

Absolute Maximum (Note 2)	atings(Note 1)	Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD})	$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$	DC Supply Voltage (V_{DD}) 3 V to 15 V
Input Voltage, All Inputs ($\mathrm{V}_{\text {IN }}$)	$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Input Voltage (V_{IN}) $\quad 0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A}) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (P_{D})		Note 1: "Absolute Maximum Ratings" are those values beyond which the
Dual-In-Line	700 mW	safety of the device cannot be guaranteed. Except for "Operating Tempera-
Small Outline	500 mW	ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device aperation.
Lead Temperature (T_{L}) (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	conditions for actual device operation. Note 2 : $\mathrm{V}_{\text {Ss }}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{I} D}$	Quiescent Device Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
$\overline{\mathrm{V}}$ OL	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$			$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} \hline 5.0 \\ 10.0 \\ 15.0 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \hline 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
$\overline{\mathrm{IOL}}$	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		mA
$\overline{\mathrm{IOH}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.25 \\ -0.62 \\ -1.8 \end{gathered}$		$\begin{aligned} & \hline-0.2 \\ & -0.5 \\ & -1.5 \end{aligned}$	$\begin{gathered} \hline-0.36 \\ -0.9 \\ -3.5 \end{gathered}$		$\begin{gathered} \hline-0.14 \\ -0.35 \\ -1.1 \end{gathered}$		mA
$\overline{I_{\mathrm{IN}}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{\|r\|} \hline-10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} \hline-1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 5) $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified						
t_{r}	Output Rise Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{r}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{r}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 180 \\ & 90 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 400 \\ & 200 \\ & 160 \\ & \hline \end{aligned}$	ns
$\overline{t_{f}}$	Output Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{f}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{f}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{f}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline 100 \\ 50 \\ 35 \\ \hline \end{array}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Turn-Off, Turn-On Delay A or B to Q or $\overline{\mathrm{Q}}$ $\mathrm{Cx}=15 \mathrm{pF}, \mathrm{Rx}=5.0 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+240 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{PLL}}, \mathrm{t}_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{PLLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+65 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 230 \\ 100 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 500 \\ & 250 \\ & 150 \\ & \hline \end{aligned}$	ns
	Turn-Off, Turn-On Delay A or B to Q or \bar{Q} $\mathrm{Cx}=100 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+620 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{PL}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+257 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+185 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 230 \\ 100 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 500 \\ & 250 \\ & 150 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{WL}} \\ & \mathrm{t}_{\mathrm{WH}} \end{aligned}$	Minimum Input Pulse Width A or B $\mathrm{Cx}=15 \mathrm{pF}, \mathrm{Rx}=5.0 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 150 \\ 50 \\ 50 \end{gathered}$	ns
	$\mathrm{Cx}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 150 \\ 50 \\ 50 \\ \hline \end{gathered}$	ns
PW ${ }_{\text {OUT }}$	Output Pulse Width Q or $\overline{\mathrm{Q}}$ For $\mathrm{Cx}<0.01 \mu \mathrm{~F}$ (See Graph for Appropriate V_{DD} Level) $C x=15 \mathrm{pF}, \mathrm{Rx}=5.0 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 550 \\ & 350 \\ & 300 \end{aligned}$		ns
	$\begin{array}{\|l} \hline \text { For } \mathrm{Cx}>0.01 \mu \mathrm{~F} \text { Use } \\ \mathrm{PW}_{\text {out }}=0.2 \mathrm{Rx} \mathrm{Cx} \operatorname{In}\left[\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right] \\ C x=10,000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 29 \\ & 37 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 90 \\ & 95 \end{aligned}$	$\mu \mathrm{s}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Reset Propagation Delay, $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$ $\mathrm{Cx}=15 \mathrm{pF}, \mathrm{Rx}=5.0 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 325 \\ 90 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 225 \\ & 170 \end{aligned}$	ns
	$\mathrm{Cx}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7.0 \\ & 6.7 \\ & 6.7 \\ & \hline \end{aligned}$		$\mu \mathrm{S}$
t_{RR}	Minimum Retrigger Time $\mathrm{Cx}=15 \mathrm{pF}, \mathrm{Rx}=5.0 \mathrm{k} \Omega$ $C x=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		ns
Pulse Width Match between Circuits in the Same Package$\mathrm{Cx}=10,000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 6 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	\%

Note 5: AC parameters are guaranteed by DC correlated testing.

TA, AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
FIGURE 2. Normalized Pulse Width vs Temperature

CD4528BC
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
