potential as the negative pole.
B43520, solder pins

Pole markings: Plus: +; Minus: –
All pin holes must be drilled into the PC-board, since the unconnected pins serve as mountings. These pins must be soldered to isolated pads or pads with the same potential as the negative pole.

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Approx. weight (g)</th>
<th>Packing units (pcs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d +1</td>
<td>(l_{\text{max}})</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>54</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>64</td>
<td>76</td>
</tr>
<tr>
<td>35</td>
<td>74</td>
<td>88</td>
</tr>
<tr>
<td>35</td>
<td>84</td>
<td>101</td>
</tr>
<tr>
<td>35</td>
<td>104</td>
<td>126</td>
</tr>
<tr>
<td>40</td>
<td>44</td>
<td>71</td>
</tr>
<tr>
<td>40</td>
<td>54</td>
<td>89</td>
</tr>
<tr>
<td>40</td>
<td>64</td>
<td>107</td>
</tr>
<tr>
<td>40</td>
<td>74</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>84</td>
<td>143</td>
</tr>
<tr>
<td>40</td>
<td>94</td>
<td>161</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>178</td>
</tr>
</tbody>
</table>
Packing of 4-/5-pin snap-in terminal and solder pin capacitors

For ecological reasons the packing is pure cardboard.

Ordering codes for terminal styles and insulation features

<table>
<thead>
<tr>
<th>Identification in 3rd block of ordering code</th>
<th>4-/5-pin snap-in terminal capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal version</td>
<td>Insulation version</td>
</tr>
<tr>
<td>Standard terminals 6.3 mm</td>
<td>PVC</td>
</tr>
<tr>
<td>Short terminals 4.5 mm</td>
<td>PVC plus PET cap</td>
</tr>
<tr>
<td>M000</td>
<td>M080</td>
</tr>
<tr>
<td>M007</td>
<td>M087</td>
</tr>
</tbody>
</table>

Ordering examples:

- B43510C9188M007 } 4-pin snap-in capacitor with short terminals and standard PVC insulation
- B43510C9188M080 } 4-pin snap-in capacitor with standard terminals and PVC insulation with additional PET insulation cap on terminal side

Please read Cautions and warnings and Important notes at the end of this document.
Overview of available types

<table>
<thead>
<tr>
<th>V_R (V DC)</th>
<th>385</th>
<th>400</th>
<th>420</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_r (µF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35 x 50, 40 x 40</td>
</tr>
<tr>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35 x 50, 40 x 40</td>
</tr>
<tr>
<td>470</td>
<td></td>
<td></td>
<td></td>
<td>35 x 50, 40 x 40, 45 x 40</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>35 x 50, 40 x 40</td>
<td>35 x 50, 40 x 40</td>
<td>35 x 50, 40 x 50</td>
<td>35 x 50, 40 x 50</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>680</td>
<td>35 x 50, 40 x 40</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>820</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>1000</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>1200</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>1500</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>1800</td>
<td>35 x 50, 40 x 50</td>
</tr>
<tr>
<td>2200</td>
<td>35 x 50, 40 x 50</td>
</tr>
</tbody>
</table>

Please read Cautions and warnings and important notes at the end of this document.
<table>
<thead>
<tr>
<th>V_R (V DC)</th>
<th>385</th>
<th>400</th>
<th>420</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case dimensions $d \times l$ (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_R (μF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td>50 x 100</td>
<td>45 x 100</td>
<td>45 x 100</td>
<td>50 x 100</td>
<td>50 x 100</td>
</tr>
<tr>
<td>3300</td>
<td>50 x 100</td>
<td>50 x 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The capacitance and voltage ratings listed above are available in different cases upon request. Other voltage and capacitance ratings are also available upon request.

Capacitors with solder pins are only available in 35 and 40 mm case diameters.

Capacitors with 50 mm case diameter are only available with 5-pin snap-in terminals.

Please read Cautions and warnings and Important notes at the end of this document.
Technical data and ordering codes

<table>
<thead>
<tr>
<th>C<sub>R</sub></th>
<th>Case dimensions</th>
<th>ESR<sub>typ</sub> 100 Hz 20 °C</th>
<th>ESR<sub>typ</sub> 300 Hz 60 °C</th>
<th>Z<sub>max</sub> 10 kHz 20 °C</th>
<th>I<sub>AC,max</sub> 100 Hz 60 °C</th>
<th>I<sub>AC,R</sub> 100 Hz 85 °C</th>
<th>Ordering code (composition see below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>d × l mm</td>
<td>20 °C mΩ</td>
<td>60 °C mΩ</td>
<td>20 °C mΩ</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>35 × 50</td>
<td>100</td>
<td>45</td>
<td>130</td>
<td>6.84</td>
<td>3.49</td>
<td>B435*0A3687M0##</td>
</tr>
<tr>
<td>680</td>
<td>40 × 40</td>
<td>95</td>
<td>36</td>
<td>120</td>
<td>6.68</td>
<td>3.40</td>
<td>B435*0C3687M0##</td>
</tr>
<tr>
<td>820</td>
<td>35 × 60</td>
<td>85</td>
<td>36</td>
<td>110</td>
<td>8.05</td>
<td>4.11</td>
<td>B435*0A3827M0##</td>
</tr>
<tr>
<td>820</td>
<td>40 × 50</td>
<td>75</td>
<td>28</td>
<td>100</td>
<td>7.92</td>
<td>4.04</td>
<td>B435*0B3827M0##</td>
</tr>
<tr>
<td>1000</td>
<td>35 × 70</td>
<td>70</td>
<td>30</td>
<td>85</td>
<td>9.45</td>
<td>4.82</td>
<td>B435*0A3108M0##</td>
</tr>
<tr>
<td>1000</td>
<td>40 × 60</td>
<td>65</td>
<td>22</td>
<td>75</td>
<td>9.35</td>
<td>4.77</td>
<td>B435*0B3108M0##</td>
</tr>
<tr>
<td>1200</td>
<td>45 × 40</td>
<td>70</td>
<td>30</td>
<td>85</td>
<td>8.16</td>
<td>4.16</td>
<td>B43510C3108M0##</td>
</tr>
<tr>
<td>1200</td>
<td>35 × 80</td>
<td>60</td>
<td>26</td>
<td>75</td>
<td>10.9</td>
<td>5.57</td>
<td>B435*0A3128M0##</td>
</tr>
<tr>
<td>1200</td>
<td>40 × 60</td>
<td>55</td>
<td>20</td>
<td>65</td>
<td>10.2</td>
<td>5.23</td>
<td>B435*0C3128M0##</td>
</tr>
<tr>
<td>1200</td>
<td>45 × 50</td>
<td>55</td>
<td>22</td>
<td>70</td>
<td>9.63</td>
<td>4.91</td>
<td>B43510D3128M0##</td>
</tr>
<tr>
<td>1500</td>
<td>35 × 100</td>
<td>45</td>
<td>20</td>
<td>60</td>
<td>13.4</td>
<td>6.84</td>
<td>B435*0C3158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>40 × 70</td>
<td>45</td>
<td>17</td>
<td>55</td>
<td>12.1</td>
<td>6.20</td>
<td>B435*0D3158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>45 × 60</td>
<td>45</td>
<td>19</td>
<td>55</td>
<td>11.4</td>
<td>5.86</td>
<td>B43510B3158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>50 × 50</td>
<td>90</td>
<td>30</td>
<td>130</td>
<td>10.1</td>
<td>5.18</td>
<td>B43510E3158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>50 × 60</td>
<td>75</td>
<td>26</td>
<td>110</td>
<td>12.0</td>
<td>6.12</td>
<td>B43510D3188M0##</td>
</tr>
<tr>
<td>1800</td>
<td>40 × 90</td>
<td>36</td>
<td>14</td>
<td>45</td>
<td>14.7</td>
<td>7.51</td>
<td>B435*0C3188M0##</td>
</tr>
<tr>
<td>1800</td>
<td>45 × 70</td>
<td>40</td>
<td>16</td>
<td>50</td>
<td>13.3</td>
<td>6.80</td>
<td>B43510B3188M0##</td>
</tr>
<tr>
<td>1800</td>
<td>50 × 60</td>
<td>75</td>
<td>26</td>
<td>110</td>
<td>12.0</td>
<td>6.12</td>
<td>B43510D3188M0##</td>
</tr>
<tr>
<td>2200</td>
<td>40 × 100</td>
<td>30</td>
<td>12</td>
<td>40</td>
<td>17.0</td>
<td>8.67</td>
<td>B435*0A3328M0##</td>
</tr>
<tr>
<td>2200</td>
<td>45 × 80</td>
<td>32</td>
<td>13</td>
<td>40</td>
<td>15.5</td>
<td>7.91</td>
<td>B43510B3228M0##</td>
</tr>
<tr>
<td>2200</td>
<td>50 × 70</td>
<td>60</td>
<td>20</td>
<td>90</td>
<td>13.9</td>
<td>7.11</td>
<td>B43510C3228M0##</td>
</tr>
<tr>
<td>2700</td>
<td>45 × 90</td>
<td>26</td>
<td>12</td>
<td>32</td>
<td>18.0</td>
<td>9.18</td>
<td>B43510B3278M0##</td>
</tr>
<tr>
<td>2700</td>
<td>50 × 80</td>
<td>50</td>
<td>18</td>
<td>75</td>
<td>15.9</td>
<td>8.14</td>
<td>B43510C3278M0##</td>
</tr>
<tr>
<td>3300</td>
<td>50 × 100</td>
<td>40</td>
<td>14</td>
<td>60</td>
<td>19.5</td>
<td>9.96</td>
<td>B43510A3338M0##</td>
</tr>
</tbody>
</table>

Capacitors with solder pins are only available in 35 and 40 mm case diameters.

Capacitors with 50 mm case diameter are only available with 5-pin snap-in terminals.

Composition of ordering code

* = Terminal type

1 = 4-/5-pin snap-in terminals

2 = solder pin

Technical data and ordering codes

- **V_R** = 385 V DC
- **B43510, B43520**
- **Compact** – 85 °C

Please read Cautions and warnings and Important notes at the end of this document.
Technical data and ordering codes

<table>
<thead>
<tr>
<th>C<sub>R</sub></th>
<th>Case dimensions d × l mm</th>
<th>ESR<sub>typ</sub> 100 Hz mΩ</th>
<th>ESR<sub>typ</sub> 300 Hz mΩ</th>
<th>Z<sub>max</sub> 10 kHz mΩ</th>
<th>I<sub>AC,max</sub> 100 Hz A</th>
<th>I<sub>AC,R</sub> 100 Hz A</th>
<th>Ordering code (composition see below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz 20 °C µF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 × 50</td>
<td>120</td>
<td>50</td>
<td>150</td>
<td>6.21</td>
<td>3.17</td>
<td>B435*0A9567M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 40</td>
<td>110</td>
<td>40</td>
<td>140</td>
<td>6.06</td>
<td>3.09</td>
<td>B435*0B9567M0##</td>
</tr>
<tr>
<td></td>
<td>35 × 60</td>
<td>100</td>
<td>40</td>
<td>130</td>
<td>7.33</td>
<td>3.74</td>
<td>B435*0A9687M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 50</td>
<td>95</td>
<td>32</td>
<td>110</td>
<td>7.21</td>
<td>3.68</td>
<td>B435*0B9687M0##</td>
</tr>
<tr>
<td></td>
<td>35 × 60</td>
<td>85</td>
<td>40</td>
<td>110</td>
<td>8.05</td>
<td>4.11</td>
<td>B435*0A9827M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 50</td>
<td>80</td>
<td>28</td>
<td>100</td>
<td>7.92</td>
<td>4.04</td>
<td>B435*0B9827M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 40</td>
<td>80</td>
<td>32</td>
<td>100</td>
<td>7.39</td>
<td>3.77</td>
<td>B43510C9827M0##</td>
</tr>
<tr>
<td></td>
<td>35 × 70</td>
<td>70</td>
<td>32</td>
<td>90</td>
<td>9.45</td>
<td>4.82</td>
<td>B435*0A9108M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 60</td>
<td>65</td>
<td>24</td>
<td>80</td>
<td>9.35</td>
<td>4.77</td>
<td>B435*0B9108M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 50</td>
<td>65</td>
<td>26</td>
<td>80</td>
<td>8.79</td>
<td>4.48</td>
<td>B43510C9108M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 40</td>
<td>130</td>
<td>45</td>
<td>180</td>
<td>7.94</td>
<td>4.05</td>
<td>B43510E9108M0##</td>
</tr>
<tr>
<td></td>
<td>35 × 80</td>
<td>60</td>
<td>26</td>
<td>75</td>
<td>10.9</td>
<td>5.57</td>
<td>B435*0D9128M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 70</td>
<td>55</td>
<td>20</td>
<td>65</td>
<td>10.8</td>
<td>5.54</td>
<td>B435*0B9128M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 50</td>
<td>55</td>
<td>24</td>
<td>70</td>
<td>9.63</td>
<td>4.91</td>
<td>B43510C9128M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 40</td>
<td>50</td>
<td>22</td>
<td>60</td>
<td>13.4</td>
<td>6.84</td>
<td>B435*0A9158M0##</td>
</tr>
<tr>
<td></td>
<td>35 × 100</td>
<td>50</td>
<td>26</td>
<td>60</td>
<td>12.8</td>
<td>6.53</td>
<td>B435*0B9158M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 80</td>
<td>45</td>
<td>16</td>
<td>55</td>
<td>11.4</td>
<td>5.86</td>
<td>B43510D9158M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 60</td>
<td>45</td>
<td>20</td>
<td>60</td>
<td>11.4</td>
<td>5.86</td>
<td>B43510D9158M0##</td>
</tr>
<tr>
<td></td>
<td>36 × 14</td>
<td>45</td>
<td>14</td>
<td>45</td>
<td>14.7</td>
<td>7.51</td>
<td>B435*0C9188M0##</td>
</tr>
<tr>
<td></td>
<td>40 × 90</td>
<td>40</td>
<td>16</td>
<td>50</td>
<td>13.3</td>
<td>6.80</td>
<td>B43510D9188M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 70</td>
<td>40</td>
<td>16</td>
<td>50</td>
<td>13.3</td>
<td>6.80</td>
<td>B43510D9188M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 60</td>
<td>70</td>
<td>24</td>
<td>110</td>
<td>12.0</td>
<td>6.12</td>
<td>B43510E9188M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 80</td>
<td>32</td>
<td>14</td>
<td>40</td>
<td>15.5</td>
<td>7.91</td>
<td>B43510B9228M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 70</td>
<td>60</td>
<td>20</td>
<td>85</td>
<td>13.9</td>
<td>7.11</td>
<td>B43510C9228M0##</td>
</tr>
<tr>
<td></td>
<td>45 × 100</td>
<td>26</td>
<td>11</td>
<td>32</td>
<td>18.7</td>
<td>9.58</td>
<td>B43510A9278M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 80</td>
<td>50</td>
<td>18</td>
<td>70</td>
<td>15.9</td>
<td>8.14</td>
<td>B43510B9278M0##</td>
</tr>
<tr>
<td></td>
<td>50 × 100</td>
<td>40</td>
<td>14</td>
<td>60</td>
<td>19.5</td>
<td>9.96</td>
<td>B43510B9338M0##</td>
</tr>
</tbody>
</table>

Capacitors with solder pins are only available in 35 and 40 mm case diameters.
Capacitors with 50 mm case diameter are only available with 5-pin snap-in terminals.

Composition of ordering code

<table>
<thead>
<tr>
<th>* = Terminal type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 4-/5-pin snap-in terminals</td>
</tr>
<tr>
<td>2 = solder pin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>## = Terminal style and insulation feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 = solder pin or 4-/5-pin snap-in standard terminals and PVC insulation</td>
</tr>
<tr>
<td>07 = 4-/5-pin snap-in short terminals and PVC insulation</td>
</tr>
<tr>
<td>80 = 4-/5-pin snap-in standard terminals and PVC insulation with additional PET insulation cap on terminal side</td>
</tr>
<tr>
<td>87 = 4-/5-pin snap-in short terminals and PVC insulation with additional PET insulation cap on terminal side</td>
</tr>
</tbody>
</table>

Please read Cautions and warnings and Important notes at the end of this document.
Technical data and ordering codes

<table>
<thead>
<tr>
<th>C_R</th>
<th>Case dimensions</th>
<th>$E_{SR_{100m}}$</th>
<th>$E_{SR_{300m}}$</th>
<th>Z_{max}</th>
<th>$I_{AC_{10kHz}}$</th>
<th>$I_{AC_{10kHz}}$</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100Hz$</td>
<td>20 $^\circ$C</td>
<td>20 $^\circ$C</td>
<td>60 $^\circ$C</td>
<td>10 kHz</td>
<td>100 $^\circ$C</td>
<td>85 $^\circ$C</td>
<td></td>
</tr>
<tr>
<td>$20 \mu F$</td>
<td>$d \times l$ mm</td>
<td>mΩ</td>
<td>mΩ</td>
<td>mΩ</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>35 x 50</td>
<td>220</td>
<td>70</td>
<td>310</td>
<td>6.21</td>
<td>3.17</td>
<td>B435*0A0567M0##</td>
</tr>
<tr>
<td>560</td>
<td>40 x 40</td>
<td>210</td>
<td>60</td>
<td>290</td>
<td>6.06</td>
<td>3.09</td>
<td>B435*0B0567M0##</td>
</tr>
<tr>
<td>680</td>
<td>35 x 60</td>
<td>180</td>
<td>55</td>
<td>250</td>
<td>7.33</td>
<td>3.74</td>
<td>B435*0A0687M0##</td>
</tr>
<tr>
<td>680</td>
<td>40 x 50</td>
<td>170</td>
<td>45</td>
<td>240</td>
<td>7.21</td>
<td>3.68</td>
<td>B435*0B0687M0##</td>
</tr>
<tr>
<td>820</td>
<td>35 x 70</td>
<td>150</td>
<td>45</td>
<td>210</td>
<td>8.56</td>
<td>4.36</td>
<td>B435*0A0827M0##</td>
</tr>
<tr>
<td>820</td>
<td>40 x 60</td>
<td>140</td>
<td>40</td>
<td>200</td>
<td>8.47</td>
<td>4.32</td>
<td>B435*0B0827M0##</td>
</tr>
<tr>
<td>820</td>
<td>45 x 40</td>
<td>150</td>
<td>45</td>
<td>210</td>
<td>7.39</td>
<td>3.77</td>
<td>B43510C0827M0##</td>
</tr>
<tr>
<td>1000</td>
<td>35 x 80</td>
<td>120</td>
<td>40</td>
<td>180</td>
<td>9.98</td>
<td>5.09</td>
<td>B435*0A0108M0##</td>
</tr>
<tr>
<td>1000</td>
<td>40 x 60</td>
<td>120</td>
<td>34</td>
<td>170</td>
<td>9.35</td>
<td>4.77</td>
<td>B435*0B0108M0##</td>
</tr>
<tr>
<td>1000</td>
<td>45 x 50</td>
<td>120</td>
<td>36</td>
<td>170</td>
<td>8.79</td>
<td>4.48</td>
<td>B43510C0108M0##</td>
</tr>
<tr>
<td>1200</td>
<td>35 x 100</td>
<td>100</td>
<td>32</td>
<td>150</td>
<td>12.0</td>
<td>6.12</td>
<td>B435*0B0128M0##</td>
</tr>
<tr>
<td>1200</td>
<td>40 x 70</td>
<td>100</td>
<td>28</td>
<td>140</td>
<td>10.8</td>
<td>5.54</td>
<td>B435*0A0128M0##</td>
</tr>
<tr>
<td>1200</td>
<td>45 x 60</td>
<td>100</td>
<td>30</td>
<td>140</td>
<td>10.2</td>
<td>5.24</td>
<td>B43510C0128M0##</td>
</tr>
<tr>
<td>1200</td>
<td>50 x 50</td>
<td>110</td>
<td>36</td>
<td>160</td>
<td>9.46</td>
<td>4.82</td>
<td>B43510D0128M0##</td>
</tr>
<tr>
<td>1500</td>
<td>40 x 90</td>
<td>80</td>
<td>22</td>
<td>110</td>
<td>13.4</td>
<td>6.85</td>
<td>B435*0C0158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>45 x 70</td>
<td>80</td>
<td>24</td>
<td>120</td>
<td>12.1</td>
<td>6.20</td>
<td>B43510B0158M0##</td>
</tr>
<tr>
<td>1500</td>
<td>50 x 60</td>
<td>90</td>
<td>28</td>
<td>130</td>
<td>11.2</td>
<td>5.74</td>
<td>B43510D0158M0##</td>
</tr>
<tr>
<td>1800</td>
<td>40 x 100</td>
<td>65</td>
<td>19</td>
<td>100</td>
<td>15.3</td>
<td>7.84</td>
<td>B435*0A0188M0##</td>
</tr>
<tr>
<td>1800</td>
<td>45 x 80</td>
<td>70</td>
<td>20</td>
<td>100</td>
<td>14.0</td>
<td>7.15</td>
<td>B43510B0188M0##</td>
</tr>
<tr>
<td>1800</td>
<td>50 x 70</td>
<td>75</td>
<td>24</td>
<td>110</td>
<td>13.0</td>
<td>6.65</td>
<td>B43510C0188M0##</td>
</tr>
<tr>
<td>2200</td>
<td>45 x 90</td>
<td>55</td>
<td>17</td>
<td>80</td>
<td>16.2</td>
<td>8.29</td>
<td>B43510A0228M0##</td>
</tr>
<tr>
<td>2200</td>
<td>50 x 80</td>
<td>60</td>
<td>20</td>
<td>90</td>
<td>14.9</td>
<td>7.64</td>
<td>B43510B0228M0##</td>
</tr>
<tr>
<td>2700</td>
<td>50 x 100</td>
<td>50</td>
<td>16</td>
<td>75</td>
<td>18.2</td>
<td>9.31</td>
<td>B43510A0278M0##</td>
</tr>
</tbody>
</table>

$V_R = 420V\ \text{DC}$

Capacitors with solder pins are only available in 35 and 40 mm case diameters.
Capacitors with 50 mm case diameter are only available with 5-pin snap-in terminals.

Composition of ordering code

- $* =$ Terminal type
- $1 =$ 4-/5-pin snap-in terminals
- $2 =$ solder pin
- $## =$ Terminal style and insulation feature
- $00 =$ solder pin or 4-/5-pin snap-in standard terminals and PVC insulation
- $07 =$ 4-/5-pin snap-in short terminals and PVC insulation
- $80 =$ 4-/5-pin snap-in standard terminals and PVC insulation with additional PET insulation cap on terminal side
- $87 =$ 4-/5-pin snap-in short terminals and PVC insulation with additional PET insulation cap on terminal side

Please read Cautions and warnings and Important notes at the end of this document.
Technical data and ordering codes

<table>
<thead>
<tr>
<th>Case dimensions</th>
<th>ESR<sub>typ</sub> 20 °C mΩ</th>
<th>ESR<sub>typ</sub> 60 °C mΩ</th>
<th>Z<sub>max</sub> 10 kHz mΩ</th>
<th>I<sub>AC,max</sub> 100 Hz A</th>
<th>I<sub>AC,R</sub> 20 °C A</th>
<th>V<sub>R</sub> = 450 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>d × l mm</td>
<td>20 °C</td>
<td>300 Hz</td>
<td>10 kHz</td>
<td>100 Hz</td>
<td>85 °C</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>35 × 50</td>
<td>240</td>
<td>70</td>
<td>330</td>
<td>5.69</td>
<td>2.90</td>
</tr>
<tr>
<td>470</td>
<td>40 × 40</td>
<td>230</td>
<td>65</td>
<td>320</td>
<td>5.55</td>
<td>2.83</td>
</tr>
<tr>
<td>560</td>
<td>35 × 60</td>
<td>200</td>
<td>50</td>
<td>270</td>
<td>6.55</td>
<td>3.34</td>
</tr>
<tr>
<td>680</td>
<td>35 × 70</td>
<td>170</td>
<td>50</td>
<td>230</td>
<td>7.79</td>
<td>3.97</td>
</tr>
<tr>
<td>680</td>
<td>45 × 50</td>
<td>160</td>
<td>45</td>
<td>220</td>
<td>7.21</td>
<td>3.68</td>
</tr>
<tr>
<td>820</td>
<td>35 × 80</td>
<td>140</td>
<td>40</td>
<td>190</td>
<td>9.03</td>
<td>4.61</td>
</tr>
<tr>
<td>820</td>
<td>40 × 60</td>
<td>130</td>
<td>36</td>
<td>190</td>
<td>8.47</td>
<td>4.32</td>
</tr>
<tr>
<td>820</td>
<td>45 × 50</td>
<td>140</td>
<td>40</td>
<td>190</td>
<td>7.96</td>
<td>4.06</td>
</tr>
<tr>
<td>1000</td>
<td>35 × 100</td>
<td>110</td>
<td>34</td>
<td>160</td>
<td>10.9</td>
<td>5.59</td>
</tr>
<tr>
<td>1000</td>
<td>40 × 70</td>
<td>110</td>
<td>30</td>
<td>150</td>
<td>9.92</td>
<td>5.06</td>
</tr>
<tr>
<td>1000</td>
<td>45 × 60</td>
<td>110</td>
<td>32</td>
<td>160</td>
<td>9.38</td>
<td>4.78</td>
</tr>
<tr>
<td>1000</td>
<td>50 × 50</td>
<td>120</td>
<td>36</td>
<td>170</td>
<td>9.01</td>
<td>4.59</td>
</tr>
<tr>
<td>1200</td>
<td>35 × 100</td>
<td>100</td>
<td>30</td>
<td>140</td>
<td>12.0</td>
<td>6.12</td>
</tr>
<tr>
<td>1200</td>
<td>40 × 80</td>
<td>90</td>
<td>26</td>
<td>130</td>
<td>11.4</td>
<td>5.84</td>
</tr>
<tr>
<td>1200</td>
<td>45 × 60</td>
<td>95</td>
<td>28</td>
<td>130</td>
<td>10.2</td>
<td>5.24</td>
</tr>
<tr>
<td>1500</td>
<td>40 × 100</td>
<td>75</td>
<td>20</td>
<td>100</td>
<td>14.0</td>
<td>7.16</td>
</tr>
<tr>
<td>1500</td>
<td>45 × 80</td>
<td>75</td>
<td>22</td>
<td>110</td>
<td>12.8</td>
<td>6.53</td>
</tr>
<tr>
<td>1500</td>
<td>50 × 70</td>
<td>80</td>
<td>24</td>
<td>110</td>
<td>12.4</td>
<td>6.33</td>
</tr>
<tr>
<td>1800</td>
<td>45 × 90</td>
<td>65</td>
<td>19</td>
<td>90</td>
<td>14.7</td>
<td>7.50</td>
</tr>
<tr>
<td>1800</td>
<td>50 × 80</td>
<td>65</td>
<td>20</td>
<td>100</td>
<td>14.1</td>
<td>7.24</td>
</tr>
<tr>
<td>2200</td>
<td>45 × 100</td>
<td>50</td>
<td>16</td>
<td>75</td>
<td>16.9</td>
<td>8.65</td>
</tr>
<tr>
<td>2200</td>
<td>50 × 90</td>
<td>55</td>
<td>18</td>
<td>80</td>
<td>16.1</td>
<td>8.25</td>
</tr>
<tr>
<td>2400</td>
<td>50 × 100</td>
<td>50</td>
<td>16</td>
<td>70</td>
<td>17.7</td>
<td>9.03</td>
</tr>
</tbody>
</table>

Capacitors with solder pins are only available in 35 and 40 mm case diameters.
Capacitors with 50 mm case diameter are only available with 5-pin snap-in terminals.

Composition of ordering code

* = Terminal type
- 1 = 4-/5-pin snap-in terminals
- 2 = solder pin

= Terminal style and insulation feature
- 00 = solder pin or 4-/5-pin snap-in standard terminals and PVC insulation
- 07 = 4-/5-pin snap-in short terminals and PVC insulation
- 80 = 4-/5-pin snap-in standard terminals and PVC insulation with additional PET insulation cap on terminal side
- 87 = 4-/5-pin snap-in short terminals and PVC insulation with additional PET insulation cap on terminal side
Technical data and ordering codes

<table>
<thead>
<tr>
<th>C_R</th>
<th>Case dimensions $d \times l$ mm</th>
<th>$\text{ESR}_{300 \text{ Hz}}$ 100 Hz mΩ</th>
<th>$\text{ESR}_{10 \text{ kHz}}$ 20 °C mΩ</th>
<th>Z_{max} 10 kHz 20 °C mΩ</th>
<th>$I_{\text{AC, max}}$ 100 Hz 60 °C A</th>
<th>$I_{\text{AC, R}}$ 100 Hz 85 °C A</th>
<th>Ordering code (composition see below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>560</td>
<td>45 x 50</td>
<td>210</td>
<td>65</td>
<td>400</td>
<td>3.57</td>
<td>1.82</td>
<td>B435*0B6677M0##</td>
</tr>
<tr>
<td>560</td>
<td>40 x 60</td>
<td>200</td>
<td>50</td>
<td>280</td>
<td>4.58</td>
<td>2.33</td>
<td>B435*0B6677M0##</td>
</tr>
<tr>
<td>560</td>
<td>45 x 50</td>
<td>210</td>
<td>50</td>
<td>280</td>
<td>4.30</td>
<td>2.19</td>
<td>B43510D6677M0##</td>
</tr>
<tr>
<td>680</td>
<td>35 x 100</td>
<td>170</td>
<td>40</td>
<td>240</td>
<td>5.91</td>
<td>3.01</td>
<td>B435*0A6687M0##</td>
</tr>
<tr>
<td>680</td>
<td>40 x 70</td>
<td>170</td>
<td>40</td>
<td>230</td>
<td>5.35</td>
<td>2.73</td>
<td>B435*0B6687M0##</td>
</tr>
<tr>
<td>680</td>
<td>45 x 50</td>
<td>170</td>
<td>45</td>
<td>240</td>
<td>4.74</td>
<td>2.42</td>
<td>B43510C6687M0##</td>
</tr>
<tr>
<td>820</td>
<td>35 x 100</td>
<td>140</td>
<td>38</td>
<td>200</td>
<td>6.49</td>
<td>3.31</td>
<td>B435*0A6827M0##</td>
</tr>
<tr>
<td>820</td>
<td>40 x 80</td>
<td>140</td>
<td>34</td>
<td>200</td>
<td>6.20</td>
<td>3.16</td>
<td>B435*0B6827M0##</td>
</tr>
<tr>
<td>820</td>
<td>45 x 60</td>
<td>140</td>
<td>36</td>
<td>200</td>
<td>5.56</td>
<td>2.83</td>
<td>B43510C6827M0##</td>
</tr>
<tr>
<td>1000</td>
<td>40 x 90</td>
<td>120</td>
<td>28</td>
<td>160</td>
<td>7.18</td>
<td>3.66</td>
<td>B435*0C6108M0##</td>
</tr>
<tr>
<td>1000</td>
<td>45 x 70</td>
<td>120</td>
<td>30</td>
<td>160</td>
<td>6.50</td>
<td>3.31</td>
<td>B43510B6108M0##</td>
</tr>
<tr>
<td>1200</td>
<td>45 x 80</td>
<td>100</td>
<td>24</td>
<td>140</td>
<td>7.50</td>
<td>3.82</td>
<td>B43510C6128M0##</td>
</tr>
<tr>
<td>1500</td>
<td>45 x 100</td>
<td>80</td>
<td>20</td>
<td>110</td>
<td>9.16</td>
<td>4.68</td>
<td>B43510A6158M0##</td>
</tr>
</tbody>
</table>

$V_R = 500$ V DC

Capacitors with solder pins are only available in 35 and 40 mm case diameters.
Capacitors with 50 mm case diameters are available with 5-pin snap-in terminals.

Composition of ordering code

* = Terminal type

1 = 4-/5-pin snap-in terminals
2 = solder pin

Terminal style and insulation feature

00 = solder pin or 4-/5-pin snap-in standard terminals and PVC insulation

07 = 4-/5-pin snap-in short terminals and PVC insulation

80 = 4-/5-pin snap-in standard terminals and PVC insulation with additional PET insulation cap on terminal side

87 = 4-/5-pin snap-in short terminals and PVC insulation with additional PET insulation cap on terminal side

Please read Cautions and warnings and Important notes at the end of this document.
Useful life ¹ depending on ambient temperature T_A under ripple current operating conditions

Voltage derating ($0.90 \cdot V_R$ for $V_R \leq 450$ V) enables $105 \, ^\circ C$ operation

Frequency factor of permissible ripple current I_{AC} versus frequency f
for diameter $d \leq 45$ mm

Frequency factor of permissible ripple current I_{AC} versus frequency f
for diameter $d = 50$ mm

¹ Refer to chapter “General technical information, 5 Useful life” on how to interpret useful life.

Please read Cautions and warnings and Important notes at the end of this document.
Frequency characteristic of ESR
Typical behavior for diameter $d \leq 45$ mm

Impedance Z versus frequency f
Typical behavior at 20 °C for diameter $d \leq 45$ mm

Frequency characteristic of ESR
Typical behavior for diameter $d = 50$ mm

Impedance Z versus frequency f
Typical behavior at 20 °C for diameter $d = 50$ mm
Cautions and warnings

Personal safety
The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).
Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.
As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request.
MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.
Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

<table>
<thead>
<tr>
<th>Topic</th>
<th>Safety information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity</td>
<td>Make sure that polar capacitors are connected with the right polarity.</td>
<td>1 "Basic construction of aluminum electrolytic capacitors"</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>Voltages polarity classes should be prevented by connecting a diode.</td>
<td>3.1.6 "Reverse voltage"</td>
</tr>
<tr>
<td>Mounting position of screw-terminal capacitors</td>
<td>Do not mount the capacitor with the terminals (safety vent) upside down.</td>
<td>11.1. "Mounting positions of capacitors with screw terminals"</td>
</tr>
<tr>
<td>Robustness of terminals</td>
<td>The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm</td>
<td>11.3 "Mounting torques"</td>
</tr>
<tr>
<td>Mounting of single-ended capacitors</td>
<td>The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.</td>
<td>11.4 "Mounting considerations for single-ended capacitors"</td>
</tr>
<tr>
<td>Soldering</td>
<td>Do not exceed the specified time or temperature limits during soldering.</td>
<td>11.5 "Soldering"</td>
</tr>
<tr>
<td>Soldering, cleaning agents</td>
<td>Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.</td>
<td>11.6 "Cleaning agents"</td>
</tr>
<tr>
<td>Upper category temperature</td>
<td>Do not exceed the upper category temperature.</td>
<td>7.2 "Maximum permissible operating temperature"</td>
</tr>
<tr>
<td>Passive flammability</td>
<td>Avoid external energy, such as fire or electricity.</td>
<td>8.1 "Passive flammability"</td>
</tr>
<tr>
<td>Topic</td>
<td>Safety information</td>
<td>Reference chapter</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Active flammability</td>
<td>Avoid overload of the capacitors.</td>
<td>8.2 "Active flammability"</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.</td>
<td>10 "Maintenance"</td>
</tr>
<tr>
<td>Storage</td>
<td>Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at +5 to +35 °C and a relative humidity of ≤ 75%.</td>
<td>7.3 Storage conditions</td>
</tr>
<tr>
<td>Breakdown strength of insulating sleeves</td>
<td>Do not damage the insulating sleeve, especially when ring clips are used for mounting.</td>
<td>Screw terminals – accessories</td>
</tr>
</tbody>
</table>
Symbols and terms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>English</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Capacitance</td>
<td>Kapazität</td>
</tr>
<tr>
<td>C_R</td>
<td>Rated capacitance</td>
<td>Nennkapazität</td>
</tr>
<tr>
<td>C_S</td>
<td>Series capacitance</td>
<td>Serienkapazität</td>
</tr>
<tr>
<td>C_{S,T}</td>
<td>Series capacitance at temperature T</td>
<td>Serienkapazität bei Temperatur T</td>
</tr>
<tr>
<td>C_f</td>
<td>Capacitance at frequency f</td>
<td>Kapazität bei Frequenz f</td>
</tr>
<tr>
<td>d</td>
<td>Case diameter, nominal dimension</td>
<td>Gehäusedurchmesser, Nennmaß</td>
</tr>
<tr>
<td>d_{max}</td>
<td>Maximum case diameter</td>
<td>Maximaler Gehäusedurchmesser</td>
</tr>
<tr>
<td>ESL</td>
<td>Self-inductance</td>
<td>Eigeninduktivität</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent series resistance</td>
<td>Ersatzserienwiderstand</td>
</tr>
<tr>
<td>ESR_f</td>
<td>Equivalent series resistance at frequency f</td>
<td>Ersatzserienwiderstand bei Frequenz f</td>
</tr>
<tr>
<td>ESR_T</td>
<td>Equivalent series resistance at temperature T</td>
<td>Ersatzserienwiderstand bei Temperatur T</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
<td>Frequenz</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
<td>Strom</td>
</tr>
<tr>
<td>I_{AC}</td>
<td>Alternating current (ripple current)</td>
<td>Wechselstrom</td>
</tr>
<tr>
<td>I_{AC,rms}</td>
<td>Root-mean-square value of alternating current</td>
<td>Wechselstrom, Effektivwert</td>
</tr>
<tr>
<td>I_{AC,f}</td>
<td>Ripple current at frequency f</td>
<td>Wechselstrom bei Frequenz f</td>
</tr>
<tr>
<td>I_{AC,max}</td>
<td>Maximum permissible ripple current</td>
<td>Maximal zulässiger Wechselstrom</td>
</tr>
<tr>
<td>I_{AC,R}</td>
<td>Rated ripple current</td>
<td>Nennwechselstrom</td>
</tr>
<tr>
<td>I_{AC,R} (B)</td>
<td>Rated ripple current for base cooling</td>
<td>Nennwechselstromstrom für Bodenkühlung</td>
</tr>
<tr>
<td>I_{leak}</td>
<td>Operating leakage current</td>
<td>Betriebsreststrom</td>
</tr>
<tr>
<td>I_{leak,op}</td>
<td>Operating leakage current</td>
<td>Betriebsreststrom</td>
</tr>
<tr>
<td>l</td>
<td>Case length, nominal dimension</td>
<td>Gehäuselänge, Nennmaß</td>
</tr>
<tr>
<td>l_{max}</td>
<td>Maximum case length (without terminals and mounting stud)</td>
<td>Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td>Widerstand</td>
</tr>
<tr>
<td>R_{ins}</td>
<td>Insulation resistance</td>
<td>Isolationswiderstand</td>
</tr>
<tr>
<td>R_{symm}</td>
<td>Balancing resistance</td>
<td>Symmetriewiderstand</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>Temperatur</td>
</tr>
<tr>
<td>ΔT</td>
<td>Temperature difference</td>
<td>Temperaturdifferenz</td>
</tr>
<tr>
<td>T_{A}</td>
<td>Ambient temperature</td>
<td>Umgebungstemperatur</td>
</tr>
<tr>
<td>T_{C}</td>
<td>Case temperature</td>
<td>Gehäusetemperatur</td>
</tr>
<tr>
<td>T_{B}</td>
<td>Capacitor base temperature</td>
<td>Temperatur des Becherbodens</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>Zeit</td>
</tr>
<tr>
<td>Δt</td>
<td>Period</td>
<td>Zeitraum</td>
</tr>
<tr>
<td>t_{b}</td>
<td>Service life (operating hours)</td>
<td>Brauchbarkeitsdauer (Betriebszeit)</td>
</tr>
<tr>
<td>Symbol</td>
<td>English</td>
<td>German</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
<td>Spannung</td>
</tr>
<tr>
<td>V_F</td>
<td>Forming voltage</td>
<td>Formierspannung</td>
</tr>
<tr>
<td>V_{op}</td>
<td>Operating voltage</td>
<td>Betriebsspannung</td>
</tr>
<tr>
<td>V_R</td>
<td>Rated voltage, DC voltage</td>
<td>Nennspannung, Gleichspannung</td>
</tr>
<tr>
<td>V_S</td>
<td>Surge voltage</td>
<td>Spitzenspannung</td>
</tr>
<tr>
<td>X_C</td>
<td>Capacitive reactance</td>
<td>Kapazitiver Blindwiderstand</td>
</tr>
<tr>
<td>X_L</td>
<td>Inductive reactance</td>
<td>Induktiver Blindwiderstand</td>
</tr>
<tr>
<td>Z</td>
<td>Impedance</td>
<td>Scheinwiderstand</td>
</tr>
<tr>
<td>Z_T</td>
<td>Impedance at temperature T</td>
<td>Scheinwiderstand bei Temperatur T</td>
</tr>
<tr>
<td>$\tan \delta$</td>
<td>Dissipation factor</td>
<td>Verlustfaktor</td>
</tr>
<tr>
<td>λ</td>
<td>Failure rate</td>
<td>Ausfallrate</td>
</tr>
<tr>
<td>ε_0</td>
<td>Absolute permittivity</td>
<td>Elektrische Feldkonstante</td>
</tr>
<tr>
<td>ε_r</td>
<td>Relative permittivity</td>
<td>Dielektrizitätszahl</td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity; $2 \cdot \pi \cdot f$</td>
<td>Kreisfrequenz; $2 \cdot \pi \cdot f$</td>
</tr>
</tbody>
</table>

Note

All dimensions are given in mm.
The following applies to all products named in this publication:

1. Some parts of this publication contain **statements about the suitability of our products for certain areas of application**. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.

2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.

3. **The warnings, cautions and product-specific notes must be observed.**

4. In order to satisfy certain technical requirements, **some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous).** Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.

5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time.** The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also **reserve the right to discontinue production and delivery of products.** Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

6. Unless otherwise agreed in individual contracts, **all orders are subject to the current version of the “General Terms of Delivery for Products and Services in the Electrical Industry” published by the German Electrical and Electronics Industry Association (ZVEI).**

7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.