74F1071
18-Bit Undershoot/Overshoot Clamp and ESD Protection Device

Features
- 18-bit array structure in 20-pin package
- FAST® Bipolar voltage clamping action
- Dual center pin grounds for min inductance
- Robust design for ESD protection
- Low input capacitance
- Optimum voltage clamping for 5V CMOS/TTL applications

General Description
The 74F1071 is an 18-bit undershoot/overshoot clamp which is designed to limit bus voltages and also to protect more sensitive devices from electrical overstress due to electrostatic discharge (ESD). The inputs of the device aggressively clamp voltage excursions nominally at 0.5V below and 7V above ground.

Ordering Information

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74F1071SC</td>
<td>M20B</td>
<td>20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300” Wide</td>
</tr>
<tr>
<td>74F1071MSA</td>
<td>MSA20</td>
<td>20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide</td>
</tr>
<tr>
<td>74F1071MTC</td>
<td>MTC20</td>
<td>20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide</td>
</tr>
</tbody>
</table>

Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Note: Simplified Component Representation
Absolute Maximum Ratings
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>T_{A}</td>
<td>Ambient Temperature Under Bias</td>
<td>–65°C to +125°C</td>
</tr>
<tr>
<td>T_{J}</td>
<td>Junction Temperature Under Bias</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>V_{I}</td>
<td>Input Voltage^{(1)}</td>
<td>–0.5V to +6V</td>
</tr>
<tr>
<td>I_{I}</td>
<td>Input Current^{(3)}</td>
<td>–200mA to +50mA</td>
</tr>
<tr>
<td>ESD^{(2)}</td>
<td>Human Body Model (MIL-STD-883D method 3015.7)</td>
<td>±10kV</td>
</tr>
<tr>
<td></td>
<td>IEC 801-2</td>
<td>±6kV</td>
</tr>
<tr>
<td></td>
<td>Machine Model (EIAJIC-121-1981)</td>
<td>±2kV</td>
</tr>
<tr>
<td></td>
<td>DC Latchup Source Current (JEDEC Method 17)</td>
<td>±500mA</td>
</tr>
<tr>
<td></td>
<td>Package Power Dissipation @ +70°C SOIC Package</td>
<td>800mW</td>
</tr>
</tbody>
</table>

Notes:
1. Voltage ratings may be exceeded if current ratings and junction temperature and power consumption ratings are not exceeded.
2. ESD Rating for Direct contact discharge using ESD Simulation Tester. Higher rating may be realized in the actual application.

Recommended Operating Conditions
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{A}</td>
<td>Free Air Ambient Temperature</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>V_{Z}</td>
<td>Reverse Bias Voltage</td>
<td>0V to 5.25 V_{DC}</td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance (in Free Air)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOIC Package</td>
<td>100°C/W</td>
</tr>
<tr>
<td></td>
<td>SSOP Package</td>
<td>110°C/W</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(T_A = +25^\circ C)</th>
<th>(T_A = 0^\circ C) to +70°C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IH})</td>
<td>Input HIGH Current</td>
<td>(V_{IN} = 5.25V); Untested Input @ GND</td>
<td>1.5</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 5.5V); Untested Input @ GND</td>
<td>3</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>(V_Z)</td>
<td>Reverse Voltage</td>
<td>(I_Z = 1mA); Untested Inputs @ GND</td>
<td>6.6</td>
<td>6.9</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_Z = 50mA); Untested Inputs @ GND</td>
<td>7.1</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>(V_F)</td>
<td>Forward Voltage</td>
<td>(I_F = -18mA); Untested Inputs @ 5V</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = -200mA); Untested Inputs @ 5V</td>
<td>-0.5</td>
<td>-1.1</td>
<td>-1.5</td>
</tr>
<tr>
<td>(I_{CT})</td>
<td>Adjacent Input Crosstalk</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>(C_{IN})</td>
<td>Input Capacitance (small signal @ 1MHz)</td>
<td>(V_{BIAS} = 0V_{DC})</td>
<td>25</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{BIAS} = 5V_{DC})</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

Typical Forward and Reverse V/I Characteristics

Typical Reverse Conduction Characteristics

Typical Forward Conduction Characteristics

ESD Network

<table>
<thead>
<tr>
<th>ESD Network</th>
<th>CZ</th>
<th>RZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body Model</td>
<td>100pF</td>
<td>1500Ω</td>
</tr>
<tr>
<td>IEC 801-2</td>
<td>150pF</td>
<td>330Ω</td>
</tr>
</tbody>
</table>

Simulated ESD Voltage Clamping Test Circuit
DC Electrical Characteristics (Continued)

Unclamped +1kV ESD Voltage Waveform (IEC801-2 Network)

Vertical Scale = 100V/Div
Horizontal Scale = 25 ns/Div

Clamped +1kV ESD Voltage Waveform (IEC801-2 Network)

Vertical Scale = 10V/Div
Horizontal Scale = 25 ns/Div

Unclamped -1kV ESD Voltage Waveform (IEC801-2 Network)

Vertical Scale = 100V/Div
Horizontal Scale = 25 ns/Div

Clamped -1kV ESD Voltage Waveform (IEC801-2 Network)

Vertical Scale = 10V/Div
Horizontal Scale = 25 ns/Div

Typical Application

74F1071 ESD Protection of ASIC on User Port
Physical Dimensions

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
Physical Dimensions (Continued)

Figure 2. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
Physical Dimensions (Continued)

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.

MTC20REVD1

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global
subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEX®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
EZSWITCH™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FastvCore™
FlashWriter®
FPS™
FRFET®
Global Power Resource™
Green FPS™
Green FPS™ e-Series™
GTO™
i-LoTM
IntelliMAX™
ISPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS
PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in a significant injury of the user.
2. A critical component in any component of a life support,
device, or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>

Rev. I32

©1994 Fairchild Semiconductor Corporation