DOUBLE HETEROJUNCTION AlGaAs
LOW CURRENT RED LED LAMPS

T-1 3/4 (5mm)
HLMP-D150A Red Diffused
HLMP-D155A Red Clear with Standoff
T-100 (3mm)
HLMP-K150 Red Diffused
HLMP-K155 Red Clear

PACKAGE DIMENSIONS

FEATRES
• Wide Viewing Angle
• Deep Red Color

DESCRIPTION
Exceptional light output typifies these devices and
provides for their use over a
broad range of drive currents.
The LED material is based on double
heterojunction (DH) AlGaAs/GaAs
technology.

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE ARE ±0.010’ UNLESS OTHERWISE SPECIFIED.
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040” (1 mm)
 DOWN THE LEADS.
DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RED</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>87</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Forward Current (f=1kHz, DF=10%)</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous DC Forward Current</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Lead Soldering Time at 260° C</td>
<td>5</td>
<td>sec</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55 to +100</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL / OPTICAL CHARACTERISTICS (T_A =25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HLMP-K150</th>
<th>HLMP-K155</th>
<th>HLMP-D150A</th>
<th>HLMP-D155A</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Intensity (mcd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_F = 1mA</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.2</td>
<td>2.0</td>
<td>1.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Forward Voltage (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_F = 1mA</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Peak Wavelength (nm)</td>
<td>660</td>
<td>660</td>
<td>660</td>
<td>660</td>
<td>I_F = 1mA</td>
</tr>
<tr>
<td>Spectral Line Half Width</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>I_F = 1mA</td>
</tr>
<tr>
<td>Reverse Voltage (V)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>I_R = 100μA</td>
</tr>
<tr>
<td>Viewing Angle (°)</td>
<td>60</td>
<td>45</td>
<td>65</td>
<td>24</td>
<td>I_F = 1mA</td>
</tr>
</tbody>
</table>
DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

TYPICAL PERFORMANCE CURVES (T_A = 25°C)

Fig. 1 Forward Current vs. Forward Voltage

Fig. 2 Relative Luminous Intensity vs. DC Forward Current

Fig. 3 Relative Intensity vs. Peak Wavelength

Fig. 4 Current Derating Curve
DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

TYPICAL PERFORMANCE CURVES ($T_a = 25^\circ C$)

Fig. 5A Radiation Diagram (HLMP-D150A)

Fig. 5B Radiation Diagram (HLMP-K150)

Fig. 5C Radiation Diagram (HLMP-D155A)

Fig. 5D Radiation Diagram (HLMP-K155)
DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical into the body, or (b) support or sustain life, whose failure to perform when properly support used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be implant reasonably expected to cause the failure of the life and (c) device or system, or to affect its safety or effectiveness.