BluNor BT40F is a powerful, highly flexible, ultra low power Bluetooth Low Energy (BLE) using Nordic nRF5340 SoC. With a dual core ARM Cortex™ M33 MCU, embedded 2.4GHz multi-protocol transceiver, and an integrated PCB trace antenna or u.FL connector for an external antenna. A power amplifier is integrated in BT40X and BT40XE to increase Bluetooth range. It allows faster time to market with reduced development cost.

A host board designed for BT840F Series can be upgraded to use BT40F Series.

Specifications:
- nRF5340 QKAA, dual core ARM® Cortex M33
- Application Core
 - 128/64 MHz Cortex M33 with FPU and DSP instructions
 - 1MB flash, 512KB RAM
 - 8KB 2-way set associate cache
 - ARM® TrustZone® Cryptocell-312 co-processor
- Network core:
 - 64 MHz Cortex M33 with 2KB instruction cache
 - 256KB flash, 64KB RAM
 - 2.6 mA in RX and 3.2 mA in 0dBm TX
 - Receiver Sensitivity: -97.5 dBm at 1Mbps
 - TX power: programmable +3dBm to -20dBm
 - BLE 5.1 data rate: 2Mbps, 1Mbps, 500kbps, 125kbps.
 - EEE 802.15.4 data rate: 250 Kbps
 - 2.4 GHz proprietary data rate: 2 Mbps, 1 Mbps
- DC-DC converter, inductors on board.
- Direct powered by Lithium batteries or USB supply (up to 5.5V)
- 48 General purpose I/O pins
- USB 2.0 full speed (12 Mbps) controller
- QSPI interface
- Type 2 NFC-A tag with wake-on field, Touch-to-pair support
- Programmable peripheral interconnect (PPI)
- 12 bit/200 Ksps ADC, 8 configurable channels with programmable gain
- Temperature sensor
- Up to 3x pulse width modulator (PWM)
- Audio peripherals: I²S, digital microphone interface (PDM)
- 5 x 32 bit timers with counter mode
- Up to 3x SPI masters/3x SPI slaves
- Up to 2x I²C compatible 2-wire masters/slaves
- 2x UART (CTS/RTS)
- Quadrature Demodulator (QDEC)
- 2x real time counters (RTC)
- Hybrid pins: 16 castellated and 45 LGA.
- Integrated PCB trace antenna or u.FL connector
- Over-the-Air (OTA) firmware update

Model Summaries

<table>
<thead>
<tr>
<th>SoC</th>
<th>BT40F</th>
<th>BT40</th>
<th>BT40E</th>
<th>BT40X</th>
</tr>
</thead>
<tbody>
<tr>
<td>nRF5340 QKAA</td>
<td>nRF5340 QKAA</td>
<td>nRF5340 QKAA</td>
<td>nRF5340 QKAA</td>
<td>nRF5340 + nRF21540</td>
</tr>
<tr>
<td>Size</td>
<td>15x20.8x1.9mm</td>
<td>14x16x1.9mm</td>
<td>14x16x1.9mm</td>
<td>15x28.0x1.9mm</td>
</tr>
<tr>
<td>BT Antenna</td>
<td>PCB trace</td>
<td>PCB trace</td>
<td>u.FL</td>
<td>PA+PCB trace/u.FL</td>
</tr>
<tr>
<td>Max TX</td>
<td>-40°C to +105°C</td>
<td>-40°C to +105°C</td>
<td>-40°C to +105°C</td>
<td>-40°C to +105°C</td>
</tr>
<tr>
<td>Availability</td>
<td>Sample</td>
<td>Sample 4Q20</td>
<td>Sample</td>
<td>Sample 1Q21</td>
</tr>
<tr>
<td>Model Summaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Of Contents

1. Introduction ...3
 BT40F Block Diagram ..3
 BT40F ...3
 BT403 ...3
 BT40E ...3
 BT40X Block Diagram ..4
 BT40X ...4
 BT40XE ..5

2. Codes Development Using Nordic Tools ...6
 Over-The-Air DFU ...6
 SoftDevices ..6
 Development Tools ...6

3. Product Descriptions ..7
 Block Diagram of nRF5340 ..7
 Mechanical Drawings ..9
 Pin Assignments of BT40 ...12
 Pin Function ..13
 Mounting BT40F on the Host PCB ...15
 Host Board Design for Low Cost or Long Range ...16
 Control Nordic nRF21540 Power Amplifier ...17

4. BT40F Evaluation Board ...18
 Nordic Development Tools ..19
 Android OS Apps ...19
 iOS Apps ...19
 EV-BT40F Evaluation Board Schematics ..20
 Suggestion for Battery Power Application ...20

5. Miscellaneous ..21
 Soldering Temperature-Time Profile for Re-Flow Soldering ...21
 Cautions, Design Notes, and Installation Notes ...21
 Packaging and Lot Number ...25
 FCC Label ..25
 Revision History ..26
 Contact Us ...27
1. Introduction
BluNor BT40F Series are powerful, highly flexible, ultra low power wireless modules using Nordic nRF5340 SoCs. With a dual core ARM Cortex™ M33 MCU, embedded 2.4GHz multi-protocol transceiver, and an integrated antenna, it allows faster time to market with reduced development cost.

BT40F Block Diagram
The following is a block diagram of BT40F. Antenna circuit and main clock are integrated. All 48 GPIOs of nRF5340 can be accessed from main board. For lower power consumption at idle state, a 32.768 kHz crystal can be added on the host board. Connection to an external NFC (Near Field Communication) antenna is provided.

BlurNor BT40F is a sister module of BT840F, an nRF52840 module. The physical size is the same.

There are 3 modules in the BT40F Series.

BT40F
- Uses an nRF5340 QKAA with dual core Cortex M33 MCU
- Supports NFC
- Integrated high performance PCB trace antenna.
- Size: 15x20.8x1.9mm.

BT40
- Uses an nRF5340 QIAA with dual core Cortex MCU
- Integrated PCB trace antenna.
- Size: 14x16x1.9mm.

BT40E
- Uses an nRF5340 QIAA with dual core Cortex M33 MCU
• An u.FL connector for external antenna. Size: 14x16x1.9mm.

BT40X Block Diagram
A Nordic nRF21540 power amplifier is integrated with nRF5340 SoC in BT40X and BT40XE modules.

BT40X
• Uses an nRF5340 QKAA with dual core Cortex M33 MCU
• Supports NFC
• Integrated Nordic nRF21540 power amplifier
• Integrated 32.768 KHz sleep crystal
• Integrated PCB trace antenna
• Size: 15x28x1.9mm.
BLE 5.1, 802.15.4 Modules, BT40/F/E/X/XE

BT40XE
- Uses an nRF5340 QKAA with dual core Cortex M33 MCU
- Integrated Nordic nRF21540 power amplifier.
- Integrated 32.768 KHz sleep crystal.
- An u.FL connector for external antenna.
- Size: 15x28x1.9mm.
2. Codes Development Using Nordic Tools

Development tools by Nordic and other third party development tools recommended by Nordic should be used.

Nordic development environment for nRF5340 offers a clean separation between application code development and embedded protocol stacks. This means compile, link and run time dependencies with the embedded stack and associated debugging challenges are removed. The Bluetooth low energy and ANT stack is a pre-compiled binary, leaving application code to be compiled stand-alone. The embedded stack interface uses an asynchronous and event driven model removing the need for RTOS frameworks.

Over-The-Air DFU

The nRF52840 is supported by an Over-The-Air Device Firmware Upgrade (OTA DFU) feature. This allows for in the field updates of application software and SoftDevice.

SoftDevices

The Nordic protocol stacks are known as SoftDevices and complement the nRF53 Series SoCs. All nRF53 Series are programmable with software stacks from Nordic. This bring maximum flexibility to application development and allows the latest stack version to be programmed into the SoC.

SoftDevices available from Nordic:

*S***: Bluetooth low energy concurrent central/peripheral/observer/broadcaster stack.

Development Tools

Nordic Semiconductor provides a complete range of hardware and software development tools for the nRF53 Series devices. nRF53 DK board is recommended for firmware development.

Nordic software development tools can be downloaded from the following webpage.

3. Product Descriptions
Brief description of nRF5340 SoC is provided. For full description of the SoC, please download from Nordic Semiconductor website.

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy

Block Diagram of nRF5340
The following is a block diagram of Nordic nRF5340 Bluetooth Low Energy (BLE) SoC. Arrows with white heads indicate signals that share physical pins with other signals.
nRF5340 is a wireless ultra-low power multiple core System on Chip (SoC) integrating two fully programmable
Arm Cortex M33 processors, advanced security features, a range of peripherals, and a multiprotocol 2.4 GHz
transceiver. The transceiver supports Bluetooth low energy, ANT™, and 802.15.4 and allows the
implementation of proprietary 2.4 GHz protocols.

The two Arm Cortex M33 processors share the power, clock, and peripheral architecture with Nordic
Semiconductor nRF51, nRF52, and nRF91 Series of PAN/LAN SoCs, ensuring minimal porting efforts. The
application core is a full-featured Arm Cortex M33 processor including DSP instructions and FPU and running
at up to 128 MHz with 1MB of flash and 512 KB of RAM. The option to run the application processor at 64 MHz
allows the CPU to increase energy efficiency. The network core is an Arm Cortex M33 processor with a
reduced feature set, designed for ultra-low power operation. It runs at a fixed 64 MHz frequency and contains
256 KB of flash and 64 KB of RAM.

The peripheral set offers a variety of analog and digital functionality enabling single chip implementation of a
wide range of applications. Arm trustZone technology, Arm cryptoCell-312, and supporting blocks for system
protection and key management are embedded for the advanced security needed for IoT applications.
Mechanical Drawings

Mechanical drawings of BT40F, BT40, and BT40E is identical to that of BT840F, BT840, and BT840E, respectively.

Two types of pins are available to meet different application requirements.

- 16 castellated pins for application needing limited number of IOs. SMT equipment is not required for soldering castellated pins.
- 45 LGA (Land Grid Array) pins to access all 48 GPIOs of nRF52840 when needed.

BT40F mechanical drawings, top view
BT40 and BT40E mechanical drawings, top view.
BT40X mechanical drawings, top view
Pin Assignments of BT40

The followings are BT40 pin assignment. Pin functions are in a table in next section. Please refer to Nordic nRF5340 Product Specifications for detailed descriptions and features supported.

BT840F and BT40F pin assignments.
Pin Function

<table>
<thead>
<tr>
<th>Pin Function</th>
<th>BT40</th>
<th>52840</th>
<th>BT40</th>
<th>nRF5340</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>pin#</td>
<td>pin#</td>
<td>pinname</td>
<td>pin#</td>
<td>pin#</td>
<td>pinname</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>G1</td>
<td>P0.26/SDA</td>
<td>1</td>
<td>AE1</td>
<td>P1.02</td>
<td>GPIO, configured as I2C SDA on EV board</td>
</tr>
<tr>
<td>2</td>
<td>H2</td>
<td>P0.27/SCL</td>
<td>2</td>
<td>AF2</td>
<td>P0.27</td>
<td>GPIO, configured as I2C SCL on EV board</td>
</tr>
<tr>
<td>3</td>
<td>D2</td>
<td>P0.00/XL1</td>
<td>3</td>
<td>N1</td>
<td>P0.00/XL1</td>
<td>GPIO, connection for 32.768kHz crystal</td>
</tr>
<tr>
<td>4</td>
<td>F2</td>
<td>P0.01/XL2</td>
<td>4</td>
<td>R1</td>
<td>P0.01/XL2</td>
<td>GPIO, connection for 32.768kHz crystal</td>
</tr>
<tr>
<td>5</td>
<td>A12</td>
<td>P0.02/AIN0</td>
<td>5</td>
<td>V2</td>
<td>P0.04/AIN0</td>
<td>GPIO, Analog input</td>
</tr>
<tr>
<td>6</td>
<td>B13</td>
<td>P0.03/AIN1</td>
<td>6</td>
<td>Y2</td>
<td>P0.05/AIN1</td>
<td>GPIO, Analog input</td>
</tr>
<tr>
<td>7</td>
<td>L24</td>
<td>P0.09/NFC1</td>
<td>7</td>
<td>W1</td>
<td>P0.02/NFC1</td>
<td>GPIO, NFC antenna connection</td>
</tr>
<tr>
<td>8</td>
<td>J24</td>
<td>P0.10/NFC2</td>
<td>8</td>
<td>AA1</td>
<td>P0.03/NFC2</td>
<td>GPIO, NFC antenna connection</td>
</tr>
<tr>
<td>9</td>
<td>B1</td>
<td>VDD</td>
<td>9</td>
<td>A19</td>
<td>VDD</td>
<td>DC supply 1.7V to 3.6V</td>
</tr>
<tr>
<td>10</td>
<td>B7</td>
<td>GND</td>
<td>10</td>
<td>A25</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>T2</td>
<td>P0.11</td>
<td>11</td>
<td>AJ1</td>
<td>P0.09</td>
<td>GPIO</td>
</tr>
<tr>
<td>12</td>
<td>AD22</td>
<td>P1.00</td>
<td>12</td>
<td>AK4</td>
<td>P0.11</td>
<td>GPIO</td>
</tr>
<tr>
<td>13</td>
<td>AD8</td>
<td>P0.13</td>
<td>13</td>
<td>B24</td>
<td>P0.30</td>
<td>GPIO</td>
</tr>
<tr>
<td>14</td>
<td>AC13</td>
<td>P0.18/RESET</td>
<td>14</td>
<td>AC31</td>
<td>RESET</td>
<td>GPIO, internal RC reset circuit, configurable as RESET pin</td>
</tr>
<tr>
<td>15</td>
<td>AA24</td>
<td>SWDCLK</td>
<td>15</td>
<td>W31</td>
<td>SWDCLK</td>
<td>Serial Wire Debug clock input</td>
</tr>
<tr>
<td>16</td>
<td>AC24</td>
<td>SWDIO</td>
<td>16</td>
<td>AA31</td>
<td>SWDIO</td>
<td>Serial Wire Debug I/O</td>
</tr>
<tr>
<td>Z0</td>
<td>B19</td>
<td>P1.11</td>
<td>Z0</td>
<td>AK26</td>
<td>P1.109</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z1</td>
<td>B17</td>
<td>P1.12</td>
<td>Z1</td>
<td>R31</td>
<td>P1.10</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z2</td>
<td>A16</td>
<td>P1.13</td>
<td>Z2</td>
<td>B20</td>
<td>P1.11</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z3</td>
<td>B15</td>
<td>P1.14</td>
<td>Z3</td>
<td>B18</td>
<td>P1.12</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z4</td>
<td>A14</td>
<td>P1.15</td>
<td>Z4</td>
<td>A17</td>
<td>P1.13</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z5</td>
<td>A20</td>
<td>P1.10</td>
<td>Z5</td>
<td>B16</td>
<td>P1.14</td>
<td>GPIO</td>
</tr>
<tr>
<td>Z6</td>
<td>R24</td>
<td>P1.06</td>
<td>Z6</td>
<td>B14</td>
<td>P1.15</td>
<td>GPIO</td>
</tr>
<tr>
<td>A0</td>
<td>GND</td>
<td>A0</td>
<td>A25</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>B11</td>
<td>P0.28/AIN4</td>
<td>A1</td>
<td>AB2</td>
<td>P0.06</td>
<td>GPIO, Analog input</td>
</tr>
<tr>
<td>A2</td>
<td>A10</td>
<td>P0.29/AIN5</td>
<td>A2</td>
<td>AD2</td>
<td>P0.07</td>
<td>GPIO, Analog input</td>
</tr>
<tr>
<td>A3</td>
<td>J1</td>
<td>P0.04/AIN2</td>
<td>A3</td>
<td>AH2</td>
<td>P0.08</td>
<td>GPIO</td>
</tr>
<tr>
<td>A4</td>
<td>K2</td>
<td>P0.05/AIN3</td>
<td>A4</td>
<td>AL9</td>
<td>P0.16</td>
<td>GPIO</td>
</tr>
<tr>
<td>A5</td>
<td>M2</td>
<td>P0.07</td>
<td>A5</td>
<td>M2</td>
<td>P1.00</td>
<td>GPIO</td>
</tr>
<tr>
<td>A6</td>
<td>P2</td>
<td>P1.08</td>
<td>A6</td>
<td>AL23</td>
<td>P1.08</td>
<td>GPIO</td>
</tr>
<tr>
<td>B0</td>
<td>GND</td>
<td>B0</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>AC21</td>
<td>P0.25</td>
<td>B1</td>
<td>AL13</td>
<td>P0.19</td>
<td>GPIO</td>
</tr>
<tr>
<td>B2</td>
<td>B9</td>
<td>P0.30/AIN6</td>
<td>B2</td>
<td>AK12</td>
<td>P0.17</td>
<td>GPIO</td>
</tr>
<tr>
<td>B3</td>
<td>A8</td>
<td>P0.31/AIN7</td>
<td>B3</td>
<td>AK8</td>
<td>P0.14</td>
<td>GPIO</td>
</tr>
<tr>
<td>B4</td>
<td>L1</td>
<td>P0.06</td>
<td>B4</td>
<td>AK10</td>
<td>P0.15</td>
<td>GPIO, NC for BT840X, BT840XE, PA control</td>
</tr>
<tr>
<td>B5</td>
<td>N1</td>
<td>P0.08</td>
<td>B5</td>
<td>AK6</td>
<td>P0.12</td>
<td>GPIO, NC for BT840X, BT840XE, PA control</td>
</tr>
<tr>
<td>B6</td>
<td>V23</td>
<td>P1.03</td>
<td>B6</td>
<td>AL5</td>
<td>P0.13</td>
<td>GPIO</td>
</tr>
<tr>
<td>C0</td>
<td>GND</td>
<td>C0</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>AD20</td>
<td>P0.24</td>
<td>C1</td>
<td>B22</td>
<td>P0.31</td>
<td>GPIO</td>
</tr>
<tr>
<td>C2</td>
<td>AD18</td>
<td>P0.22</td>
<td>C2</td>
<td>AL15</td>
<td>P0.21</td>
<td>GPIO</td>
</tr>
<tr>
<td>C3</td>
<td>AD12</td>
<td>P0.17</td>
<td>C3</td>
<td>AL27</td>
<td>P0.24</td>
<td>GPIO, NC for BT840X, BT840XE, PA control</td>
</tr>
<tr>
<td>C4</td>
<td>AD10</td>
<td>P0.15</td>
<td>C4</td>
<td>AK20</td>
<td>P0.23</td>
<td>GPIO</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>C5</td>
<td>W24</td>
<td>P1.02</td>
<td>C5</td>
<td>AK16</td>
<td>P0.20</td>
<td>GPIO</td>
</tr>
<tr>
<td>C6</td>
<td>U24</td>
<td>P1.04</td>
<td>C6</td>
<td>AK28</td>
<td>P0.25</td>
<td>GPIO</td>
</tr>
<tr>
<td>D0</td>
<td>GND</td>
<td>D0</td>
<td>D0</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>AC19</td>
<td>P0.23</td>
<td>D1</td>
<td>AL29</td>
<td>P0.26</td>
<td>GPIO</td>
</tr>
<tr>
<td>D2</td>
<td>AC15</td>
<td>P0.19</td>
<td>D2</td>
<td>AK30</td>
<td>P0.27</td>
<td>GPIO, NC for BT840 X, BT840XE, PA control</td>
</tr>
<tr>
<td>D3</td>
<td>AC11</td>
<td>P0.16</td>
<td>D3</td>
<td>AE31</td>
<td>P0.28</td>
<td>GPIO</td>
</tr>
<tr>
<td>D4</td>
<td>AC9</td>
<td>P0.14</td>
<td>D4</td>
<td>U31</td>
<td>P0.29</td>
<td>GPIO</td>
</tr>
<tr>
<td>D5</td>
<td>Y23</td>
<td>P1.01</td>
<td>D5</td>
<td>AK16</td>
<td>P0.22</td>
<td>GPIO</td>
</tr>
<tr>
<td>D6</td>
<td>T23</td>
<td>P1.05</td>
<td>D6</td>
<td>P2</td>
<td>P1.01</td>
<td>GPIO</td>
</tr>
<tr>
<td>E0</td>
<td>P23</td>
<td>P1.07</td>
<td>E0</td>
<td>AL19</td>
<td>P1.04</td>
<td>GPIO</td>
</tr>
<tr>
<td>E1</td>
<td>AD16</td>
<td>P0.20</td>
<td>E1</td>
<td>AK22</td>
<td>P1.05</td>
<td>GPIO</td>
</tr>
<tr>
<td>E2</td>
<td>AC17</td>
<td>P0.21</td>
<td>E2</td>
<td>AL21</td>
<td>P1.06</td>
<td>GPIO</td>
</tr>
<tr>
<td>E3</td>
<td>R1</td>
<td>P1.09</td>
<td>E3</td>
<td>AK24</td>
<td>P1.07</td>
<td>GPIO</td>
</tr>
<tr>
<td>E4</td>
<td>AD6</td>
<td>D+</td>
<td>E4</td>
<td>AL23</td>
<td>P1.08</td>
<td>USB D+</td>
</tr>
<tr>
<td>E5</td>
<td>AD4</td>
<td>D-</td>
<td>E5</td>
<td>B2</td>
<td>D+</td>
<td>USB D-</td>
</tr>
<tr>
<td>E6</td>
<td>U1</td>
<td>P0.12</td>
<td>E6</td>
<td>B4</td>
<td>D-</td>
<td>GPIO</td>
</tr>
<tr>
<td>F0</td>
<td>H0</td>
<td></td>
<td></td>
<td></td>
<td>Ground pad</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td>Ground pad</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>H2</td>
<td></td>
<td></td>
<td></td>
<td>Ground pad</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>H3</td>
<td></td>
<td></td>
<td></td>
<td>Ground pad</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Y2</td>
<td>VDDH</td>
<td>F4</td>
<td>E1</td>
<td>VDDH</td>
<td>High Voltage Power Supply</td>
</tr>
<tr>
<td>F5</td>
<td>AB2</td>
<td>DCCH</td>
<td>F4</td>
<td>J1</td>
<td>DCCH</td>
<td>DC to DC converer output</td>
</tr>
<tr>
<td>F6</td>
<td>AD2</td>
<td>VBUS</td>
<td>F6</td>
<td>A5</td>
<td>VBUS</td>
<td>5V DC power for USB 3.3V regulator</td>
</tr>
</tbody>
</table>
Mounting BT40F on the Host PCB
The following figure shows recommended mounting of BT40F module on the host PCB.

- For the best Bluetooth range performance, the antenna area of module shall extend 9.8 mm outside the edge of host PCB board, or 9.8 mm outside the edge of a ground plane.

- The next choice is to place a module on a corner of host PCB, the antenna area shall extend 9.8 mm from the edge of ground plane. Ground plane shall be at least 5 mm from the edge of the antenna area of module.

- We don’t recommend mounting BT40F module in the middle of a host PCB.

For the best Bluetooth range performance, keep all external metal at least 30mm from the antenna area.
Host Board Design for Low Cost or Long Range

On nRF53 series SoCs, Nordic offers various memory options and protocol supports. Fanstel offers various antenna and power amplifier options. A host board can be designed to accommodate these nRF53 modules. Our suggestions for host PCB design:

If your main goal is minimum PCB cost,

- use a 2-sided PCB.
- Use library component from EV-BT40F Gerber files, can be downloaded from http://www.fanstel.com/download-document/. It has 16 castellated pins plus 24 LGA pins. BT40F library component can be used. However, signal routing can be difficult on a 2-sided PCB.
- Be sure of no metal contact in the area of 21 additional BT40F pins.
- BT40F can be mounted on a BT840F pad.

If you main goal is maximum wireless range,

- use a 4 or more layers PCB.
- As much ground plane under BT40F, on top side of host PCB as possible. Use EV-BT40F Gerber files as an example.
- If your products may need wireless range of 1350 meters or more, allocate physical space for a 15x28x1.9mm module. This larger module size is required to accommodate Nordic nRF21540 power amplifier.
- *(To be determined)* Don’t use P0.06 (BT840F pin B4), P0.17 (BT840F pin C3), and P0.19 (BT840F pin D2) on the host board. These pins are used to control SKY66112 power amplifier in BT840X and BT840XE.
Control Nordic nRF21540 Power Amplifier
BT40X uses nRF21540 power amplifier.

Control codes to be provided.
4. BT40F Evaluation Board
An evaluation board consists of the followings:

- Mini USB cable
- Evaluation board
- 10-conductor cable for connection to Nordic nRF53 DK (DK is not included)
Nordic Development Tools
A Nordic nRF53 DK is recommended for programming this evaluation board. Nordic development tools can be downloaded from:

https://www.nordicsemi.com/eng/Products/nRF52840

Many application examples can be downloaded from Nordic website.

Some firmware, Android OS, and iOS app codes can be downloaded from Bluetooth 5 Codes section of this Fanstel webpage.

http://www.fanstel.com/download-document/

BT40 firmware can be used in all nRF5340 modules without power amplifier, e.g., BT40F and BT40E.

Android OS Apps
The following Android OS apps are available for download from Google Play Store:

BlueNor nrf5x: to use with Bluetooth 5 stacks, AT commands, or Slave firmware. Master firmware does not connect to a smartphone. Source codes can be downloaded from http://www.fanstel.com/download-document/

BlueNor Mesh: to use with BlueNor mesh firmware to send command to any node in a mesh. Node number is displayed when acknowledgement is received. Source codes will be uploaded to Fanstel website when supporting Bluetooth 5.

iOS Apps
The following iOS apps can be downloaded from Apple APP Store.

BlueNor Mesh: to use with BlueNor mesh firmware to send command to any node in a mesh. Node number is displayed when acknowledgement is received.

BlueNor nrf5x firmware, apps, and source codes will be uploaded when ready.
EV-BT40F Evaluation Board Schematics
Evaluation board schematics and Gerber files can be downloaded from

http://www.fanstel.com/download-document/

Evaluation board can be used as a reference design for using modules. EV-BT40F is designed for the BT40F soldering pads with 61 pins. This EV board can also be used for BT40, BT40E, BT40X, and BT40XE modules.

Suggestion for Battery Power Application
Standby current consumption is important for battery-powered product. We suggest adding a 32.768 kHz crystal and 2 capacitors on host board. The 32MHz main clock won’t be active at idle state to save power.

Two inductors required for on-board DC to DC converter are inside BT40F. You can enable DCDC converter to have lower power consumption.
5. Miscellaneous

Soldering Temperature-Time Profile for Re-Flow Soldering
Maximum number of cycles for re-flow is 2. No opposite side re-flow is allowed due to module weight.

Cautions, Design Notes, and Installation Notes
Failure to follow the guidelines set forth in this document may result in degrading of the product’s functions and damage to the product.

Design Notes
(1) Follow the conditions written in this specification, especially the control signals of this module.

(2) The supply voltage has to be free of AC ripple voltage (for example from a battery or a low noise regulator output). For noisy supply voltages, provide a decoupling circuit (for example a ferrite in series connection and a bypass capacitor to ground of at least 47uF directly at the module).

(3) This product should not be mechanically stressed when installed.

(4) Keep this product away from heat. Heat is the major cause of decreasing the life of these products.

(5) Avoid assembly and use of the target equipment in conditions where the products’ temperature may exceed the maximum tolerance.

(6) The supply voltage should not be exceedingly high or reversed. It should not carry noise and/or spikes.
(7) this product away from other high frequency circuits.

Notes on Antenna and PCB Layout

(1) Don’t use a module with internal antenna inside a metal case.

(2) For PCB layout:
 - Avoid running any signal line below module whenever possible,
 - No ground plane below antenna,
 - If possible, cut-off the portion of main board PCB below antenna.

Installation Notes

(1) Reflow soldering is possible twice based on the time-temperature profile in this data sheets. Set up the temperature at the soldering portion of this product according to this reflow profile.

(2) Carefully position the products so that their heat will not burn into printed circuit boards or affect the other components that are susceptible to heat.

(3) Carefully locate these products so that their temperatures will not increase due to the effects of heat generated by neighboring components.

(4) If a vinyl-covered wire comes into contact with the products, then the cover will melt and generate toxic gas, damaging the insulation. Never allow contact between the cover and these products to occur.

(5) This product should not be mechanically stressed or vibrated when reflowed.

(6) If you want to repair your board by hand soldering, please keep the conditions of this chapter.

(7) Do not wash this product.

(8) Refer to the recommended pattern when designing a board.

(9) Pressing on parts of the metal cover or fastening objects to the metal will cause damage to the unit.

Usage Condition Notes

(1) Take measures to protect the unit against static electricity. If pulses or other transient loads (a large load applied in a short time) are applied to the products, check and evaluate their operation before assembly on the final products.

(2) Do not use dropped products.

(3) Do not touch, damage or soil the pins.

(4) Follow the recommended condition ratings about the power supply applied to this product.

(5) Electrode peeling strength: Do not add pressure of more than 4.9N when soldered on PCB

(6) Pressing on parts of the metal cover or fastening objects to the metal cover will cause damage.

(7) These products are intended for general purpose and standard use in general electronic equipment, such as home appliances, office equipment, information and communication equipment.
Storage Notes

1. The module should not be stressed mechanically during storage.

2. Do not store these products in the following conditions or the performance characteristics of the product, such as RF performance will be adversely affected:
 - Storage in salty air or in an environment with a high concentration of corrosive gas.
 - Storage in direct sunlight
 - Storage in an environment where the temperature may be outside the range specified.
 - Storage of the products for more than one year after the date of delivery storage period.

3. Keep this product away from water, poisonous gas and corrosive gas.

4. This product should not be stressed or shocked when transported.

5. Follow the specification when stacking packed crates (max. 10).

Safety Conditions

These specifications are intended to preserve the quality assurance of products and individual components. Before use, check and evaluate the operation when mounted on your products. Abide by these specifications, without deviation when using the products. These products may short-circuit. If electrical shocks, smoke, fire, and/or accidents involving human life are anticipated when a short circuit occurs, then provide the following failsafe functions, as a minimum.

1. Ensure the safety of the whole system by installing a protection circuit and a protection device.

2. Ensure the safety of the whole system by installing a redundant circuit or another system to prevent a dual fault causing an unsafe status.

Other Cautions

1. This specification sheet is copyrighted. Reproduction of this data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.

2. Do not use the products for other purposes than those listed.

3. Be sure to provide an appropriate failsafe function on your product to prevent an additional damage that may be caused by the abnormal function or the failure of the product.

4. This product has been manufactured without any ozone chemical controlled under the Montreal Protocol.

5. These products are not intended for other uses, other than under the special conditions shown below. Before using these products under such special conditions, check their performance and reliability under the said special conditions carefully to determine whether or not they can be used in such a manner.
 - In liquid, such as water, salt water, oil, alkali, or organic solvent, or in places where liquid may splash.
• In direct sunlight, outdoors, or in a dusty environment
• In an environment where condensation occurs.
• In an environment with a high concentration of harmful gas.

(6) If an abnormal voltage is applied due to a problem occurring in other components or circuits, replace these products with new products because they may not be able to provide normal performance even if their electronic characteristics and appearances appear satisfactory.

(7) When you have any question or uncertainty, contact Fanstel.
Packaging and Lot Number
Production modules are delivered in reel, 1000 modules in each reel. Lot number for modules made after May 2019, can be used to track silicon version of SoC, module PCB version, and production test code version.

Lot: **D0 V2 18B - 00 00 000**
D0: 2 digits, version number of SoC.
V2: 2 digits, version number of module PCB.
18B: the first 2 digits for production test codes released year and the last digit for month in hex format. A=October, B=November, C=December. 18B was released in November 2018.
00 00 000, 7 digits, reserved for 2nd SoC for modules with 2 SoCs.

FCC LABEL
The Original Equipment Manufacturer (OEM) must ensure that the OEM modular transmitter must be labeled with its own FCC ID number. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown below. If the FCC ID is not visible when the equipment is installed inside another device, then the outside of the device into which the equipment is installed must also display a label referring to the enclosed equipment.

The end product with this module may subject to perform FCC part 15 unintentional emission test requirement and be properly authorized.

This device is intended for OEM integrator only.
Revision History

- Feb. 2020, Ver. 0.10: Initial release
- May 2020, Ver. 0.50: draft update
Contact Us
United States:
Fanstel Corp.
7466 E. Monte Cristo Ave. Scottsdale AZ 85260
Tel. 1 480-948-4928
Fax. 1-480-948-5459
Email: info@fanstel.com
Website: www.fanstel.com

Taiwan:
Fanstel Corp.
10F-10, 79 Xintai Wu Road
Xizhu, New Taipei City, Taiwan 22101
泛世公司
臺灣省新北市汐止區新臺五路79號10樓之10, 22101
Tel. 886-2-2698-9328
Fax. 886-2-2698-4813
Email: info@fanstel.com
Website: www.fanstel.com

China:
Fanstel Technologies Corp.
11 Jiale Street
Ping-Dih, Long-Gang, Shen Zhen, GD 518117
泛世康科技(深圳)有限公司
廣東省深圳市龍崗區坪地鎮佳樂街11號
Tel. 86-755-8409-0928
Fax. 86-755-8409-0973
QQ. 3076221086
Email: info@fanstel.com
Website: www.fanstel.com