PHOTODARLINGTON
OPTICAL INTERRUPTER SWITCH

H22B1 H22B2 H22B3

PACKAGE DIMENSIONS

NOTES:
1. Dimensions for all drawings are in inches (mm).
2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.

DESCRIPTION
The H22B1, H22B2 and H22B3 consist of a gallium arsenide infrared emitting diode coupled with a silicon photodarlington in a plastic housing. The packaging system is designed to optimize the mechanical resolution, coupling efficiency, ambient light rejection, cost and reliability. The gap in the housing provides a means of interrupting the signal with an opaque material, switching the output from an “ON” to an “OFF” state.

FEATURES
• Opaque housing
• Low cost
• .035" apertures
• High $I_{(ON)}$
PHOTODARLINGTON
OPTICAL INTERRUPTER SWITCH

H22B1 H22B2 H22B3

| ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise specified) |
|---|----------------|--------------|
| Parameter | Symbol | Rating | Unit |
| Operating Temperature | T_{OPR} | -55 to +100 | °C |
| Storage Temperature | T_{STG} | -55 to +100 | °C |
| Soldering Temperature (Iron)^(2,3 and 4) | T_{SOL-I} | 240 for 5 sec | °C |
| Soldering Temperature (Flow)^(2 and 3) | T_{SOL-F} | 260 for 10 sec | °C |

INPUT (EMITTER)

Continuous Forward Current	I_F	50	mA
Reverse Voltage	V_R	6	V
Power Dissipation⁽¹⁾	P_D	100	mW

OUTPUT (SENSOR)

Collector to Emitter Voltage	V_{CEO}	30	V
Emitter to Collector Voltage	V_{ECO}	6	V
Collector Current	I_C	40	mA
Power Dissipation (T_C = 25°C)⁽¹⁾	P_D	150	mW

NOTES:
1. Derate power dissipation linearly 1.67 mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron 1/16" (1.6 mm) minimum from housing.
ELECTRICAL/OPTICAL CHARACTERISTICS ($T_A = 25^\circ C$)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SYMBOL</th>
<th>DEVICES</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>$I_F = 60 , mA$</td>
<td>V_F</td>
<td>All</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Breakdown Voltage</td>
<td>$I_R = 10 , \mu A$</td>
<td>V_R</td>
<td>All</td>
<td>6.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>$V_R = 3 , V$</td>
<td>I_R</td>
<td>All</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>OUTPUT (SENSOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emitter to Collector Breakdown</td>
<td>$I_F = 100 , \mu A, E_e = 0$</td>
<td>$BVECO$</td>
<td>All</td>
<td>7.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Collector to Emteor Breakdown</td>
<td>$I_C = 1 , mA, E_e = 0$</td>
<td>$BVCEO$</td>
<td>All</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Collector to Emitter Leakage</td>
<td>$V_{CE} = 25 , V, E_e = 0$</td>
<td>I_{CEO}</td>
<td>All</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>COUPLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-State Collector Current</td>
<td>$I_F = 2 , mA, V_{CE} = 1.5 , V$</td>
<td>$I_{C(ON)}$</td>
<td>H22B1</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_F = 5 , mA, V_{CE} = 1.5 , V$</td>
<td>$I_{C(ON)}$</td>
<td>H22B2</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_F = 10 , mA, V_{CE} = 1.5 , V$</td>
<td>$I_{C(ON)}$</td>
<td>H22B3</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>Saturation Voltage</td>
<td>$I_F = 10 , mA, I_C = 1.8 , mA$</td>
<td>$V_{CE(SAT)}$</td>
<td>H22B1</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_F = 60 , mA, I_C = 50 , mA$</td>
<td>$V_{CE(SAT)}$</td>
<td>H22B1/2</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>$I_F = 10 , mA, V_{CC} = 5 , V, R_L = 750 , \Omega$</td>
<td>t_{on}</td>
<td>All</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>$I_F = 60 , mA, V_{CC} = 5 , V, R_L = 750 , \Omega$</td>
<td>t_{on}</td>
<td>All</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>μs</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>$I_F = 10 , mA, V_{CC} = 5 , V, R_L = 750 , \Omega$</td>
<td>t_{off}</td>
<td>All</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>$I_F = 60 , mA, V_{CC} = 5 , V, R_L = 750 , \Omega$</td>
<td>t_{off}</td>
<td>All</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>μs</td>
</tr>
</tbody>
</table>
Figure 1. Output Current vs. Input Current

- Input Current (mA) vs. Normalized Output Current
- Normalized to IF = 5 mA, VCE = 1.5 V, Pulsed, PRR = 100 pps
- PW = 100 µs

Figure 2. Output Current vs. Temperature

- Ambient Temperature (°C) vs. Normalized Output Current
- Normalized to IF = 5 mA, VCE = 1.5 V, Pulsed
- IF = 10 mA
- IF = 60 mA
- IF = 30 mA
- IF = 20 mA
- IF = 10 mA
- IF = 5 mA
- IF = 2 mA

Figure 3. VCE(SAT) vs. Temperature

- Ambient Temperature (°C) vs. Normalized VCE(SAT)
- Normalized to IC = 1.8 mA, TA = 25 °C, Pulsed
- PW = 100 µs, PRR = 100 pps
- IF = 60 mA
- IF = 50 mA
- IF = 30 mA
- IF = 20 mA
- IF = 10 mA
- IF = 5 mA
- IF = 3 mA
Figure 4. Leakage Current vs. Temperature

Detector

- Normalized to $V_{CE} = 25\ V$
- $T_A = 25\ ^\circ C$
- $V_{CE} = 25\ V$
- $V_{CE} = 10\ V$

Emitter

- Normalized to $V_R = 5\ V$
- $T_A = 25\ ^\circ C$

Figure 5. Switching Speed vs. RL

- $I_f = 7.5\ \text{amps}$, $V_{CC} = 5V$
- Normalized to $R_L = 750\ \Omega$
- $PW = 300\ \mu s$
- $PPR = 100\ \text{pps}$
- $I_f = 7.5\ \frac{V_R}{R_L}$

Figure 6. Output Current vs. Distance

- Normalized to value with shield removed
- d, distance (mm)
- d, distance (mils)
- I_{on}, ON current
- I_{off}, OFF current
- V_{CC}
- $V_R = 5V$
- R_L
- $RL + VCC$
- I_f
- $78.7\ 157.5\ 236.2\ 315\ 393.7$
- BLACK SHIELD
- BLACK SHIELD
- SHIELD REMOVED

© 2002 Fairchild Semiconductor Corporation
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.