FQP9N25C / FQPF9N25C
N-Channel QFET® MOSFET
250 V, 8.8 A, 430 mΩ

Description
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FQP9N25C</th>
<th>FQPF9N25C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DSS})</td>
<td>Drain-Source Voltage</td>
<td>250</td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>(I_D)</td>
<td>Drain Current - Continuous ((T_C = 25°C))</td>
<td>8.8</td>
<td>8.8 *</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>- Continuous ((T_C = 100°C))</td>
<td>5.6</td>
<td>5.6 *</td>
<td>A</td>
</tr>
<tr>
<td>(I_{DM})</td>
<td>Drain Current - Pulsed (Note 1)</td>
<td>35.2</td>
<td>35.2 *</td>
<td>A</td>
</tr>
<tr>
<td>(V_{GSS})</td>
<td>Gate-Source Voltage</td>
<td>±30</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>(E_{AS})</td>
<td>Single Pulsed Avalanche Energy (Note 2)</td>
<td>285</td>
<td>285</td>
<td>mJ</td>
</tr>
<tr>
<td>(I_{AR})</td>
<td>Avalanche Current (Note 1)</td>
<td>8.8</td>
<td>8.8</td>
<td>A</td>
</tr>
<tr>
<td>(E_{AR})</td>
<td>Repetitive Avalanche Energy (Note 1)</td>
<td>7.4</td>
<td>7.4</td>
<td>mJ</td>
</tr>
<tr>
<td>(dv/dt)</td>
<td>Peak Diode Recovery (dv/dt)</td>
<td>(Note 3)</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation ((T_C = 25°C))</td>
<td>74</td>
<td>38</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>- Derate above 25°C</td>
<td>0.59</td>
<td>0.3</td>
<td>W/°C</td>
</tr>
<tr>
<td>(T_J, T_{STG})</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Maximum lead temperature for soldering purposes, 1/8” from case for 5 seconds</td>
<td>300</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Drain current limited by maximum junction temperature.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FQP9N25C</th>
<th>FQPF9N25C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JUC})</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>1.69</td>
<td>3.29</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUS})</td>
<td>Thermal Resistance, Case-to-Sink Typ.</td>
<td>0.5</td>
<td>--</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUA})</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>62.5</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVDSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>VGS = 0 V, ID = 250 µA</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>ΔBVDSS / ΔTJ</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>ID = 250 µA, Referenced to 25°C</td>
<td>--</td>
<td>0.30</td>
<td>--</td>
<td>V/°C</td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>VDS = 250 V, VGS = 0 V</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>µA</td>
</tr>
<tr>
<td>IGSF</td>
<td>Gate-Body Leakage Current, Forward</td>
<td>VGS = 30 V, VDS = 0 V</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>nA</td>
</tr>
<tr>
<td>IGSSR</td>
<td>Gate-Body Leakage Current, Reverse</td>
<td>VGS = -30 V, VDS = 0 V</td>
<td>--</td>
<td>-100</td>
<td>--</td>
<td>nA</td>
</tr>
</tbody>
</table>

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVDS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>VGS = 0 V, ID = 250 µA</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>RBDS(on)</td>
<td>Static Drain-Source On-Resistance</td>
<td>VGS = 10 V, ID = 4.4 A</td>
<td>--</td>
<td>0.35</td>
<td>0.43</td>
<td>Ω</td>
</tr>
<tr>
<td>gFS</td>
<td>Forward Transconductance</td>
<td>VDS = 40 V, ID = 4.4 A (Note 4)</td>
<td>--</td>
<td>7.0</td>
<td>--</td>
<td>S</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciss</td>
<td>Input Capacitance</td>
<td>VDS = 25 V, VGS = 0 V, f = 1.0 MHz</td>
<td>--</td>
<td>545</td>
<td>710</td>
<td>pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Output Capacitance</td>
<td>--</td>
<td>115</td>
<td>150</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Crss</td>
<td>Reverse Transfer Capacitance</td>
<td>--</td>
<td>45.5</td>
<td>60</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(on)</td>
<td>Turn-On Delay Time</td>
<td>VDD = 125 V, ID = 8.8 A, RG = 25 Ω</td>
<td>--</td>
<td>15</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>tr</td>
<td>Turn-On Rise Time</td>
<td></td>
<td>--</td>
<td>85</td>
<td>180</td>
<td>ns</td>
</tr>
<tr>
<td>t(off)</td>
<td>Turn-Off Delay Time</td>
<td></td>
<td>--</td>
<td>90</td>
<td>190</td>
<td>ns</td>
</tr>
<tr>
<td>tf</td>
<td>Turn-Off Fall Time</td>
<td></td>
<td>--</td>
<td>65</td>
<td>140</td>
<td>ns</td>
</tr>
<tr>
<td>Qg</td>
<td>Total Gate Charge</td>
<td>VDS = 200 V, ID = 8.8 A, VGS = 10 V</td>
<td>--</td>
<td>26.5</td>
<td>35</td>
<td>nC</td>
</tr>
<tr>
<td>Qgs</td>
<td>Gate-Source Charge</td>
<td></td>
<td>--</td>
<td>3.5</td>
<td>--</td>
<td>nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>Gate-Drain Charge</td>
<td></td>
<td>--</td>
<td>13.5</td>
<td>--</td>
<td>nC</td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics and Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>Maximum Continuous Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>8.8</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>ISM</td>
<td>Maximum Pulsed Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>35.2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>Drain-Source Diode Forward Voltage</td>
<td>VGS = 0 V, IS = 8.8 A</td>
<td>--</td>
<td>--</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>tr</td>
<td>Reverse Recovery Time</td>
<td>VGS = 0 V, IS = 8.8 A, dIF / dt = 100 A/µs (Note 4)</td>
<td>--</td>
<td>218</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>Qr</td>
<td>Reverse Recovery Charge</td>
<td></td>
<td>--</td>
<td>1.58</td>
<td>--</td>
<td>µC</td>
</tr>
</tbody>
</table>

Notes
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 5.9mH, ISD = 8.8A, VDD = 50V, RG = 25 Ω, Starting TJ = 25°C
3. ISD ≤ 8.8A, dI/dt = 300A/µs, VDD ≤ BVDS, Starting TJ = 25°C
4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%
5. Essentially independent of operating temperature
Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics
Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs Temperature

Figure 8. On-Resistance Variation vs Temperature

Figure 9-1. Maximum Safe Operating Area for FQP9N25C

Figure 9-2. Maximum Safe Operating Area for FQPF9N25C

Figure 10. Maximum Drain Current vs Case Temperature
Typical Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FQP9N25C

Figure 11-2. Transient Thermal Response Curve for FQPF9N25C
Peak Diode Recovery dv/dt Test Circuit & Waveforms

- **DUT**
- **V_{DS}**
- **I_{SD}**
- **Driver**
- **RG**
- **Same Type as DUT**

- **V_GS** • dv/dt controlled by RG
- **I_{SD}** controlled by pulse period

V_{DD}

Body Diode
- **Forward Voltage Drop**
- **IFM**, Body Diode Forward Current
- **IRM**, Body Diode Reverse Current

Body Diode Recovery dv/dt
- **dI/dt**
- **D = Gate Pulse Width**
- **Gate Pulse Period**

V_{GS} (Driver)

| D = \frac{D}{Gate Pulse Width} | Gate Pulse Period | 10V |

V_{DS} (DUT)

- **I_{FM}**, Body Diode Forward Current
- **I_{RM}**, Body Diode Reverse Current

Body Diode Forward Voltage Drop

- **V_{SD}**
- **V_{DD}**
Mechanical Dimensions

TO-220

NOTES: UNLESS OTHERWISE SPECIFIED
A) REFERENCE JEDEC, TO-220, ISSUE K, VARIATION AB, DATED APRIL, 2002.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER
ANS Y14.5-1973
D) LOCATION OF THE PIN HOLES MAY VARY
(LOWER LEFT CORNER, LOWER CENTER
AND CENTER OF THE PACKAGE)
△ DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS REPRESENT LIKE BELOW:
SINGLE GAUGE = 0.51 - 0.61
DUAL GAUGE = 0.14 - 0.40
G) DRAWING FILE NAME: TO220B03REV6

Dimensions in Millimeters
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX-CAP™
BitsIC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficentMax™
ESBiC™
F™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST®
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
Green Bridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder
and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver™
OptoHIT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
SYNC™
ng our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS®
SyncFET™
Sync-Lock™
SYSTEM G®
SYSTEM G®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiSC®
TriFault Detect™
TRUECURRENT®
μSerDes™
μSerDes™
μSERDes™
Ultra FRFET™
UniFET®
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

www.fairchildsemi.com