
Manual

HI-TECH for dsPIC/PIC24 Compiler

HI-TECH Software.

Copyright (C) 2008 HI-TECH Software.
All Rights Reserved. Printed in Australia.

dsPIC is a registered trademark of Microchip Technology Inc.
Produced on: March 19, 2008

HI-TECH Software Pty. Ltd.
ACN 002 724 549

45 Colebard Street West
Acacia Ridge QLD 4110

Australia

email: hitech@htsoft.com
web: http://microchip.htsoft.com

ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://microchip.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents 3

List of Tables 13

1 Introduction 15
1.1 Typographic conventions . 15

2 DSPICC Command-line Driver 17
2.1 Long Command Lines . 18
2.2 Default Libraries . 18
2.3 Standard Runtime Code . 18
2.4 DSPICC Compiler Options . 18

2.4.1 -Bmodel: Select memory model . 21
2.4.2 -C: Compile to Object File . 21
2.4.3 -Dmacro: Define Macro . 21
2.4.4 -Efile: Redirect Compiler Errors to a File 22
2.4.5 -Gfile: Generate Source-level Symbol File 23
2.4.6 -Ipath: Include Search Path . 23
2.4.7 -Llibrary: Scan Library . 24
2.4.8 -L-option: Adjust Linker Options Directly 24
2.4.9 -Mfile: Generate Map File . 25
2.4.10 -Nsize: Identifier Length . 25
2.4.11 -Ofile: Specify Output File . 25
2.4.12 -P: Preprocess Assembly Files . 25
2.4.13 -Q: Quiet Mode . 25
2.4.14 -S: Compile to Assembler Code . 26
2.4.15 -Umacro: Undefine a Macro . 26
2.4.16 -V: Verbose Compile . 26

3

CONTENTS CONTENTS

2.4.17 -X: Strip Local Symbols . 26
2.4.18 --ASMLIST: Generate Assembler .LST Files 26
2.4.19 --CHAR=type: Make Char Type Signed or Unsigned 27
2.4.20 --CHIP=processor: Define Processor 27
2.4.21 --CHIPINFO: Display List of Supported Processors 27
2.4.22 --CODEOFFSET: Offset Program Code to Address 27
2.4.23 --CR=file: Generate Cross Reference Listing 27
2.4.24 --DEBUGGER=type: Select Debugger Type 28
2.4.25 --ERRFORMAT=format: Define Format for Compiler Messages 28

2.4.25.1 Using the Format Options . 28
2.4.25.2 Modifying the Standard Format 29

2.4.26 –ERRORS=number: Maximum Number of Errors 30
2.4.27 --FILL=opcode: Fill Unused Program Memory 30
2.4.28 --GETOPTION=app,file: Get Command-line Options 30
2.4.29 --HELP<=option>: Display Help . 30
2.4.30 --IDE=type: Specify the IDE being used 30
2.4.31 --LANG=language: Specify the Language for Messages 31
2.4.32 --MEMMAP=file: Display Memory Map 31
2.4.33 --MSGDISABLE=list: Warning messages to disable 31
2.4.34 --MSGFORMAT=format: Set Advisory Message Format 31
2.4.35 --NODEL: Do not remove temporary files 31
2.4.36 --NOEXEC: Don’t Execute Compiler . 32
2.4.37 --OPT<=type>: Invoke Compiler Optimizations 32
2.4.38 --OUTDIR: Specify a directory for output files 32
2.4.39 --OUTPUT=type: Specify Output File Type 32
2.4.40 --PRE: Produce Preprocessed Source Code 33
2.4.41 --PROTO: Generate Prototypes . 33
2.4.42 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges 34
2.4.43 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges . . 35
2.4.44 --RUNTIME=type: Specify Runtime Environment 35
2.4.45 --SCANDEP: Scan for Dependencies . 36
2.4.46 --SERIAL=hexcode@address: Store a Value at this Program Memory

Address . 36
2.4.47 --SETOPTION=app,file: Set The Command-line Options for Application 37
2.4.48 --SETUP=dir: Setup the product . 37
2.4.49 --STRICT: Strict ANSI Conformance . 37
2.4.50 --SUMMARY=type: Select Memory Summary Output Type 37
2.4.51 --TIME: Report time taken for each phase of build process 38
2.4.52 --VER: Display The Compiler’s Version Information 38

4

CONTENTS CONTENTS

2.4.53 --WARN=level: Set Warning Level . 38
2.4.54 --WARNFORMAT=format: Set Warning Message Format 39

3 C Language Features 41
3.1 ANSI Standard Issues . 41

3.1.1 Implementation-defined behaviour . 41
3.2 Processor-related Features . 41

3.2.1 Stack . 41
3.2.2 Configuration Fuses . 42

3.3 Files . 42
3.3.1 Source Files . 42
3.3.2 Symbol Files . 42
3.3.3 Library Files . 46

3.3.3.1 Standard Libraries . 46
3.3.3.2 Formatted Output Functions . 46
3.3.3.3 EEPROM and Flash Functions 47

3.3.4 Runtime startup Modules . 47
3.3.4.1 Software Stack . 48
3.3.4.2 Initialization of Interrupt Vector Tables 48
3.3.4.3 Initialization of Data psects . 49
3.3.4.4 Clearing the Bss Psects . 49
3.3.4.5 Linking in the C Libraries . 50
3.3.4.6 The powerup Routine . 51

3.4 Supported Data Types and Variables . 51
3.4.1 Radix Specifiers and Constants . 51
3.4.2 Bit Data Types and Variables . 53
3.4.3 8-Bit Integer Data Types and Variables . 54
3.4.4 16-Bit Integer Data Types . 54
3.4.5 32-Bit Integer Data Types and Variables . 54
3.4.6 Floating Point Types and Variables . 55
3.4.7 Structures and Unions . 56

3.4.7.1 Bit-fields in Structures . 56
3.4.7.2 Structure and Union Qualifiers 57

3.4.8 Standard Type Qualifiers . 58
3.4.8.1 Const and Volatile Type Qualifiers 58

3.4.9 Special Type Qualifiers . 58
3.4.9.1 Persistent Type Qualifier . 58
3.4.9.2 YData Type Qualifier . 59
3.4.9.3 Near and Far Type Qualifier . 59

5

CONTENTS CONTENTS

3.4.10 Pointer Types . 59
3.4.10.1 Data Pointers . 60
3.4.10.2 Function Pointers . 60
3.4.10.3 Qualifiers and Pointers . 60

3.5 Storage Class and Object Placement . 61
3.5.1 Local Variables . 61

3.5.1.1 Auto Variables . 61
3.5.1.2 Static Variables . 62

3.5.2 X and Y DATA Variables . 62
3.5.3 Absolute Variables . 62
3.5.4 Near Variables . 63
3.5.5 Far Variables . 63
3.5.6 Objects in the Program Space . 63

3.6 Functions . 63
3.6.1 Function Argument Passing . 63
3.6.2 Function Return Values . 64

3.6.2.1 Integral Return Values . 64
3.6.2.2 Structure Return Values . 64

3.7 Register Usage . 64
3.8 Operators . 64

3.8.1 Integral Promotion . 65
3.8.2 Shifts applied to integral types . 66
3.8.3 Division and modulus with integral types 66

3.9 Psects . 67
3.9.1 Compiler-generated Psects . 67

3.10 Interrupt Handling in C . 69
3.10.1 Interrupt Functions . 69

3.10.1.1 Context Saving on Interrupts . 72
3.10.1.2 Context Restoration . 72
3.10.1.3 Fast Interrupt Functions . 73

3.10.2 Enabling Interrupts . 73
3.11 Mixing C and Assembler Code . 73

3.11.1 External Assembly Language Functions . 73
3.11.2 #asm, #endasm and asm() . 75
3.11.3 Accessing C objects from within Assembly Code 76

3.11.3.1 Equivalent Assembly Symbols 77
3.11.3.2 Accessing specifal function register names from assembler 77

3.12 Preprocessing . 78
3.12.1 Preprocessor Directives . 78

6

CONTENTS CONTENTS

3.12.2 Predefined Macros . 78
3.12.3 Pragma Directives . 78

3.12.3.1 The #pragma inline Directive . 78
3.12.3.2 The #pragma jis and nojis Directives 81
3.12.3.3 The #pragma pack Directive . 81
3.12.3.4 The #pragma printf_check Directive 82
3.12.3.5 The #pragma psect Directive . 82
3.12.3.6 The #pragma regsused Directive 84
3.12.3.7 The #pragma switch Directive . 84

3.13 Linking Programs . 85
3.13.1 Replacing Library Modules . 85
3.13.2 Signature Checking . 86
3.13.3 Linker-Defined Symbols . 87

3.14 Standard I/O Functions and Serial I/O . 87

4 Macro Assembler 89
4.1 Assembler Usage . 89
4.2 Assembler Options . 90
4.3 HI-TECH C Assembly Language . 92

4.3.1 Statement Formats . 92
4.3.2 Characters . 93

4.3.2.1 Delimiters . 93
4.3.2.2 Special Characters . 93

4.3.3 Comments . 93
4.3.3.1 Special Comment Strings . 93

4.3.4 Constants . 94
4.3.4.1 Numeric Constants . 94
4.3.4.2 Character Constants and Strings 94

4.3.5 Identifiers . 94
4.3.5.1 Significance of Identifiers . 95
4.3.5.2 Assembler-Generated Identifiers 95
4.3.5.3 Location Counter . 95
4.3.5.4 Register Symbols . 96
4.3.5.5 Symbolic Labels . 96

4.3.6 Expressions . 96
4.3.7 Program Sections . 98
4.3.8 Assembler Directives . 99

4.3.8.1 GLOBAL . 99
4.3.8.2 END . 99

7

CONTENTS CONTENTS

4.3.8.3 PSECT . 99
4.3.8.4 ORG . 103
4.3.8.5 EQU . 103
4.3.8.6 SET . 104
4.3.8.7 DB . 104
4.3.8.8 DW . 104
4.3.8.9 DDW . 104
4.3.8.10 DS . 104
4.3.8.11 IF, ELSIF, ELSE and ENDIF . 105
4.3.8.12 MACRO and ENDM . 105
4.3.8.13 LOCAL . 106
4.3.8.14 ALIGN . 107
4.3.8.15 REPT . 107
4.3.8.16 IRP and IRPC . 108
4.3.8.17 PROCESSOR . 109
4.3.8.18 SIGNAT . 109

4.3.9 Assembler Controls . 109
4.3.9.1 COND . 109
4.3.9.2 EXPAND . 109
4.3.9.3 INCLUDE . 110
4.3.9.4 LIST . 110
4.3.9.5 NOCOND . 110
4.3.9.6 NOEXPAND . 111
4.3.9.7 NOLIST . 111
4.3.9.8 NOXREF . 111
4.3.9.9 PAGE . 111
4.3.9.10 SPACE . 111
4.3.9.11 SUBTITLE . 111
4.3.9.12 TITLE . 112
4.3.9.13 XREF . 112

5 Linker and Utilities 113
5.1 Introduction . 113
5.2 Relocation and Psects . 113
5.3 Program Sections . 114
5.4 Local Psects . 114
5.5 Global Symbols . 114
5.6 Link and load addresses . 115
5.7 Operation . 115

8

CONTENTS CONTENTS

5.7.1 Numbers in linker options . 116
5.7.2 -Aclass=low-high,... 117
5.7.3 -Cx . 117
5.7.4 -Cpsect=class . 117
5.7.5 -Dclass=delta . 117
5.7.6 -Dsymfile . 118
5.7.7 -Eerrfile . 118
5.7.8 -F . 118
5.7.9 -Gspec . 118
5.7.10 -Hsymfile . 119
5.7.11 -H+symfile . 119
5.7.12 -Jerrcount . 119
5.7.13 -K . 119
5.7.14 -I . 119
5.7.15 -L . 120
5.7.16 -LM . 120
5.7.17 -Mmapfile . 120
5.7.18 -N, -Ns and-Nc . 120
5.7.19 -Ooutfile . 120
5.7.20 -Pspec . 120
5.7.21 -Qprocessor . 122
5.7.22 -S . 122
5.7.23 -Sclass=limit[, bound] . 122
5.7.24 -Usymbol . 123
5.7.25 -Vavmap . 123
5.7.26 -Wnum . 123
5.7.27 -X . 123
5.7.28 -Z . 123

5.8 Invoking the Linker . 123
5.9 Map Files . 124

5.9.1 Call Graph Information . 125
5.10 Librarian . 127

5.10.1 The Library Format . 127
5.10.2 Using the Librarian . 128
5.10.3 Examples . 129
5.10.4 Supplying Arguments . 129
5.10.5 Listing Format . 129
5.10.6 Ordering of Libraries . 130
5.10.7 Error Messages . 130

9

CONTENTS CONTENTS

5.11 Objtohex . 130
5.11.1 Checksum Specifications . 130

5.12 Cref . 132
5.12.1 -Fprefix . 132
5.12.2 -Hheading . 133
5.12.3 -Llen . 133
5.12.4 -Ooutfile . 133
5.12.5 -Pwidth . 133
5.12.6 -Sstoplist . 133
5.12.7 -Xprefix . 134

5.13 Cromwell . 134
5.13.1 -Pname[,architecture] . 135
5.13.2 -N . 135
5.13.3 -D . 135
5.13.4 -C . 136
5.13.5 -F . 136
5.13.6 -Okey . 136
5.13.7 -Ikey . 136
5.13.8 -L . 136
5.13.9 -E . 137
5.13.10 -B . 137
5.13.11 -M . 137
5.13.12 -V . 137

5.14 Hexmate . 137
5.14.1 Hexmate Command Line Options . 138

5.14.1.1 + Prefix . 138
5.14.1.2 -CK . 139
5.14.1.3 -FILL . 140
5.14.1.4 -FIND . 140
5.14.1.5 -FIND...,REPLACE . 141
5.14.1.6 -FORMAT . 141
5.14.1.7 -HELP . 142
5.14.1.8 -LOGFILE . 142
5.14.1.9 -Ofile . 142
5.14.1.10 -SERIAL . 142
5.14.1.11 -STRING . 143

A Library Functions 145

10

CONTENTS CONTENTS

B Error and Warning Messages 263

C Chip Information 385

Index 391

11

CONTENTS CONTENTS

12

List of Tables

2.1 Driver File Types . 17
2.3 Error format specifiers . 29
2.4 Supported IDEs . 30
2.5 Supported languages . 31
2.6 Optimization Options . 32
2.7 Output file formats . 33
2.8 Runtime environment suboptions . 36
2.9 Memory Summary Suboptions . 38

3.1 Configuration Bit Settings for dsPIC30F Devices 43
3.2 Configuration Bit Settings for dsPIC33F & PIC24H Devices. 44
3.3 Configuration Bit Settings for PIC24F Devices. 45
3.4 Formatted Output Functionality and Linking . 47
3.5 Basic data types . 51
3.6 Radix formats . 52
3.7 Floating-point formats . 55
3.8 Floating-point format example IEEE 754 . 55
3.9 Integral division . 67
3.10 Interrupt Vector Address Macros . 69
3.10 Interrupt Vector Address Macros . 70
3.10 Interrupt Vector Address Macros . 71
3.10 Interrupt Vector Address Macros . 72
3.11 Predefined SFR names . 77
3.12 Preprocessor directives . 79
3.13 Predefined macros . 80
3.14 Pragma directives . 81
3.15 switch types . 85

13

LIST OF TABLES LIST OF TABLES

3.16 Supported standard I/O functions . 87

4.1 ASDSPIC command-line options . 90
4.2 Assembly statement formats . 93
4.3 Assembly numbers and bases . 94
4.4 Assembly operators . 97
4.5 Assembler Directives . 100
4.6 PSECT flags . 101
4.7 ASDSPIC assembler controls . 110
4.8 LIST control options . 111

5.1 Linker command-line options . 115
5.1 Linker command-line options . 116
5.2 Librarian command-line options . 128
5.3 Librarian key letter commands . 128
5.4 OBJTOHEX command-line options . 131
5.5 CREF command-line options . 133
5.6 CROMWELL format types . 134
5.7 CROMWELL command-line options . 135
5.8 -P option architecture arguments for COFF file output. 136
5.9 Hexmate command-line options . 139
5.10 INHX types used in -FORMAT option . 142

C.1 Devices supported by HI-TECH for dsPIC/PIC24 385
C.1 Devices supported by HI-TECH for dsPIC/PIC24 386
C.1 Devices supported by HI-TECH for dsPIC/PIC24 387
C.1 Devices supported by HI-TECH for dsPIC/PIC24 388
C.1 Devices supported by HI-TECH for dsPIC/PIC24 389

14

Chapter 1

Introduction

1.1 Typographic conventions
Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printed in constant-spaced type. When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in the INCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in
a constant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized using italicized type. When part of
a term requires substitution, that part should be printed in the appropriate font, but in italics. For
example: #include <filename.h>.

15

Typographic conventions Introduction

16

Chapter 2

DSPICC Command-line Driver

DSPICC is the driver invoked from the command line to compile and/or link C programs. The driver
has the following basic command format:

DSPICC [options] files [libraries]

It is conventional to supply the options (identified by a leading dash “-” or double dash “–”) before
the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler) and
object files. The order of the files is not important, except that it will affect the order in which code or
data appears in memory. Libraries are a list of library names, or -L options, see Section 2.4.7.
Source files, object files and library files are distinguished by the driver solely by the file type or
extension. Recognized file types are listed in Table 2.1. This means, for example, that an assembler
file must always have a .as extension (alphabetic case is not important).

The driver will check each file argument and perform appropriate actions. C files will be com-
piled; assembler files will be assembled. At the end, unless suppressed by one of the options dis-
cussed later, all object files resulting from compilation or assembly, or those listed explicitly on

Table 2.1: Driver File Types
File Type Meaning
.c C source file
.as Assembler source file
.obj Relocatable object code file
.lib Relocatable object library file

17

Long Command Lines DSPICC Command-line Driver

the command line, will be linked together with the standard runtime code and libraries and any
user-specified libraries. Functions in libraries will be linked into the resulting output file only if
referenced in the source code.

Invoking he driver with only object files specified as the file arguments (i.e. no source files) will
mean only the link stage is performed. It is typical in Makefiles to use the driver with a -C option
to compile several source files to object files, then to create the final program by invoking the driver
again with only the generated object files and appropriate libraries (and appropriate options).

2.1 Long Command Lines
The driver is capable of processing command lines exceeding any operating system limitation. To
do this, the driver may be passed options via a command file. The command file is read by using the
@ symbol. For example:

DSPICC @xyz.cmd

2.2 Default Libraries
The driver will search the appropriate standard C library by default for symbol definitions. This will
always be done last, after any user-specified libraries. The particular library used will be dependent
on the processor selected.

2.3 Standard Runtime Code
The driver will also automatically generate standard runtime start-up code appropriate for the pro-
cessor and options selected unless you have specified the to disable this via the --RUNTIME option.
If you require any special powerup initialization, you should use the powerup routine feature (see
Section 3.3.4.6).

2.4 DSPICC Compiler Options
Most aspects of the compilation can be controlled using the command-line driver. The driver will
configure and execute all required applications, such as the code generator, assembler and linker.

The driver will recognize the compiler options listed in the table below. The case of the options
is not important, however UNIX shells are case sensitive when it comes to names of files.

18

DSPICC Command-line Driver DSPICC Compiler Options

DSPICC Driver Options
Option Meaning

-Bmodel Select memory model
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--CODEOFFSET Reposition executable code to begin at this address
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--FILL Fill unused program memory with a specified code

sequence.
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MEMMAP=file Display memory summary information for the map

file
continued. . .

19

DSPICC Compiler Options DSPICC Command-line Driver

DSPICC Driver Options
Option Meaning

--MSGDISABLE Disable warning messages by their message ID num-
ber

--MSGFORMAT Redefine the format of compiler messages
--NODEL Do not remove temporary files generated by the com-

piler
--NOEXEC Go through the motions of compiling without actually

compiling
--OUTDIR Specify output files directory
--OPT<=type> Enable general compiler optimizations
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...>|tag Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SERIAL Insert a serial number at a fixed address in program

memory
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--TIME Display estimates on time taken for each phase of the

build process
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

All single letter options are identified by a leading dash character, “-”, e.g. -C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g. -Ddebug.

Multi-letter, or word, options have two leading dash characters, e.g. --ASMLIST. (Because of the
double dash, you can determine that the option --ASMLIST, for example, is not a -A option followed
by the argument SMLIST.) Some of these options define suboptions which typically appear as a

20

DSPICC Command-line Driver DSPICC Compiler Options

comma-separated list following an equal character, =, e.g. --OUTPUT=hex,cof. The exact format of
the options varies and are described in detail in the following sections.

Some commonly used suboptions include default, which represent the default specification
that would be used if this option was absent altogether; all, which indicates that all the available
suboptions should be enabled as if they had each been listed; and none, which indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus character, +, to indicate
that they are in addition to the other suboptions present, or a minus character “-”, to indicate that
they should be excluded. In the following sections, angle brackets, < >, are used to indicate optional
parts of the command.

2.4.1 -Bmodel: Select memory model
The compiler implements two memory models: small and large. These are selected by either using
the -Bs or -Bl options for small or large memory model respectively. In most cases small model
will suffice, and is the compiler’s default setting. If the selected processor has accessible program
memory at addresses above 0xFFFF and the program makes use of function pointers which may
point to functions located above this address, then selecting large model will cause the compiler
to generate code so that function pointers can reach these distant addresses. This is accomplished
automatically through the use of a jump table so that the need for larger pointer sizes is not required.

2.4.2 -C: Compile to Object File
The -C option is used to halt compilation after generating a relocatable object file. This option is
frequently used when compiling multiple source files using a “make” utility. If multiple source files
are specified to the compiler each will be compiled to a separate .obj file. The object files will be
placed in the directory in which DSPICC was invoked, to handle situations where source files are
located in read-only directories. To compile three source files main.c, module1.c and asmcode.as
to object files you could use a command similar to:

DSPICC --CHIP=30F6014 -C main.c module1.c asmcode.as

The compiler will produce three object files main.obj, module1.obj and asmcode.obj which
could then be linked to produce an Intel HEX file using the command:

DSPICC --CHIP=30F6014 main.obj module1.obj asmcode.obj

2.4.3 -Dmacro: Define Macro
The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using a #define directive in the source code. This option may take one of two forms,
-Dmacro which is equivalent to:

21

DSPICC Compiler Options DSPICC Command-line Driver

#define macro 1

placed at the top of each module compiled using this option, or -Dmacro=text which is equivalent
to:

#define macro text

where text is the textual substitution required. Thus, the command:

DSPICC --CHIP=30F6014 -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1
#define buffers 10

2.4.4 -Efile: Redirect Compiler Errors to a File
Some editors do not allow the standard command line redirection facilities to be used when invoking
the compiler. To work with these editors, DSPICC allows an error listing filename to be specified
as part of the -E option. Error files generated using this option will always be in -E format. For
example, to compile x.c and redirect all errors to x.err, use the command:

DSPICC --CHIP=30F6014 -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying an addition charac-
ter, +, at the start of the error filename, for example:

DSPICC --CHIP=30F6014 -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the -E option to create the file then use -E+ when compiling all the other source files. For example,
to compile a number of files with all errors combined into a file called project.err, you could use
the -E option as follows:

DSPICC --CHIP=30F6014 -Eproject.err -O -C main.c
DSPICC --CHIP=30F6014 -E+project.err -O -C part1.c
DSPICC --CHIP=30F6014 -E+project.err -C asmcode.as

The file project.err will contain any errors from main.c, followed by the errors from part1.c
and then asmcode.as, for example:

22

DSPICC Command-line Driver DSPICC Compiler Options

main.c 11 22:) expected
main.c 63 0: ; expected
part1.c 5 0: type redeclared
part1.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error
asmcode.as 355 0: Undefined symbol _putint

2.4.5 -Gfile: Generate Source-level Symbol File
The -G option generates a source-level symbol file (i.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with supported debuggers and sim-
ulators such as HI-TIDE R© and MPLAB R©. If no filename is given, the symbol file will have the
same base name as the first source or object file specified on the command line, and an extension of
.sym. For example the option -GTEST.SYM generates a symbol file called test.sym. Symbol files
generated using the -G option include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

DSPICC --CHIP=30F6014 -G -C test.c
DSPICC --CHIP=30F6014 -C module1.c
DSPICC --CHIP=30F6014 -Gtest.sym test.obj module1.obj

will include source-level debugging information for test.c only because module1.c was not com-
piled with the -G option.

The --IDE option will typically enable the -G option.

2.4.6 -Ipath: Include Search Path
Use -I to specify an additional directory to use when searching for header files which have been
included using the #include directive. The -I option can be used more than once if multiple
directories are to be searched. The default include directory containing all standard header files
is always searched even if no -I option is present, and will be searched after any user-specified
directories have been searched. For example:

DSPICC --CHIP=30F6014 -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included into
the source code, then search the default include directory (the include directory where the compiler
was installed).

23

DSPICC Compiler Options DSPICC Command-line Driver

2.4.7 -Llibrary: Scan Library
The -L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the -L option are scanned before the standard C library, allowing additional versions
of standard library functions to be accessed. All libraries must be located in the LIB subdirectory of
the compiler installation directory.

The argument to -L is not a complete library filename, rather it is a library keyword. The actual
file name of the library scanned is derived from this keyword, the target device architecture and the
selected memory model. The name of the library scanned is composed as follows:

ARCH-MEMORYMODELkeyword.lib

where

ARCH is the architecture of the target device. For dsPIC30 and dsPIC33 devices this
will equal dspicc and for PIC24 devices it will equal pic24.
MEMORYMODEL is the memory model selected at compile time. For a small or large
memory model this will equal the character s or l respectively.
keyword is the argument supplied to the -L option.

For example, suppose we had a project for a dsPIC30F6014 which was being compiled using the
default small memory model. In addition the project requires a suitably precompiled library called
foo. Then the file name of this library should be dspicc-sfoo.lib and the file should be located in
the LIB subdirectory of the compiler installation directory. To instruct the linker to scan this library
we need only provide the driver with the option -Lfoo.

2.4.8 -L-option: Adjust Linker Options Directly
The -L option can also be used to specify an extra “-” option which will be passed directly to the
linker by DSPICC. If -L is followed immediately by any text starting with a dash character “-”, the
text will be passed directly to the linker without being interpreted by DSPICC. For example, if the
option -L-FOO is specified, the -FOO option will be passed on to the linker when it is invoked.

The -L option is especially useful when linking code which contains extra program sections
(or psects), as may be the case if the program contains C code which makes use of the #pragma
psect directive or assembler code which contains user-defined psects. See Section 3.12.3.5 for
more information. If this -L option did not exist, it would be necessary to invoke the linker manually
to link code which uses the extra psects.

One commonly used linker option is -N, which sorts the symbol table in the map file by address,
rather than by name. This would be passed to DSPICC as the option -L-N.

The -L option can also be used to replace default linker options. If the string starting from the
first character after the -L up to the = character matches a default option, then the default option is

24

DSPICC Command-line Driver DSPICC Compiler Options

replaced by the option specified. For example, -L-preset=100h will inform the linker to replace
the default option that places the reset psect to be one that places the psect at the address 100h. The
default option that you are replacing must contain an equal character.

2.4.9 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. The map is generated by the linker and
includes information about where objects are located in memory. If no filename is specified, then
the name of the map file will have the same name as the first file listed on the command line, with
the extension .map.

2.4.10 -Nsize: Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. The option has no effect for all other values.

2.4.11 -Ofile: Specify Output File

This option allows the name of the output file(s) to be specified. If no -O option is given, the output
file(s) will be named after the first source or object file on the command line. The files controlled are
any produced by the linker or applications run subsequent to that, e.g. CROMWELL. So for instance
the HEX file, map file and SYM file are all controlled by the -O option.

The -O option can also change the directory in which the output file is located by including the
required path before the filename, e.g. -Oc:\project\output\first.hex. This will then also
specify the output directory for any files produced by the linker or subsequently run applications.

2.4.12 -P: Preprocess Assembly Files

The -P option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, such as #include, with assembler code. By default, assembler
files are not preprocessed.

2.4.13 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the HI-TECH Software copyright
notice from being displayed.

25

DSPICC Compiler Options DSPICC Command-line Driver

2.4.14 -S: Compile to Assembler Code
The -S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

DSPICC --CHIP=30F6014 -S test.c

will produce an assembler file called test.as which contains the code generated from test.c.
This option is particularly useful for checking function calling conventions and signature values
when attempting to write external assembly language routines. The file produced by this option
differs to that produced by the --ASMLIST option in that it does not contain op-codes or addresses
and it may be used as a source file and subsequently passed to the assembler to be assembled.

2.4.15 -Umacro: Undefine a Macro
The -U option, the inverse of the -D option, is used to undefine predefined macros. This option takes
the form -Umacro. The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

2.4.16 -V: Verbose Compile
The -V is the verbose option. The compiler will display the full command lines used to invoke each
of the compiler applications or compiler passes. This option may be useful for determining the exact
linker options if you need to directly invoke the HLINK command.

2.4.17 -X: Strip Local Symbols
The option -X strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

2.4.18 --ASMLIST: Generate Assembler .LST Files
The --ASMLIST option tells DSPICC to generate an assembler listing file for each module being
compiled. The list file shows both the original C code, and the generated assembler code and the
corresponding binary op-codes. The listing file will have the same name as the source file, and a file
type (extension) of .lst. Provided the link stage has successfully concluded, the listing file will be
updated by the linker so that it contains absolute addresses and symbol values. Thus you may use the
assembler listing file to determine the position of, and exact op codes corresponding to, instructions.

26

DSPICC Command-line Driver DSPICC Compiler Options

2.4.19 --CHAR=type: Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all undesignated character
types, unsigned char, unless explicitly declared or cast to signed char. If --CHAR=signed is
used, the default char type will become signed char.

The range of a signed character type is -128 to +127 and the range of similar unsigned objects
is 0 to 255.

2.4.20 --CHIP=processor: Define Processor

This option defines the processor which is being used. To see a list of supported processors that can
be used with this option, use the --CHIPINFO option.

2.4.21 --CHIPINFO: Display List of Supported Processors

The --CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with the --CHIP option.

2.4.22 --CODEOFFSET: Offset Program Code to Address

In some circumstances, such as bootloaders, it is necessary to shift the program image to an alter-
native address. This option is used to specify a base address for the program code image. With this
option, all code psects (including interrupt vectors and constant data) that the linker would ordinarily
control the location of, will be adjusted.

2.4.23 --CR=file: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the file argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to run the CREF utility.
If a filename is supplied, for example --CR=test.crf, DSPICC will invoke CREF to process the
cross reference information into the listing file, in this case test.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with the one DSPICC
command. For example, to generate a cross reference listing which includes the source modules
main.c, module1.c and nvram.c, compile and link using the command:

DSPICC --CHIP=30F6014 --CR=main.crf main.c module1.c nvram.c

27

DSPICC Compiler Options DSPICC Command-line Driver

2.4.24 --DEBUGGER=type: Select Debugger Type

This option is intended for use for compatibility with debuggers. DSPICCsupports the Microchip
ICD2 debugger and using this option will configure the compiler to conform to the requirements of
the ICD2 (reserving memory addresses, etc.). For example:

DSPICC --CHIP=30F6014 --DEBUGGER=icd2 main.c

2.4.25 --ERRFORMAT=format: Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any errors
in a “human readable” format line with a caret “^” and error message pointing out the offending
characters in the source line, for example:

x.c: main()
4: _PA = xFF;

^ (192) undefined identifier: xFF

This standard format is perfectly acceptable to a person reading the error output, but is not usable
with environments which support compiler error handling. The following sections indicate how this
option may be used in such situations.

This section is also applicable to the --WARNFORMAT and --MSGFORMAT options which adjust the
format of warning and advisory messages, respectively.

2.4.25.1 Using the Format Options

Using the these option instructs the compiler to generate error, warning and advisory messages in a
format which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled using the --ERRFORMAT
option, the error output would be:

x.c 4: (192) undefined identifier: xFF

indicating that the error number 192 occurred in file x.c at line 4, offset 9 characters into the state-
ment. The second numeric value - the column number - is relative to the left-most non-space charac-
ter on the source line. If an extra space or tab character were inserted at the start of the source line,
the compiler would still report an error at line 4, column 9.

28

DSPICC Command-line Driver DSPICC Compiler Options

Table 2.3: Error format specifiers
Specifier Expands To
%f Filename
%l Line number
%c Column number
%s Error string
%a Application name
%n Message number

2.4.25.2 Modifying the Standard Format

If the message format does not meet your editor’s requirement, you can redefine its format by either
using the --ERRFORMAT=format, --WARNFORMAT=format or --MSGFORMAT=format option or
by setting the environment variables: HTC_ERR_FORMAT, HTC_WARN_FORMAT or HTC_MSG_FORMAT.
These options are in the form of a printf-style string in which you can use the specifiers shown in
Table 2.3. For example:

--ERRFORMAT=”file %f; line %l; column %c; %s”

The column number is relative to the left-most non-space character on the source line.
To instruct the compiler to use an environment variable to determine the message format, use

the option without specifying format. The environment variables can be set in a similar way, for
example setting the environment variables from within DOS can be done with the following DOS
commands:

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s
set HTC_ERR_FORMAT=ERROR: %a: file %f; line %l; column %c; %n %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: parser: file x.c; line 4; column 6; (192) undefined identifier: xFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additional percent character to stop the specifiers being interpreted immediately by DOS,
e.g. the filename specifier would become %%f.

29

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.4: Supported IDEs
Suboption IDE
hitide HI-TECH Software’s HI-TIDE
mplab Microchip’s MPLAB

2.4.26 –ERRORS=number: Maximum Number of Errors

This option sets the maximum number of errors each component of the compiler will display before
stopping. By default, up to 20 error messages will be displayed.

2.4.27 --FILL=opcode: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all unused program
memory locations with a known code sequence. Multi-byte codes should be entered in little endian
byte order.

2.4.28 --GETOPTION=app,file: Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

2.4.29 --HELP<=option>: Display Help

The --HELP option displays information on the DSPICC compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

DSPICC --help=warn

This will display more detailed information about the --WARN option.

2.4.30 --IDE=type: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Table 2.4.

30

DSPICC Command-line Driver DSPICC Compiler Options

Table 2.5: Supported languages
Suboption IDE

en, english English
fr, french,francais French
de, german, deutsch German

2.4.31 --LANG=language: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-
sages in languages other than English. English is the default language and some messages are only
ever printed in English regardless of the language specified with this option.

Table 2.5 shows those langauges currently supported.

2.4.32 --MEMMAP=file: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

2.4.33 --MSGDISABLE=list: Warning messages to disable

This option accepts a comma-separated list of message numbers. If a message number corresponds
to a warning message, that warning will be disabled.

2.4.34 --MSGFORMAT=format: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section 2.4.25 for
full information.

2.4.35 --NODEL: Do not remove temporary files

Specifying --NODEL when building will instruct DSPICCnot to remove the intermediate and tempo-
rary files that were created during the build process.

31

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.6: Optimization Options
Option name File format
1..9 Select global optimization level (1 through 9)
asm Select assembler optimizations
debug Favor accurate debugging over optimization
all Enable all compiler optimizations
none Do not use any compiler optimziations

2.4.36 --NOEXEC: Don’t Execute Compiler

The --NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This may be useful when used in con-
junction with the -V (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

2.4.37 --OPT<=type>: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. By default, without this option, all
optimizations are enabled. The options --OPT or --OPT=all also enable all optimizations. Opti-
mizations may be disabled by using --OPT=none, or individual optimizers may be controlled, e.g.
--OPT=asm will only enable the assembler optimizer. Table 2.6 lists the available optimization types.
The optimizations that are controlled through specifying a level 1 through 9 affect optimization dur-
ing the code generation stage. The level selected is commonly referred to as the global optimization
level.

2.4.38 --OUTDIR: Specify a directory for output files

This option allows a directory to be nominated in for DSPICCto locate its output files. If this option
is omitted, output files will be created in the current working directory. This option will not set the
location of intermediate files.

2.4.39 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file to be specified. If no --OUTPUT option is specified, the
output file’s name will be derived from the first source or object file specified on the command line.
The available output file formats are shown in Table 2.7.

32

DSPICC Command-line Driver DSPICC Compiler Options

Table 2.7: Output file formats
Option name File format
lib Library File
intel Intel HEX
tek Tektronic
aahex American Automation symbolic HEX file
mot Motorola S19 HEX file
ubrof UBROF format
bin Binary file
mcof Microchip PIC COFF
cof Common Object File Format
cod Bytecraft COD file format
elf ELF/DWARF file format

2.4.40 --PRE: Produce Preprocessed Source Code
The --PRE option is used to generate preprocessed C source files with an extension .pre. This may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

2.4.41 --PROTO: Generate Prototypes
The --PROTO option is used to generate .pro files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each .pro file produced will have
the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file which is
included in all the source files comprising a project. The .pro files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of the --PROTO option, enter the following
source code as file test.c:

#include <stdio.h>
add(arg1, arg2)
int * arg1;
int * arg2;
{

33

DSPICC Compiler Options DSPICC Command-line Driver

return *arg1 + *arg2;
}

void printlist(int * list, int count)
{

while (count--)
printf("%d ", *list++);

putchar(’\n’);
}

If compiled with the command:

DSPICC --CHIP=30F6014 --PROTO test.c

DSPICC will produce test.pro containing the following declarations which may then be edited as
necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
#else /* PROTOTYPES */
extern int add();
extern void printlist();
#endif /* PROTOTYPES */

2.4.42 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default,+100-1ff

34

DSPICC Command-line Driver DSPICC Compiler Options

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with a minus character, -, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.

2.4.43 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
This option is used to specify memory, in addition to any ROM specified in the chip configuration
file, which should be treated as available ROM space. Strictly speaking, this option specifies the
areas of memory that may be used by read-only (ROM-based) objects, and not necessarily those
areas of memory which contain physical ROM. The output that will be placed in the ranges specified
by this option are typically executable code and any data variables that are qualified as const.

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed be some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+100-2ff

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chip configuration file. To do this supply a range prefixed with a minus character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 1ffh for
allocation of ROM objects.

2.4.44 --RUNTIME=type: Specify Runtime Environment
The --RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by
the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.
The usable suboptions include those shown in Table 2.8.

35

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.8: Runtime environment suboptions
Sub-option Controls On (+) implies
init The code present in the startup module

that copies the data psect’s ROM-image to
RAM.

The data psect’s ROM image is
copied into RAM.

clib The inclusion of library files into the output
code by the linker.

Library files are linked into the
output.

clear The code present in the startup module that
clears the bss psects.

The bss psect is cleared.

stack The code present in the startup module that
initializes the stack pointer.

The stack pointer is initialized.

keep Whether the startup module source file is
deleted after compilation.

The startup module is not deleted.

vec_func Initialization of undefined interrupt vec-
tors.

Undefined interrupts will
vector to a function named
GeneralInterrupt

vec_reset Initialization of unused interrupt vectors. Undefined interrupts will execute
a reset instruction

2.4.45 --SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file lists those
files on which the source file is dependant. Dependencies result when one file is #included into
another.

2.4.46 --SERIAL=hexcode@address: Store a Value at this Program Mem-
ory Address

This option allows a hexadecimal code to be stored at a particular address in program memory. A
typical application for this option might be to position a serial number in program memory. The byte-
width of data to store is determined by the byte-width of the hexcode parameter in the option. For ex-
ample to store a one byte value, zero, at program memory address 1000h, use --SERIAL=00@1000.
To store the same value as a four byte quantity use --SERIAL=00000000@1000. This option is
functionally identical to the corresponding hexmate option. For more detailed information and ad-
vanced controls that can be used with this option, refer to Section 5.14.1.10 of this manual.

36

DSPICC Command-line Driver DSPICC Compiler Options

2.4.47 --SETOPTION=app,file: Set The Command-line Options for Ap-
plication

This option is used to supply alternative command line options for the named application when com-
piling. The app component specifies the application that will recieve the new options. The file
component specifies the name of the file that contains the additional options that will be passed to
the application. This option is not required for most projects. If specifying more than one option to
a component, each option must be entered on a new line in the option file.
This option can also be used to remove an application from the build sequence. If the file param-
eter is specified as off, execution of the named application will be skipped. In most cases this is
not desirable as almost all applications are critical to the success of the build process. Disabling a
critical application will result in catastrophic failure. However it is permissible to skip a non-critical
application such as clist or hexmate if the final results are not reliant on their function.

2.4.48 --SETUP=dir: Setup the product

This option sets up the compiler after installation. Parameter, dir identifies the directory where the
compiler has been installed.

2.4.49 --STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-
TECH C supports various special keywords (for example the persistent type qualifier). If the
--STRICT option is used, these keywords are changed to include two underscore characters at
the beginning of the keyword (e.g. __persistent) so as to strictly conform to the ANSI stan-
dard. Be warned that use of this option may cause problems with some standard header files (e.g.
<intrpt.h>).

2.4.50 --SUMMARY=type: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if the mem suboption is selected, a memory summary is shown. This shows the memory usage for
all available linker classes.

A psect summary may be shown by enabling the psect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover. Table 2.9 shows what
summary types are available.

37

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.9: Memory Summary Suboptions
Suboption Controls On (+) implies
psect Summary of psect usage. A summary of psect names and

the addresses they were linked at
will be shown.

mem General summary of memory used. A general summary of memories
used will be shown.

hex Summary of address used within the hex
file.

A summary of addresses and hex
files which make up the final out-
put file will be shown.

file Whether summary information is shown
on the screen or shown and saved to a file.

Summary information will be
shown on screen and saved to a
file.

2.4.51 --TIME: Report time taken for each phase of build process

Adding --TIME when building generate a summary which shows how much time each stage of the
build process took to complete.

2.4.52 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running.

2.4.53 --WARN=level: Set Warning Level

The --WARN option is used to set the compiler warning level. Allowable warning levels range from -9
to 9. The warning level determines how pedantic the compiler is about dubious type conversions and
constructs. The default warning level --WARN=0 will allow all normal warning messages. Warning
level --WARN=1 will suppress the message Func() declared implicit int. --WARN=3 is rec-
ommended for compiling code originally written with other, less strict, compilers. --WARN=9 will
suppress all warning messages. Negative warning levels --WARN=-1, --WARN=-2 and --WARN=-3 en-
able special warning messages including compile-time checking of arguments to printf() against
the format string specified.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

38

DSPICC Command-line Driver DSPICC Compiler Options

2.4.54 --WARNFORMAT=format: Set Warning Message Format
This option sets the format of warning messages produced by the compiler. See Section 2.4.25 for
full information.

39

DSPICC Compiler Options DSPICC Command-line Driver

40

Chapter 3

C Language Features

HI-TECH for dsPIC/PIC24 supports a number of special features and extensions to the C language
which are designed to ease the task of producing ROM-based applications. This chapter documents
the compiler options and special language features which are specific to these devices.

3.1 ANSI Standard Issues

3.1.1 Implementation-defined behaviour
Certain sections of the ANSI standard have implementation-defined behaviour. This means that the
exact behaviour of some C code can vary from compiler to compiler. Throughout this manual are
sections describing how the HI-TECH C compiler behaves in such situations.

3.2 Processor-related Features
HI-TECH C has several features which relate directly to the dsPIC and PIC24 architectures and
instruction sets. These detailed in the following sections.

3.2.1 Stack
The stack on dsPIC and PIC24 processors is configured by the runtime startup code. The compiler
will attempt to find the largest contiguous gap available in the data memory space. In the generated
startup code the stack-pointer (i.e. w15) is initialised with the lowest word-aligned address within
this gap. The Stack Pointer Limit Value register (i.e. SPLIM @ 0x20) is initialised with the highest

41

Files C Language Features

word-aligned address within this gap. In order to make the position and size of the stack clear to the
user both of these registers are initialised using compiler generated global symbols, viz. __sp_init
and __splim_init respectively.

Although the processor has some support for frame pointers, the HI-TECH for dsPIC/PIC24
compiler does not use it. The compiler is able to calculate all accesses to the stack by referencing
directly from the stack pointer (W15). By doing this a special frame pointer register is not required
and instead can be allocated to user code. In addition, code, stack space and executation time which
would ordinarily be used in manipulation of the frame pointer is not needed.

3.2.2 Configuration Fuses

The dsPIC and PIC24 processors have several locations which contain the configuration bits or fuses.
These bits may be set using the configuration macro. The macro has the form:

__CONFIG(n, x)

(there are two leading underscore characters) where n is the configuration register identifier, and x
is the value that is to be in the configuration word. The macro is defined when <htc.h> is included,
so be sure to include this into the module that uses this macro.

The configuration macro programs one 24-bit register at a time, although only the lower 16-bits
of each register are used for configuration data. Specially named quantities are defined in the header
file appropriate for the processor you are using, to help you set the required features. This can be
seen in Tables 3.1, 3.2 and 3.3.

3.3 Files

3.3.1 Source Files

The extension used with source files is important as it is used by the compiler drivers to determine
their content. Source files containing C code should have the extension .c, assembler files should
have extensions of .as, relocatable object files require the .obj extension, and library files should
be named with a .lib extension.

3.3.2 Symbol Files

The driver -G option tells the compiler to produce several symbol files which can be used by debug-
gers and simulators to perform symbolic and source-level debugging. Using the --IDE option may
also enable symbol file generation as well.

42

C Language Features Files

Table 3.1: Configuration Bit Settings for dsPIC30F Devices
Description Config Register Symbols

Primary oscillator types FOSC ECPLL16, ECPLL8,
ECPLL4, ECIO, EC,
ERC, ERCIO,
XTPLL16, XTPLL8,
XTPLL4, XT, HS, XTL

Oscillator select FOSC POSC, LP, FRC, LPRC
Oscillator system clock switch FOSC CLKSWDIS,

CLKSWEN, FSCMDIS,
FCSMEN

Watchdog timer enable FWDT WDTEN, WDTDIS
Watchdog timer pre-scale select FWDT WDTPSA512,

WDTPSA64,
WDTPSA8, WDTPSA1,
WDTPSB1-WDTPSB16

Powerup timer enable FBORPOR PWRT64, PWRT16,
PWRT4, PWRTDIS

Brown-out reset enable FBORPOR BOREN, BORDIS
Brown-out reset voltage FBORPOR BORV20, BORV27,

BORV42, BORV45
MCLR pin function FBORPOR MCLREN, MCLRDIS
Motor control PWM FBORPOR PWMBIN, HPOL,

LPOL 1

Code protection FGS GCPU, GCPP, GWRU,
GWRP

43

Files C Language Features

Table 3.2: Configuration Bit Settings for dsPIC33F & PIC24H Devices.
Description Config Register Symbols

Code protection FGS GCPU, GCPP, GWRU,
GWRP

Oscillator two-speed startup FOSCSEL IESOEN, IESODIS
Temperature protection FOSCSEL TEMPDIS, TEMPEN
Initial oscillator source selection FOSCSEL FRCPS, LPRC, LP,

OSCPLL, OSC, FRCPLL,
FRC

Oscillator clock switching modes FOSC FCKSMDIS, CLKSWEN,
FCKSMEN

OSC2 pin function FOSC OSC2OUT, OSC2DIO
Primary oscillator modes FOSC POSCDIS, POSCHS,

POSCXT, POSCEC
Watchdog timer enable FWDT WDTEN, WDTDIS,

WINDIS, WINEN
Watchdog timer prescaler FWDT WDTPRE128, WDTPRE32
Watchdog timer postscaler FWDT WDTPS32768,

WDTPS16384,
WDTPS8192,
WDTPS4096,
WDTPS2048,
WDTPS1024,
WDTPS512, WDTPS256,
WDTPS128, WDTPS64,
WDTPS32, WDTPS16,
WDTPS8, WDTPS4,
WDTPS2, WDTPS1

Motor Control2 FPOR PWMPORT, PWMPWM,
PWMHPAH, PWMHPAL,
PWMLPAH, PWMLPAL

Power-on Reset Timer FPOR PWRT128, PWRT64,
PWRT32, PWRT16,
PWRT8, PWRT4,
PWRT2, PWRTDIS

44

C Language Features Files

Table 3.3: Configuration Bit Settings for PIC24F Devices.
Description Flash Config Word3 Symbols

JTAG port enable bit FLSHCFGWRD1 JTAGEN, JTAGDIS
Program memory code protection bit FLSHCFGWRD1 GCPU, GCPP
Code flash write protection bit FLSHCFGWRD1 GWRPU, GWRPP
Background debugger enable bit FLSHCFGWRD1 DEBUGDIS, DEBUGEN
Set clip on emulation bit FLSHCFGWRD1 COEDIS, COEEN
ICS: ICD pin placement select bit FLSHCFGWRD1 ICDEMU2, ICDEMU1
Watchdog timer enable bit FLSHCFGWRD1 WDTEN, WDTDIS
Windowed WDT disable bit FLSHCFGWRD1 WINDIS, WINEN
WDT prescaler ratio select bit FLSHCFGWRD1 WDTPRE128, WDTPRE32
WDT postscaler select bits FLSHCFGWRD1 WDTPS32768,

WDTPS16384,
WDTPS8192,
WDTPS4096,
WDTPS2048,
WDTPS1024,
WDTPS512, WDTPS256,
WDTPS128, WDTPS64,
WDTPS32, WDTPS16,
WDTPS8, WDTPS4,
WDTPS2, WDTPS1

Internal external switchover bit FLSHCFGWRD2 IESOEN, IESODIS
Initial oscillator select bits FLSHCFGWRD2 FRCDIV, LPRC, SOSC,

HSECPLL, XTHSEC,
FRCPLL, FRC

Clock switching & fail-safe clock monitor FLSHCFGWRD2 FCKSMDIS, CLKSWEN,
FCKSMEN

OSC2 pin configuration bit FLSHCFGWRD2 CLKO, PORTIO
Primary oscillator configuration bits FLSHCFGWRD2 POSCDIS, POSCHS,

POSCXT, POSCEC

45

Files C Language Features

The -G option produces an absolute symbol files which contain both assembler- and C-level
information. This file is produced by the linker after the linking process has ben completed. If
no symbol filename is specified, a default filename of file.sym will be used, where file is the
basename of the first source file specified on the command line. For example, to produce a symbol
file called test.sym which includes C source-level information:

DSPICC --CHIP=30F6014 -Gtest.sym test.c init.c

This option will also generate other symbol files for each module compiled. These files are produced
by the code generator and do not contain absolute address. These files have the extension .sdb.
The base name will be the same as the base name of the module being compiled. Thus the above
command line would also generate symbols files with the names test.sdb and init.sdb.

3.3.3 Library Files
3.3.3.1 Standard Libraries

HI-TECH for dsPIC/PIC24 includes a number of standard libraries, each with the range of functions
described in Appendix A. Library files have the extensions .lib. and reside in the in the LIB
subdirectory of the compiler installation directory. Each of the library files provided conform to
following naming convention:

ARCH-MEMORYMODELtype.lib

where

ARCH is the architecture of the target device. For dsPIC30 and dsPIC33 devices this
will equal dspicc and for PIC24 devices it will equal pic24.
MEMORYMODEL is the memory model selected at compile time. For a small or large
memory model this will equal the character s or l respectively.
type refers to the type of implementation of the formatted output functions, these are
denoted as c, l or f. See Section 3.3.3.2 for more details.

3.3.3.2 Formatted Output Functions

The default standard libraries (i.e. those of type c) contain a compact, low-featured implementations
of the formatted output functions, such as printf. These implementations provide support for
processing of the simplest format types. If an application requires to process more complexed format
types, libraries with enhanced routines are available. These enhanced libraries are denoted as type
l or f and can be linked using the -L driver option (see Section 2.4.7). The capabilities of each of
these libraries and the required driver option for linking them are given in Table 3.4.

46

C Language Features Files

Table 3.4: Formatted Output Functionality and Linking
Library type Supported formats Driver Option
c (standard) %d, %i,%u, %o, %x, %X, %s, %c,%p N/A
l (+long) c library plus %ld, %li,%lx, %lX, %lo,%lp -Ll
f (+float) l library plus %f, %e,%E, %g, %G -Lf

Note that it is not neccessary to nominate selection of the c (standard) library as this file will au-
tomatically included by the driver, unless explicitly excluded by the --RUNTIME option (see Section
2.4.44). Also note that increasing the functionality of these functions will increase the amount of
program space consumed by them.

3.3.3.3 EEPROM and Flash Functions

Included with the standard library files are a collection of EEPROM and Flash routines. These func-
tions are also documented in Appendix A and their prototypes are declared in nvm_interface.h.
The EEPROM functions only apply to those chips which have EEPROM which at present is only
a subset of the dsPIC30F chips. Since these functions are included in the standard library files no
special driver options are required in order to link them.

3.3.4 Runtime startup Modules
A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its function main(). It is the job of the runtime startup code to
perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into
a user’s program. Even if a user’s program does not need all aspects of the runtime startup code,
redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For
example, if a program does not use any uninitialized variables, then no routine is required to clear
the bss psects.

HI-TECH for dsPIC/PIC24 differs from other compilers by using a novel method to determine
exactly what runtime startup code is required and links this into the program automatically. It does
this by performing an additional link step which does not produce any usable output, but which can
be used to determine the requirements of the program. From this information the driver then “writes”
the assembler code which will perform the runtime startup. This code is stored into a file which can
then be assembled and linked into the remainder of the program in the usual way.

Since the runtime startup code is generated automatically on every compilation, the generated
files associated with this process are deleted after they have been used. If required, the assembler
file which contains the runtime startup code can be kept after compilation and linking by using the

47

Files C Language Features

driver option --RUNTIME=default,+keep. The residual file will be called startup.as and will be
located in the current working directory. If you are using an IDE to perform the compilation the
destination directory is dictated by the IDE itself, however you may use the --OUTDIR option to
specify an explicit output directory to the compiler.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using the --RUNTIME option. These are described
in the sections below.

3.3.4.1 Software Stack

As discussed earlier in section 3.2.1 the software stack is configured by the runtime startup code.
This code which configures the stack is by default always emitted by the compiler in the run-
time startup code. The compiler can however be forced to omit this code using the driver option
--RUNTIME=-stack.

3.3.4.2 Initialization of Interrupt Vector Tables

The dsPIC and PIC24 devices have two interrupt vector tables: a default (IVT) and alternate vector
table (AIVT). It is the job of the runtime startup code to initialize these tables with the appropriate
vectors. By default the alternate interrupt vector table (AIVT) is programmed with the same vectors
as the interrupt vector table (IVT). However any interrupt service routines linked to the AIVT will
of course take precedence over this behaviour. Any undefined interrupts in both tables are set to the
reset vector (i.e. 0x0).
Some aspects of the initialization of vector tables can be influenced using the following driver op-
tions.

--RUNTIME=+vec_reset

This option will initialise any unused interrupts with a vector to a RESET instruction. The location of
the instruction will be labelled with the compiler generated global symbol __DefaultInterrupt.

--RUNTIME=+vec_func

This option will initialise any unused interrupts with a vector to a user provided interrupt function
called GeneralInterrupt. By creating such a function and using this option, all undefined inter-
rupts will vector to this shared interrupt function.

Please not that the sub-options vec_reset and vec_func are considered mutually exclusive.
Using both will generate a warning from the compiler and the vec_reset option will take precen-
dence.

48

C Language Features Files

3.3.4.3 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value
before the program begins execution. Initialized variables are those which are not auto objects and
which are assigned an initial value in their definition, for example input in the following example.

int input = 88;
void main(void) { ...

•

Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is also possible that
their initial value changes on each instance of the function. As a result, initialized auto
objects do not use the data psects.

Such initialized objects have two components and are placed within the data psects.
The actual initial values are placed in a psect called idata. The other component is where the

variables will reside, and be accessed, at runtime. Space is reserved for the runtime location of
initialized variables in a psect called data. This psect does not contribute to the output file.

The runtime startup code performs a block copy of the values from the idata to the data psect
so that the RAM variables will contain their initial values before main() is executed. Each location
in the idata psect is copied to appropriate placed in the data psect.

The block copy of the data psects may be omitted by disabling the init suboption of --RUNTIME.
For example:

--RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution. Code relying on variables containing their initial value
will fail.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent, see Section 3.4.9.1. Such variables are linked at a different area of memory and are
not altered by the runtime startup code in any way.

3.3.4.4 Clearing the Bss Psects

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared
before execution of the program begins. The compiler does this by grouping all such uninitialized
objects into a bss psect. This psect is then cleared as a block by the runtime startup code.

49

Files C Language Features

•

The abbreviation "bss" stands for Block Started by Symbol and was an assembler pseudo-
op used in IBM systems back in the days when computers were coal-fired. The contin-
ued usage of this term is still appropriate.

The name of the bss psect is rbss.
The block clear of the bss psect may be omitted by disabling the clear suboption of --RUNTIME.

For example:

--RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent, see Section 3.4.9.1. Such variables are linked at a different area of memory and are
not altered by the runtime startup code in anyway.

3.3.4.5 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.
The libraries can be omitted by disabling the clib suboption of --RUNTIME. For example:

--RUNTIME=default,-clib

With this part of the runtime startup code absent, the user must provide alternative library or source
files to allow calls to library routines. This suboption may be useful if alternative library or source
files are available and you wish to ensure that no HI-TECH C library routines are present in the final
output.

•

Some C statements produce assembler code that call library routines even though no
library function was called by the C code. These calls perform such operations as di-
vision or floating-point arithmetic. If the C libraries have been excluded from the code
output, these implicit library calls will also require substitutes.

50

C Language Features Supported Data Types and Variables

Table 3.5: Basic data types
Type Size (bits) Arithmetic Type

bit 1 unsigned integer
char 8 signed or unsigned integer4

unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 32 real
double 32 real

3.3.4.6 The powerup Routine

Some hardware configurations require special initialisation, often within the first few cycles of exe-
cution after reset. To achieve this there is a hook to the reset vector provided via the powerup routine.
This is a user-supplied assembler module that will be executed immediately on reset. Often this can
be embedded in a C module as embedded assembler code. A “dummy” powerup routine is included
in the file powerup.as. The file can be copied, modified and included into your project to replace
the default powerup routine that is present in the standard libraries. If you use a powerup routine,
you will need to add a jump to start after your initializations. Refer to comments in the powerup
source file for details about this.

3.4 Supported Data Types and Variables

The HI-TECH for dsPIC/PIC24 compiler supports basic data types with 1, 2 and 4 byte sizes. Table
3.5 shows the data types and their corresponding size and arithmetic type.

3.4.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. HI-TECH C supports the ANSI standard radix
specifiers as well as ones which enables binary constants to specified in C code. The format used to
specify the radices are given in Table 3.6. The letters used to specify binary or hexadecimal radices
are case insensitive, as are the letters used to specify the hexadecimal digits.

51

Supported Data Types and Variables C Language Features

Table 3.6: Radix formats
Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010
octal 0number 0763
decimal number 129
hexadecimal 0xnumber or 0Xnumber 0x2F

Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffix l or L may be used with the constant to indicate that it must be assigned either
a signed long or unsigned long type, and the suffix u or U may be used with the constant to
indicate that it must be assigned an unsigned type, and both l or L and u or U may be used to indicate
unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case it is a float
constant. The suffixes l or L specify a long double type which is considered an identical type to
double by HI-TECH C.

Character constants are enclosed by single quote characters ’, for example ’a’. A character
constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters ", for example "hello
world". The type of string constants is const char * and the strings are stored in the program
memory. Assigning a string constant to a non-const char pointer will generate a warning from the
compiler. For example:

char * cp= "one"; // "one" in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string "two" (copied from
program space), whereas a constant string used in other contexts represents an unnamed const-
qualified array, accessed directly in program space.

HI-TECH C will use the same storage location and label for strings that have identical character
sequences, except where the strings are used to initialise an array residing in the data space as shown
in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated
by the compiler. Thus:

const char * cp = "hello " "world";

assigned the pointer with the string "hello world".

52

C Language Features Supported Data Types and Variables

3.4.2 Bit Data Types and Variables
HI-TECH for dsPIC/PIC24supports bit integral types which can hold the values 0 or 1. Single
bit variables may be declared using the keyword bit. bit objects declared within a function, for
example:

static bit init_flag;

will be allocated in the bit-addressable psect bitbss, and will be visible only in that function. When
the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.
Bit variables cannot be auto or parameters to a function. A function may return a bit object

by using the bit keyword in the functions prototype in the usual way. The bit return value will be
returning in the carry flag in the status register.

Bit variables behave in most respects like normal unsigned char variables, but they may only
contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean
flags without consuming large amounts of internal RAM. It is, however, not possible to declared
pointers to bit variables or statically initialise bit variables.

Operations on bit objects are performed using the single bit instructions (SET and CLR) wherever
possible, thus the generated code to access bit objects is very efficient.

Note that when assigning a larger integral type to a bit variable, only the least-significant bit is
used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the least significant bit of data is zero. If you want to set
a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero
(true), use the form:

bitvar = data != 0;

The psects in which bit objects are allocated storage are declared using the bit PSECT directive
flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale
value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.
All addresses specified for bit objects are also bit addresses.

The bit psects are cleared on startup, but are not initialised. To create a bit object which has a
non-zero initial value, explicitly initialise it at the beginning of your code.

If the driver option --STRICT is used, the bit keyword becomes unavailable.

53

Supported Data Types and Variables C Language Features

3.4.3 8-Bit Integer Data Types and Variables

HI-TECH for dsPIC/PIC24 supports both signed char and unsigned char 8-bit integral types.
If the signed or unsigned keyword is absent from the variable’s definition, the default type is
unsigned char unless the driver --CHAR=signed option is used, in which case the default type is
signed char. The signed char type is an 8-bit two’s complement signed integer type, represent-
ing integral values from -128 to +127 inclusive. The unsigned char is an 8-bit unsigned integer
type, representing integral values from 0 to 255 inclusive. It is a common misconception that the
C char types are intended purely for ASCII character manipulation. This is not true, indeed the C
language makes no guarantee that the default character representation is even ASCII. The char types
are simply the smallest of up to four possible integer sizes, and behave in all respects like integers.

The reason for the name “char” is historical and does not mean that char can only be used to
represent characters. It is possible to freely mix char values with short, int and long values in C
expressions. With HI-TECH C the char types will commonly be used for a number of purposes, as
8-bit integers, as storage for ASCII characters, and for access to I/O locations.

Variables may be declared using the signed char and unsigned char keywords, respectively,
to hold values of these types. Where only char is used in the declaration, the type will be signed
char unless the option, mentioned above, to specify unsigned char as default is used.

Since the processor’s register are 16-bit wide, it can often be more efficient to use 16-bit integrer
variables over 8-bit variables.

3.4.4 16-Bit Integer Data Types

HI-TECH for dsPIC/PIC24 supports four 16-bit integer types. short and int are 16-bit two’s
complement signed integer types, representing integral values from -32,768 to +32,767 inclusive.
Unsigned short and unsigned int are 16-bit unsigned integer types, representing integral values
from 0 to 65,535 inclusive. All 16-bit integer values are represented in little endian format with the
least significant byte at the lower address.

Variables may be declared using the signed short int and unsigned short int keyword
sequences, respectively, to hold values of these types. When specifying a short int type, the
keyword int may be omitted. Thus a variable declared as short will contain a signed short int
and a variable declared as unsigned short will contain an unsigned short int.

Since the processor’s register are 16-bit wide, it can often be more efficient to use 16-bit integrer
variables over 8-bit variables.

3.4.5 32-Bit Integer Data Types and Variables

HI-TECH for dsPIC/PIC24supports two 32-bit integer types. Long is a 32-bit two’s complement
signed integer type, representing integral values from -2,147,483,648 to +2,147,483,647 inclusive.

54

C Language Features Supported Data Types and Variables

Table 3.7: Floating-point formats
Format Sign biased exponent mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

Table 3.8: Floating-point format example IEEE 754
Number biased expo-

nent
1.mantissa decimal

7DA6B69Bh 11111011b 1.01001101011011010011011b 2.77000e+37
(251) (1.302447676659)

Unsigned long is a 32-bit unsigned integer type, representing integral values from 0 to 4,294,967,295
inclusive. All 32-bit integer values are represented in little endian format with the least significant
word and least significant byte at the lowest address. Long and unsigned long occupy 32 bits as
this is the smallest long integer size allowed by the ANSI standard for C.

Variables may be declared using the signed long int and unsigned long int keyword se-
quences, respectively, to hold values of these types. Where only long int is used in the declaration,
the type will be signed long. When specifying this type, the keyword int may be omitted. Thus
a variable declared as long will contain a signed long int and a variable declared as unsigned
long will contain an unsigned long int.

3.4.6 Floating Point Types and Variables
Floating point is implemented using the IEEE 754 32-bit format.

The 32-bit format is used for all float and double values.
This format is described in Table 3.7, where:

• sign is the sign bit

• The exponent is 8-bits which is stored as excess 127 (i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.
Here are some examples of the IEEE 754 32-bit formats:
Note that the most significant bit of the mantissa column in Table 3.8 (that is the bit to the left

of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

55

Supported Data Types and Variables C Language Features

The 32-bit example in Table 3.8 can be calculated manually as follows.
The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary

number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:
−10×2124×1.302447676659 = 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37
Variables may be declared using the float and double keywords, respectively, to hold values

of these types. Floating point types are always signed and the unsigned keyword is illegal when
specifying a floating point type. Types declared as long double will use the same format as types
declared as double.

3.4.7 Structures and Unions
HI-TECH for dsPIC/PIC24 supports struct and union types of any size from one byte upwards.
Structures and unions only differ in the memory offset applied for each member. The members of
structures and unions may not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to
structures and unions are fully supported.

3.4.7.1 Bit-fields in Structures

HI-TECH for dsPIC/PIC24 fully supports bit-fields in structures.
Bit-fields are always allocated within 16-bit words. The first bit defined will be the least signifi-

cant bit of the word in which it will be stored. When a bit-field is declared, it is allocated within the
current 16-bit unit if it will fit, otherwise a new word is allocated within the structure. bit-fields can
never cross the boundary between 16-bit allocation units. For example, the declaration:

struct {
unsigned lo : 1;
unsigned dummy : 14;
unsigned hi : 1;

} foo;

will produce a structure occupying 2 bytes. If foo was ultimately linked at address 10H, the field lo
will be bit 0 of address 10H, hi will be bit 7 of address 11H. The least significant bit of dummy will
be bit 1 of address 10H and the most significant bit of dummy will be bit 6 of address 11h.

Unnamed bit-fields may be declared to pad out unused space between active bits in control
registers. For example, if dummy is never used the structure above could have been declared as:

struct {

56

C Language Features Supported Data Types and Variables

unsigned lo : 1;
unsigned : 14;
unsigned hi : 1;

} foo;

If a bit-field is declared in a structure that is assigned an absolute address, no storage will be allocated
for the structure. Absolute structures would be used when mapping a structure over a register to allow
a portable method of accessing individual bits within the register.

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values
for each field. For example:

struct {
unsigned lo : 1;
unsigned mid : 14;
unsigned hi : 1;

} foo = {1, 8, 0};

3.4.7.2 Structure and Union Qualifiers

HI-TECH C supports the use of type qualifiers on structures. When a qualifier is applied to a struc-
ture, all of its members will inherit this qualification. In the following example the structure is
qualified const.

const struct {
int number;
int *ptr;

} record = { 0x55, &i};

In this case, the structure will be placed into the program space and each member will, obviously, be
read-only. Remember that all members must be initialized if a structure is const as they cannot be
initialized at runtime.

If the members of the structure were individually qualified const but the structure was not, then
the structure would be positioned into RAM, but each member would be read-only. Compare the
following structure with the above.

struct {
const int number;
int * const ptr;

} record = { 0x55, &i};

57

Supported Data Types and Variables C Language Features

3.4.8 Standard Type Qualifiers
Type qualifiers provide information regarding how an object may be used, in addition to its type
which defines it storage size and format. HI-TECH C supports both ANSI qualifiers and additional
special qualifiers which are useful for embedded applications and which take advantage of the dsPIC
and PIC24 architecture.

3.4.8.1 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifiers const and volatile.
The const type qualifier is used to tell the compiler that an object is read only and will not be

modified. If any attempt is made to modify an object declared const, the compiler will issue a
warning. User-defined objects declared const are placed in a special psects in the program space.
Obviously, a const object must be initialised when it is declared as it cannot be assigned a value at
any point at runtime. For example:

const int version = 3;

The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declared volatile because it may alter the behaviour of the program
to do so. All Input/Output ports and any variables which may be modified by interrupt routines
should be declared volatile, for example:

volatile static unsigned int TACTL @ 0x160;

Volatile objects may be accessed using different generated code to non-volatile objects.

3.4.9 Special Type Qualifiers
HI-TECH for dsPIC/PIC24supports the special type qualifiers to allow the user to control placement
of static and extern class variables into particular address spaces.

3.4.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets or even power cycles (on-off-on).

The persistent type qualifier is used to qualify variables that should not be cleared on startup.
In addition, any persistent variables will be stored in a different area of memory to other variables.
persistent objects are placed within the psect nvram.

58

C Language Features Supported Data Types and Variables

This type qualifier may not be used on variables of class auto; if used on variables local to a
function they must be combined with the static keyword. For example, you may not write:

void test(void)
{

persistent int intvar; /* WRONG! */
.. other code ..

}

because intvar is of class auto. To declare intvar as a persistent variable local to function
test(), write:

static persistent int intvar;

If the driver option, --STRICT is used, this type qualifier is changed to __persistent.
There are some library routines provided to check and initialise persistent data - see A for

more information, and for an example of using persistent data.

3.4.9.2 YData Type Qualifier

The dsPIC memory map for RAM is divided into two parts: x-data and y-data. Some dsPIC instruc-
tion can only operate will addresses to object in the y-data range. Qualifying an object as ydata
cause the object to be placed into the ranges of memory designated for ydata.

3.4.9.3 Near and Far Type Qualifier

Global or static objects qualified as near will be located below address 0x2000 and can be access
directly. Objects defined as far may be located anywhere in the data space and will be accessed
indirectly. By default (i.e. with no qualifier) objects are near.

3.4.10 Pointer Types

There are two basic pointer types supported by HI-TECH C: data pointers and function pointers.
Data pointers hold the address of data objects which can be indirectly read and possibly written by
the program using the pointer. Function pointers hold the address of an executable routine which
can be called indirectly via the pointer.

59

Supported Data Types and Variables C Language Features

3.4.10.1 Data Pointers

A data pointer that is not a pointer to const references objects in the data space, or RAM. Such
pointers are 16 bits wide and can access any object resident in the data space. A data pointer to a
const-qualified object is used when the object is read-only and will not be modified. If any attempt
is made to indirectly modify an object declared as const, the compiler will issue a warning.

3.4.10.2 Function Pointers

Pointers to functions can be defined to indirectly call functions or routines in the program space.
The size of function pointers is always 16 bits. Although only being 16 bits, this will still work
correctly if the selected processor has more memory than can be addressed by a 16-bit pointer. This
is achieved though the use of a jump table which will automatically be generated by the compiler
when large model is selected.

3.4.10.3 Qualifiers and Pointers

Pointers can be qualified like any other C objects, but care must be taken when doing so as there
are two quantities associated with pointers. The first is the actual pointer itself, which is treated like
any ordinary C variable and has memory reserved for it. The second is the object that the pointer
references, or to which the pointer points. The general form of an initialized pointer definition looks
like the following.

object’s_type_&_qualifiers * pointer’s_qualifiers pointer’s_name = value;

The rule is as follows: if the modifier is to the left of the * in the pointer declaration, it applies to
the object which the pointer references. If the modifier is to the right of the *(next to the pointer’s
name), it applies to the pointer variable itself. Any data variable qualifier may be applied to pointers
in the above manner.

TUT•RIAL

Here are three examples of pointers, initialized with the address of the variables:

const int ci = 0x55aa;
int i;

in which the definition fields are highlighted with spacing:

const int * cip = &ci ;
int * const icp = &i ;
const int * const cicp = &ci ;

60

C Language Features Storage Class and Object Placement

The first example is a pointer called cip. It contains the address of an int object (in this
case ci) that is qualified const, however the pointer itself is not qualified. The pointer
may be used to read, but not write, the object to which it references. The contents of the
pointer may be read and written by the program.

The second example is a pointer called icp which contains the address of an int object
(in this case i). Since this object is not qualified, it is a data space object which is
referenced by the pointer and this object can be both read and written using the pointer.
However, the pointer is qualifed const and so can only be read by the program —
it cannot be made to point to any other object other than the object whose address
initializes the pointer (in this case i).

The last example is of a pointer called cicp which is itself qualified const and which
also holds the address of an object that is also qualified const. Thus the pointer can
only be used to read the object to which it references and the pointer itself cannot be
modified so it will always reference the same object during the program (in this case
ci).

3.5 Storage Class and Object Placement
Objects are positioned in different memory areas dependant on their storage class and declaration.
This is discussed in the following sections.

3.5.1 Local Variables
A local variable is one which only has scope within the block in which it was defined. That is, it may
only be referenced within that block. C supports two classes of local variables in functions: auto
variables which are normally allocated in the function’s stack frame, and static variables which
are always given a fixed memory location and have permanent duration.

3.5.1.1 Auto Variables

Auto (short for automatic) variables are the default type of local variable. Unless explicitly declared
to be static a local variable will be made auto, however the auto keyword may be used if de-
sired. auto variables are allocated either to spare registers, or onto the stack. The variables will not
necessarily be allocated in the order declared - in contrast to parameters which are always in lexical
order.

Note that most type qualifiers cannot be used with auto variables, since there is no control over
the storage location. The exceptions are const and volatile.

61

Storage Class and Object Placement C Language Features

3.5.1.2 Static Variables

Uninitialized static variables are by default allocated in the bss psect (located in XDATA memory)
unless they have also been qualified as ydata which will instead use the ybss psect (located in
YDATA memory). static variables are local in scope to the function in which they are declared,
but may be accessed by other functions via pointers since they have permanent duration. static
variables are guaranteed to retain their value between calls to a function, unless explicitly modified
via a pointer.

static variables which are initialised are only done so once during the program’s execution.
Thus, they may be preferable over initialised auto objects which are assigned a value every time the
block in which the definition is placed is executed.

3.5.2 X and Y DATA Variables
The memory map of the dsPIC devices are divided into X and Y data areas. Some dsp instructions
can only operate on objects stored in ydata. For this reason the ydata qualifier is provided to position
an object into ydata memory. Only static and global variables may use this qualifier. If no qualifier
is given, a location in xdata memory will be assumed.

3.5.3 Absolute Variables
A global or static variable can be located at an absolute address by following its declaration with
the construct @ address, for example:

volatile unsigned char Portvar @ 0x06;

will declare a variable called Portvar located at 06h. Note that the compiler does not reserve
any storage, but merely equates the variable to that address, the compiler-generated assembler will
include a line of the form:

_Portvar EQU 06h

This construct is primarily intended for equating the address of a C identifier with a microprocessor
special funciton register. To place a user-defined variable at an absolute address, define it in a
separate psect and instruct the linker to place this psect at the required address as specified in Section
3.12.3.5.

•

Absolute variables are accessed using the address specified with their definition, thus
there are no symbols associated with them. Because the linker never sees any symbols

62

C Language Features Functions

for these objects it is not aware that they have been allocated space and it cannot make
any checks for overlap of absolute variables with other objects. It is entirely the pro-
grammer’s responsibility to ensure that absolute variables are allocated memory that is
not already in use.

3.5.4 Near Variables
Global or static objects qualified as near will be located below address 0x2000 and can be access
directly. By default (i.e. with no qualifier) objects are near.

3.5.5 Far Variables
Global or static objects objects defined as far may be located anywhere in the data space and will
be accessed indirectly.

3.5.6 Objects in the Program Space
const-qualified objects are placed in the program space along with code. The program space vis-
ibility (PSV) feature of the dsPIC is use to map the const-qualified objects into the x-data space.
The PSV is configured automatically at startup by the runtime code.

3.6 Functions

3.6.1 Function Argument Passing
The first parameter, if it is no larger than 2 bytes in size, is loaded into W0. If it is three or four bytes
in size, the high order word is loaded into W1. If present, the second, third and fourth parameters
are loaded into W2/W3, W4/W5 and W6/W7, respectively. Additional arguments, or those larger
than 4 bytes in size are placed on the stack. Once one parameter has been loaded onto the stack, all
following parameters will also be placed on the stack.

In the case of a variable argument list, which is defined by the ellipsis symbol ..., the calling
function places all but the last prototype parameter in registers, if possible. The last prototyped
parameter and all parameters matching the ellipsis are placed on the stack.

Take, for example, the following ANSI-style function:

void test(char a, int b, long c)
{

63

Register Usage C Language Features

}

The function test() will receive the parameter a in low order byte of register W0, parameter b in
register W2, and the low and high order words of parameter c in registers W4 and W5, respectively.

If you need to determine, for assembler code for example, the exact entry or exit code within a
function or the code used to call a function, it is often helpful to write a dummy C function with the
same argument types as your assembler function, and compile to assembler code with the driver -S
option, allowing you to examine the assembler code.

3.6.2 Function Return Values

Function return values are passed to the calling function as follows:

3.6.2.1 Integral Return Values

All integral return values no larger than 2 bytes in size are returned from a function in W0. Integral
return values of 4 bytes in size are returned in W0/W1, with the low order word in W0.

3.6.2.2 Structure Return Values

Composite return values (struct and union) of size 4 bytes or smaller are returned in W0/W1 as
with integral return values. For larger types, the structure or union is copied into a space allocated
by the calling function, a pointer to which is passed in W14 when the function is called.

3.7 Register Usage

The dsPIC and PIC24 devices use register W15 for the system stack pointer. Registers W0 through
W7 may be used for function parameters, and function return values may be returned in W0/W1.
The compiler assumes that registers W8 through W13 will not be altered over function calls. Any
assembler routines that are called from C code should preserve these registers.

3.8 Operators

HI-TECH C supports all the ANSI operators. The exact results of some of these are implementation
defined. The following sections illustrate code produced by the compiler.

64

C Language Features Operators

3.8.1 Integral Promotion
When there is more than one operand to an operator, they typically must be of exactly the same type.
The compiler will automatically convert the operands, if necessary, so they have the same type. The
conversion is to a “larger” type so there is no loss of information. Even if the operands have the same
type, in some situations they are converted to a different type before the operation. This conversion
is called integral promotion. HI-TECH C performs these integral promotions where required. If you
are not aware that these changes of type have taken place, the results of some expressions are not
what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties
of char, short int or bit-field types to either signed int or unsigned int. If the result of the
conversion can be represented by an signed int, then that is the destination type, otherwise the
conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are con-
verted to signed int via integral promotion before the subtraction takes place. The result of the
subtraction with these data types is -50 (which is less than 10) and hence the body of the if() state-
ment is executed. If the result of the subtraction is to be an unsigned quantity, then apply a cast.
For example:

if((unsigned int)(a - b) < 10)
count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not
be executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
count++;

If c contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh
and so the comparison in the above example would fail. The compiler may be able to issue a

65

Operators C Language Features

mismatched comparison error to this effect in some circumstances. Again, a cast could be used to
change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed
with char-type operands, but with int-type operands. However there are circumstances when the
result of an operation is identical regardless of whether the operands are of type char or int. In
these cases, HI-TECH C will not perform the integral promotion so as to increase the code efficiency.
Consider the following example.

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned
int, the addition performed, the result of the addition cast to the type of a, and then the assignment
can take place. Even if the result of the unsigned int addition of the promoted values of b and c
was different to the result of the unsigned char addition of these values without promotion, after
the unsigned int result was converted back to unsigned char, the final result would be the same.
If an 8-bit addition is more efficient than an a 32-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have
to be performed to comply with the ANSI standard.

3.8.2 Shifts applied to integral types
The ANSI standard states that the result of right shifting (> > operator) signed integral types is
implementation defined when the operand is negative. Typically, the possible actions that can be
taken are that when an object is shifted right by one bit, the bit value shifted into the most significant
bit of the result can either be zero, or a copy of the most significant bit before the shift took place.
The latter case amounts to a sign extension of the number.

HI-TECH for dsPIC/PIC24 performs a sign extension of any signed integral type (for example
signed char, signed int or signed long). Thus an object with the signed int value 0x0124
shifted right one bit will yield the value 0x0092 and the value 0x8024 shifted right one bit will yield
the value 0xC012.

Right shifts of unsigned integral values always clear the most significant bit of the result.
Left shifts (< < operator), signed or unsigned, always clear the least significant bit of the result.

3.8.3 Division and modulus with integral types
The sign of the result of division with integers when either operand is negative is implementation
specific. Table 3.9 shows the expected sign of the result of the division of operand 1 with operand 2
when compiled with HI-TECH C.

In the case where the second operand is zero (division by zero), the result will always be zero.

66

C Language Features Psects

Table 3.9: Integral division
Operand 1 Operand 2 Quotient Remainder

+ + + +
- + - -
+ - - +
- - + -

3.9 Psects
The compiler splits code and data objects into a number of standard program sections referred to
as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in
assembler code. The linker will group all data for a particular psect into a single segment.

•

If you are using the driver to invoke the linker, you don’t need to worry about the
information documented here, except as background knowledge. If you want to run
the linker manually (this is not recommended), or write your own assembly language
subroutines, you should read this section carefully.

A psect can be created in assembler code by using the PSECT assembler directive (see Section
4.3.8.3). In C, user-defined psects can be created by using the #pragma psect preprocessor di-
rective, see Section 3.12.3.5.

3.9.1 Compiler-generated Psects
The code generator places code and data into psects with standard names which are subsequent
positioned by the default linker options. These psects are described below.

The compiler-generated psects which are placed in the program space are:

powerup This contains executable code for the standard or user-supplied power-up routine.

init This contains executable code associated with the RAM clear and copy portion of the runtime
startup module.

end_init This contains executable code associated with the runtime startup module which transfer
control to the funciton main().

text This contains all executable code compiled from C source modules. It also contains all code
from library modules.

67

Psects C Language Features

ctext This contains function entry code used when large model is selected.

const This psects holds objects that are declared const and string literals which are not modifiable.

vectors Is the psect which contains the interrupt code linked directly at the default interrupt vectors.

altvectors Is the psect which contains the alternative interrupt code linked directly at the alternative
interrupt vectors.

reset_vec Is the psect which contains the reset interrupt vector code.

config This psects holds user-programmed processors configuration bits.

idata This psects initialization data for xdata objects that require initialization.

yidata This psects initialization data for ydata objects that require initialization.

The compiler-generated psects which are placed in the data space are:

bss These psects contain global or static local variables which are uninitialized.

ybss These psects contain global or static local ydata variables which are uninitialized.

mconst This is the RAM version of the const psect, when after mapping.

data These psects contain any initialised global or static local variables,

ydata These psects contain any initialised global or static local ydata variables,

nvram This psect is used to store persistent qualified variables. It is not cleared or otherwise
modified by the runtime startup code.

ynvram This psect is used to store ydata persistent qualified variables. It is not cleared or other-
wise modified by the runtime startup code.

bitbss This psect is used to store all bit variables, except those qualified persistent.

ybitbss This psect is used to store all ydata bit variables, except those qualified persistent.

nvbit This psect is used to store all bit variables qualified persistent.

ynvbit This psect is used to store all ydata bit variables qualified persistent.

temp This psect is used for temporary storage.

68

C Language Features Interrupt Handling in C

3.10 Interrupt Handling in C
The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-
tions are often called interrupt service routines (ISR). Interrupts are also known as exceptions.

3.10.1 Interrupt Functions
The function qualifier interrupt may be applied to any number of C function definitions to allow
them to be called directly from the hardware interrupts. The compiler will process the interrupt
function differently to any other functions, generating code to save and restore any registers used
and exit using the appropriate instruction.

If the driver option --STRICT is used, the interrupt keyword becomes __interrupt.
An interrupt function must be declared as type void interrupt and may not have parame-

ters. This is the only function prototype that makes sense for an interrupt function. interrupt
functions may not be called directly from C code (due to the different return instruction that is used),
but they may call other functions itself.

As there is more than one vector location usable with dsPIC and PIC24s, an indicator is required
with the function definition to specify the interrupt vector to which the function should associated.
This takes the form of a @ symbol followed by the vector address at the end of the function prototype.
The address can either be a literal, or a symbolic name defined after including <htc.h>.

An example of an interrupt function linked to the Timer 1 vector (0x0C) is shown here.

int tick_count;

void interrupt tc_int(void) @ T1_VCTR
{
++tick_count;

}

A table of all available vector address macros for all supported devices is shown in Table 3.10,
however not all these macros and vectors are available on all devices.

Table 3.10: Interrupt Vector Address Macros

Macro name dsPIC30F Other Devices6 Description
Vector Addresses Vector Addresses

INT0_VCTR 0x14 0x14 External Interrupt 0
IC1_VCTR 0x16 0x16 Input Capture 1
OC1_VCTR 0x18 0x18 Output Compare 1

continued. . .

69

Interrupt Handling in C C Language Features

Table 3.10: Interrupt Vector Address Macros

Macro name dsPIC30F Other Devices5 Description
Vector Addresses Vector Addresses

T1_VCTR 0x1A 0x1A Timer 1
DMA0_VCTR 0x1C DMA Channel 0
IC2_VCTR 0x1C 0x1E Input Capture 2
OC2_VCTR 0x1E 0x20 Output Compare 2
T2_VCTR 0x20 0x22 Timer 2
T3_VCTR 0x22 0x24 Timer 3
SPI1_VCTR 0x24 Serial Comms 1
SPI1E_VCTR 0x26 Serial Comms 1 Error
SPI1D_VCTR 0x28 Serial Comms 1 Transfer Done
U1RX_VCTR 0x26 0x2A UART1 Receiver
U1TX_VCTR 0x28 0x2C UART1 Transmitter
ADC1_VCTR 0x2E A/D Converter 1
DMA1_VCTR 0x30 DMA Channel 1
ADC_VCTR 0x2A ADC Convert Done
NVM_VCTR 0x2C NVM Write Complete
SI2C_VCTR 0x2E I2C Slave Interrupt
MI2C_VCTR 0x30 I2C Master Interrupt
SI2C1_VCTR 0x34 I2C1 Slave Interrupt
MI2C1_VCTR 0x36 I2C1 Master Interrupt
CM_VCTR 0x38 Comparator Event
INCH_VCTR 0x32 0x3A Input Change Interrupt
INT1_VCTR 0x34 0x3C External Interrupt 1
ADC2_VCTR 0x3E A/D Converter 2
IC7_VCTR 0x36 0x40 Input Capture 7
IC8_VCTR 0x38 0x42 Input Capture 8
DMA2_VCTR 0x44 DMA Channel 2
OC3_VCTR 0x3A 0x46 Output Compare 3
OC4_VCTR 0x3C 0x48 Output Compate 4
T4_VCTR 0x3E 0x4A Timer 4
T5_VCTR 0x40 0x4C Timer 5
INT2_VCTR 0x42 0x4E External Interrupt 2
U2RX_VCTR 0x44 0x50 UART2 Receiver
U2TX_VCTR 0x46 0x52 UART2 Transmitter

continued. . .

70

C Language Features Interrupt Handling in C

Table 3.10: Interrupt Vector Address Macros

Macro name dsPIC30F Other Devices5 Description
Vector Addresses Vector Addresses

SPI2E_VCTR 0x54 Serial Comms 2 Error
SPI2D_VCTR 0x56 Serial Comms 2 Transfer Done
C1RX_VCTR 0x58 ECAN1 Receive Data Ready
C1E_VCTR 0x58 CAN1 Error on PS Devices
SPI2_VCTR 0x48 Serial Comms 2
C1_VCTR 0x4A 0x5A Combined IRQ for CAN1 or ECAN1
DMA3_VCTR 0x5C DMA Channel 3
IC3_VCTR 0x4C 0x5E Input Capture 3
IC4_VCTR 0x4E 0x60 Input Capture 4
IC5_VCTR 0x50 0x62 Input Capture 5
IC6_VCTR 0x52 0x64 Input Capture 6
OC5_VCTR 0x54 0x66 Output Compare 5
OC6_VCTR 0x56 0x68 Output Compare 6
OC7_VCTR 0x58 0x6A Output Compare 7
OC8_VCTR 0x5A 0x6C Output Compare 8
PMP_VCTR 0x6E Parallel Port Master
DMA4_VCTR 0x70 DMA Channel 4
T6_VCTR 0x72 Timer 6
T7_VCTR 0x74 Timer 7

SI2C2_VCTR 0x76 I2C2 Slave Interrupt
MI2C2_VCTR 0x78 I2C2 Master Interrupt
INT3_VCTR 0x5C 0x7E External Interrupt 3
INT4_VCTR 0x5E 0x80 External Interrupt 4
C1RX_VCTR 0x82 ECAN2 Receive Data Ready
C1E_VCTR 0x82 CAN2 Error on PS Devices
C2_VCTR 0x60 0x84 Combined IRQ for CAN2 or ECAN2
PWM_VCTR 0x62 0x86 PWM Period Match
QEI_VCTR 0x64 0x88 QEI Interrupt
DCIE_VCTR 0x8A DCI Error
DCID_VCTR 0x8C DCI Transfer Done
DMA5_VCTR 0x8E DMA Channel 5
RTCC_VCTR 0x90 Real-time Clock/Calendar
DCI_VCTR 0x66 Codec Transfer Done

continued. . .

71

Interrupt Handling in C C Language Features

Table 3.10: Interrupt Vector Address Macros

Macro name dsPIC30F Other Devices5 Description
Vector Addresses Vector Addresses

LVD_VCTR 0x68 Low Voltage Detect
FLTA_VCTR 0x6A 0x92 PWM Fault A
FLTB_VCTR 0x6C 0x94 PWM Fault B
U1E_VCTR 0x96 UART1 Error
U2E_VCTR 0x98 UART2 Error
DMA6_VCTR 0x9C DMA Channel 6
DMA7_VCTR 0x9E DMA Channel 7
C1TX_VCTR 0xA0 ECAN1 Transmit Data Request
C2TX_VCTR 0xA2 ECAN2 Transmit Data Request

3.10.1.1 Context Saving on Interrupts

HI-TECH for dsPIC/PIC24 automatically generates code to save context when an interrupt occurs.
This code will be executed before the code generated from the C interrupt function is entered.

Only those registers which are used by the interrupt function are saved.
If called functions have not been “seen” by the compiler, a worst case scenario is assumed and

all registers not preserved by function calls will be saved.
HI-TECH C does not scan assembly code which is placed in-line within the interrupt function

for register usage. Thus, if you include in-line assembly code into an interrupt function, you may
have to add extra assembly code to save and restore any registers or locations used if they are not
already saved by the interrupt entry routine.

3.10.1.2 Context Restoration

Any objects saved by the compiler are automatically restored before the interrupt function returns.
A retfie instruction placed at the end of the interrupt code which will reload the program counter
and re-enable the master interrupt bit. The program will return to the location at which it was when
the interrupt occurred.

Microchip have reported in Silicon Errata for PIC24 and dsPIC devices that under certain con-
ditions it is possible to generate an address trap error when using interrupt nesting. In order to
minimise the window of opportunity for this to occur during context-restoration the compiler will
disable interrupts immediately before the context-restoration code by temporarily raising the CPU
interrupt priority level to 7. Furthermore the code generator will also place ”DISI #4” before the
retfie instruction.

72

C Language Features Mixing C and Assembler Code

3.10.1.3 Fast Interrupt Functions

Interrupt functions qualified as fast, will utilise a fast interrupt save/restore technique. Such func-
tions will save and restore working resgisters W0 to W3 and the C, Z, OV, N and DC status register
flags to and from the devices’ internal shadow registers. This technique reduces the context save and
restore code size and cycles. However the device shadow registers are usually not accessable and
are also one level deep. Hence the use of fast interrupts in conjunction with interrupt nesting could
be problematic.

3.10.2 Enabling Interrupts
Hardware interrupt sources can be enabled and disabled using macros defined in <dspic.h>. The
macros are called DI(), and EI() which enable and disable interrupts respectively. Also provided
is DISI(n)which will disable interrupts for the given number of cycles plus one. Its parameter must
be a literal constant.

3.11 Mixing C and Assembler Code
Assembly language code can be mixed with C code using two different techniques: writing assembly
coe and placing it into a separate assembler module, or including it as in-line assembler in a C
module. For the latter, there are two formats in which this can be done.

3.11.1 External Assembly Language Functions
Entire functions may be coded in assembly language as separate .as source files, assembled and
combined into the output image using the linker. This technique allows arguments and return values
to be passed between C and assembler code.

The following are guidelines that must be adhered to when writing a routine in assembly code
that is callable from C code.

• select, or define, a suitable psect for the executable assembly code

• select a name (label) for the routine so that its corresponding C identifier is valid

• ensure that the routine’s label is globally accessable from other modules

• select an appropriate equivalent C prototype for the routine on which argument passing can be
modelled

• ensure any symbol used to hold arguments to the routine is globally accessable

73

Mixing C and Assembler Code C Language Features

• ensure any symbol used to hold a return value is globally accessable

• optionally, use a signature value to enable type checking when the function is called

• write the routine ensuring arguments are read from the correct location, the return value is
loaded to the correct storage location before returning

• ensure any local variables required by the routine have space reserved by the appropriate
directive

A mapping is performed on the names of all C functions and non-static global variables. See
Section 3.11.3.1 for a complete description of mappings between C and assembly identifiers.

TUT•RIAL

A assembly routine is required which can add two 16-bit values together. The routine
must be callable from C code. Both the values are passed in as arguments when the
routine is called from the C code. The assembly routine should return the result of the
addition as a 16-bit quanity.

Most compiler-generated executable code is placed in a psect called text (see Section
3.9.1). As we do not need to have this assembly routine linked at any particular location,
we can use this psect so the code is bundled with other executbale code and stored
somewhere in the program space. This way we do not need to use any additional linker
options. So we use an ordinary looking psect that you would see in assembly code
produced by the compiler. The psect’s name is text, will be linked in the CODE class,
which will reside in a memory space that has 2 bytes per addressable location and must
start on a word boundary:

PSECT text,reloc=4,local,class=CODE,delta=2

Now we would like to call this routine add. However in assembly we must choose the
name _add as this then maps to the C identifier add since the compiler prepends an
underscore to all C identifiers when it creates assembly labels. If the name add was
chosen for the assembler routine the it could never be called from C code. The name of
the assembly routine is the label that we will assocaite with the assembly code:

_add:

We need to be able to call this from other modules, som make this label globally access-
able:

GLOBAL _add

Arguments, or parameters, to this routine will passed via W0 and W2 registers and the
result returned in W0.

74

C Language Features Mixing C and Assembler Code

By compiling a dummy C function with a similar prototype to how we will be call-
ing this assembly routine, we can determine the signature value. We add a assembler
directive to make this signature value known:

SIGNAT _add,8250

Now to actually writing the function, remembering that the first byte parameter is al-
ready in the accumulator and the second paramater is already in this routine’s paramters
area – placed there by the calling function elsewhere. The result is placed back in to the
paramater area ready to be returned

add w0,w2,w0 ;add W0 to W2 and put the result in W0
return

To call an assembly routine from C code, a declaration for the routine must be provided. This
ensures that the compiler knows how to encode the function call in terms of paramters and return
values, however no other code is necessary.

If a signature value is present in the assembly code routine, its value will be checked by the linker
when the calling and called routines’ signatures can be compared.

TUT•RIAL

To continue the previous example, here is a code snippet that declares the operation of
the assembler routine, then calls the routine.

extern unsigned int add(unsigned a, unsigned b);
void main(void)
{

int a, result;
a = read_port();
result = add(5, a);

}

3.11.2 #asm, #endasm and asm()
dsPIC and PIC24 instructions may also be directly embedded “in-line” into C code using the direc-
tives #asm, #endasm or the statement asm().

The #asm and #endasm directives are used to start and end a block of assembly instructions which
are to be embedded into the assembly output of the code generator. The #asm and #endasm construct

75

Mixing C and Assembler Code C Language Features

is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,
however you can easily include multiple instructions with this form of in-line assembly.

The asm() statement is used to embed a single assembler instruction. This form looks and be-
haves like a C statement, however each instruction must be encapsulated within an asm() statement.

•

You should not use a #asm block within any C constructs such as if, while, do etc.
In these cases, use only the asm("") form, which is a C statement and will correctly
interact with all C flow-of-control structures.

The following example shows both methods used:

unsigned int var;
void main(void)
{

var = 1;
#asm // like this...

mov.w _var,w0
sl.w w0,w0
mov.w w0,_var

#endasm
// or like this

asm("mov.w _var,w0");
asm("sl.w w0,w0");
asm("mov.w w0,_var");

}

When using in-line assembler code, great care must be taken to avoid interacting with compiler-
generated code. The code generator cannot scan the assembler code for register usage and so will
remain unaware if registers are clobberred or used by the code. If in doubt, compile your program
with the driver -S option and examine the assembler code generated by the compiler.

3.11.3 Accessing C objects from within Assembly Code
The following applies regardless of whether the assembly is part of a separate assembly module, or
in-line with C code.

For any non-local assembly symbol, the GLOBAL directive must be used to link in with the symbol
if it was defined elsewhere. If it is a local symbol, then it may be used immediately.

76

C Language Features Mixing C and Assembler Code

Table 3.11: Predefined SFR names
Register Address
pcl 0x2E
pch 0x30
sr 0x42

3.11.3.1 Equivalent Assembly Symbols

The assembler equivalent identifier to an identifier in C code follows a form that is dependent on
the scope and type of the C identifier. The different forms are discussed below. Accessing the C
identifier in C code and its assembly equivalent in assembly code implies accessing the same object.
Here, “global” implies defined outside a function; “local” defined within a function.

C identifiers are assigned different symbols in the output assembly code so that an assembly
identifier cannot conflict with an identifier defined in C code. If assembly programmers choose
identifier names that do not begin with an underscore, these identifiers will never conflict with C
identifiers. Importantly, this implies that the assembly identifier, i, and the C identifier i relate to
different objects at different memory locations.

3.11.3.2 Accessing specifal function register names from assembler

When the code generator compiles a C module, it includes a list of EQU directives for some of the
more commonly used SFRs. These registers are listed in Table 3.11. Any assembly code that is
placed in-line into a C module can use these register names. If writing separate assembly modules,
these SFR definitions will not be present since the code generator does not process assembler files
in any way.

Another way of using the SFRs in in-line assembly code is refer to the symbols defined by the
chip-specific C header files. Whenever you include <htc.h> into a C module, all the available SFRs
are defined as absolute C variables. As the contents of this file is C code, it cannot be included
into an assembler module, but assembler code can uses these definitions. To use a SFR in in-line
assembler code from within the same C module that includes <htc.h>, simply use the symbol with
an underscore character prepended to the name. For example:

#include <htc.h>
void main(void)
{

PORTA = 0x55;
asm("mov #0xAA,w0");
asm("mov w0, _PORTA);

77

Preprocessing C Language Features

3.12 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if
the -P command-line option is issued.

3.12.1 Preprocessor Directives

HI-TECH for dsPIC/PIC24 accepts several specialised preprocessor directives in addition to the
standard directives. All of these are listed in Table 3.12.

Macro expansion using arguments can use the # character to convert an argument to a string, and
the ## sequence to concatenate tokens.

3.12.2 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional compi-
lation based on chip type etc. The symbols listed in Table 3.13 show the more common symbols
defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

3.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a
pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options. A
list of the keywords is given in Table 3.14. Those keywords not discussed elsewhere are detailed
below.

3.12.3.1 The #pragma inline Directive

Some of the standard C library functions only contain a small amount of code. Because the code is
small, often it would be more efficient to directly include (inline) the library function’s code rather
than calling it and linking in the function.

The #pragma inline directive provides a mechanism for doing this. The compiler can only do
this for library routines which it recognizes and currently HI-TECH for dsPIC/PIC24 only supports
inlining of the fabs() library routine.

78

C Language Features Preprocessing

Table 3.12: Preprocessor directives
Directive Meaning Example
preprocessor null directive, do

nothing
#

#assert generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line

assembly
#asm
mov r0, r1h
#endasm

#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for #else #if see #ifdef
#else conditionally include source lines see #if
#endasm terminate in-line assembly see #asm
#endif terminate conditional source

inclusion
see #if

#error generate an error message #error Size too big
#if include source lines if constant

expression true
#if SIZE < 10
c = process(10)
#else
skip();
#endif

#ifdef include source lines if preprocessor
symbol defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

#ifndef include source lines if preprocessor
symbol not defined

#ifndef FLAG
jump();
#endif

#include include text file into source #include <stdio.h>
#include "project.h"

#line specify line number and filename
for listing

#line 3 final

#nn (where nn is a number) short for
#line nn

#20

#pragma compiler specific options 3.12.3
#undef undefines preprocessor symbol #undef FLAG
#warning generate a warning message #warning Length not set

79

Preprocessing C Language Features

Table 3.13: Predefined macros
Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in use is HI-
TECH C.

_HTC_VER_MAJOR_ Always To indicate the integer component of the
compiler’s version number.

_HTC_VER_MINOR_ Always To indicate the decimal component of the
compiler’s version number.

_HTC_VER_PATCH_ Always To indicate the patch level of the com-
piler’s version number.

_HTC_EDITION_ Always To indicate which of PRO, STD or Lite
compiler is in use. Values of 2, 1 or 0 are
assigned respectively.

__DSPICC__ Always To indicate the use of the dsPIC and PIC24
C compiler.

MPC Always To indicate the target device is a Microchip
device.

__dsPIC__ If dsPIC device To indicate the target device is a dsPIC de-
vice.

__PIC24__ If PIC24 device To indicate the target device is a PIC24 de-
vice.

__dsPIC30F__ If dsPIC30F device To indicate the target device is a dsPIC30F
device.

__dsPIC33F__ If dsPIC33F device To indicate the target device is a dsPIC33F
device.

__PIC24FJ__ If PIC24FJ device To indicate the target device is a PIC24FJ
device.

__PIC24HJ__ If PIC24HJ device To indicate the target device is a PIC24HJ
device.

__chipname__ When chip selected To indicate the specific chip target selected.
__EEPROM_SIZE__ Always To indicate if EEPROM memory is avail-

able and how many bytes are available.
__FILE__ Always To indicate this source file being prepro-

cessed.
__LINE__ Always To indicate this source line number.
__DATE__ Always To indicate the current date, e.g. May 21

2004
__TIME__ Always To indicate the current time, e.g.

08:06:31.

80

C Language Features Preprocessing

Table 3.14: Pragma directives
Directive Meaning Example

inline Specify function as inline #pragma inline(fabs)
jis Enable JIS character handling in

strings
#pragma jis

nojis Disable JIS character handling (de-
fault)

#pragma nojis

pack Specify structure packing #pragma pack 1
printf_check Enable printf-style format string

checking
#pragma
printf_check(printf) const

psect Rename compiler-defined psect #pragma psect text=mytext
regsused Specify registers which are used in

an interrupt
#pragma regsused w10

switch Specify code generation for switch
statements

#pragma switch direct

3.12.3.2 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-
tional characters, the #pragma jis directive will enable proper handling of these characters, specif-
ically not interpreting a backslash, \, character when it appears as the second half of a two byte
character. The nojis directive disables this special handling. JIS character handling is disabled by
default.

3.12.3.3 The #pragma pack Directive

Some MCUs requires word accesses to be aligned on word boundaries. Consequently the compiler
will align all word or larger quantities onto a word boundary, including structure members. This can
lead to “holes” in structures, where a member has been aligned onto the next word boundary.

This behaviour can be altered with this directive. Use of the directive #pragma pack 1 will
prevent any padding or alignment within structures. Use this directive with caution - in general if
you must access data that is not aligned on a word boundary you should do so by extracting individual
bytes and re-assembling the data. This will result in portable code. Note that this directive must not
appear before any system header file, as these must be consistent with the libraries supplied.

•

dsPIC and PIC24s can only perform byte accesses to memory and so do not require any
alignment of memory objects. This pragma will have no effect when used.

81

Preprocessing C Language Features

3.12.3.4 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner of printf(). Although the format string is interpreted at runtime, it can be compile-time
checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file <stdio.h>
includes the directive #pragma printf_check(printf) const to enable this checking for printf().
You may also use this for any user-defined function that accepts printf-style format strings. The
qualifier following the function name is to allow automatic conversion of pointers in variable argu-
ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type
(const char *)

•

Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section 2.4.53.

3.12.3.5 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as described
in Section 3.9.1. This is fine for most applications, but sometimes it is necessary to redirect variables
or code into different psects when a special memory configuration is desired. Code and data for any
of the standard C psects may be redirected using a #pragma psect directive.

The general form of this pragma looks like:

#pragma psect default_psect=new_psect

and instructs the code generator that anything that would normally appear in the compiler-generated
psect default_psect, will now appear in a new psect called new_psect. This psect will be
identical to default_psect in terms of its options, however will have a different name. Thus,
this new psect can be explicitly positioned by the linker without affect the original psect’s location.

If the name of the default psect that is being redirected contains a counter, e.g. text0, text1,
text2, then the placeholder %%u should be used in the name of the psect at the position of the counter,
e.g. text%%u. Any default psect, regadless of the counter value, will match such a psect name.

This pragma remains in force until the end of the module and any given psect should only be
redirected once in a particular module. All psect redirections for a particular module should be
placed at the top of the source file, below any #include statements and above any other declarations.

82

C Language Features Preprocessing

TUT•RIAL

A particular function, called read_port(), needs to be located at the absolute address
0x400 in a program. Using the #pragma psect directive in the source code, and adding
a new linker option can do this. First write the function in the usual way. Place the
function definition in a separate module. There is obvioulsy something special about
this function so a module all to itself is probably a good idea anyway.

unsigned char read_port(void)
{

return PORTA;
}

Now, how do we know in which psect the code associated with the function will be
placed? Compile you program, inlcuding this new module and generate an assembly
list file, see Section 2.4.18.

Look for the definition of the function. A function starts with an assembly label which
is the name of the function prepended with an underscore. In this example, the label
appears on line 37.

36 psect text
37 0002 _read_port:

Look above this to see the first PSECT directive you encounter. This will indicate the
name of the psect in which the code is located. In this case it is the psect called text.

So let us redirect this psect into one with a unique and more meaningful name. In the C
module that contains the definition for read_port() place the following pragma:

#pragma psect text=readport

at the top of the module, before the function definition. With this, the read_port()
function will be placed in the psect called readport. Confirm this in the new assembly
list file.

Now we can tell the linker where we would like this psect positioned. Issue an additional
option to the command-line driver to place this psect at address 0x400.

-L-preadport=0400h

The generate an check the map file, see Section 2.4.9. You should see the additional
linker command (minus the leading -L part of the option) present in the section after
Linker command line:. You should also see the remapped psect name appear in the
source file list of psects, e.g.:

83

Preprocessing C Language Features

Name Link Load Length Selector Space Scale
/tmp/cgt9e31jr.obj
main.obj maintext 0 0 2 0 0

portread 400 400 2 800 0

Check the link address to ensure it is that requested, inthis case, 0x400.

3.12.3.6 The #pragma regsused Directive

HI-TECH C will automatically save context when an interrupt occurs. The compiler will determine
only those registers and objects which need to be saved for the particular interrupt function defined.
The #pragma regsused directive allows the programmer to indicate register usage for functions
that will not be “seen” by the code generator, for example if they were written in assembly code.

The general form of the pragma is:

#pragma regsused register_list

where register_list is a space or comma-separated list of registers names (W0..W15). Those
registers not listed are assumed to be unused by the function or routine. The code generator may use
the unlisted registers to hold values across a function call. Hence, if the routine does in fact use these
registers, unreliable program execution may eventuate. The list of registers to be saved will apply to
the first interrupt qualified function defined after the pragma’s usage.

The register names are not case sensitive and a warning will be produced if the register name is
not recognised. A blank list indicates that the specified function or routine uses no registers.

3.12.3.7 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in
the smallest possible code size. The #pragma switch directive can be used to force the compiler to
use one particular method. The general form of the switch pragma is:

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table .
Specifying the direct option to the #pragma switch directive forces the compiler to generate

the table look-up style switch method. This is mostly useful where timing is an issue for switch
statements (i.e.: state machines).

This pragma affects all code generated onward. The auto option may be used to revert to the
default behaviour.

84

C Language Features Linking Programs

Table 3.15: switch types
switch type description
auto use smallest code size method (default)
direct table lookup (fixed delay)

3.13 Linking Programs
The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (driver -S option) or object code (driver -C option).

HI-TECH C, by default, generates intel HEX. Use the --OUTPUT= option to specify a different
output format.

After linking, the compiler will automatically generate a memory usage map which shows the
address used by, and the total sizes of, all the psects which are used by the compiled code.

The program statistics shown after the summary provides more concise information based on
each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may
be obtained by using the driver --SUMMARY=psect option. Generate a map file for the complete
memory specification of the program.

3.13.1 Replacing Library Modules
Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack a library files and
replace modules with your own modified versions, you can easily replace a library module that is
linked into your program without having to do this. If you add the source file which contains the
library routine you wish to replace on the command-line list of source files then the routine will
replace the routine in the library file with the same name.

•

This method works due to the way the linker scans source and library file. When trying
to resolve a symbol (in this instance a function name) the linker first scans all source
modules for the definition. Only if it cannot resolve the symbol in these files does it
then search the library files. Even though the symbol may be defined in a source file
and a library file, the linker will not search the libraries and no multiply defined symbol
error will result. This is not true if a symbol is defined twice in source files.

For example, if you wished to make changes to the library function max() which resides in the file
max.c in the SOURCES directory, you could make a copy of this source file, make the appropriate

85

Linking Programs C Language Features

changes and then compile and use it as follows.

DSPICC --chip=30F6014 main.c init.c max.c

The code for max() in max.c will be linked into the program rather than the max() function con-
tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

3.13.2 Signature Checking
The compiler automatically produces signatures for all functions. A signature is a 16-bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. HI-TECH for dsPIC/PIC24 is
only likely to issue a mismatch error from the linker when the routine is either a precompiled object
file or an assembly routine. Other function mismatches are reported by the code generator.

TUT•RIAL

It is sometimes necessary to write assembly language routines which are called from C
using an extern declaration. Such assembly language functions should include a sig-
nature which is compatible with the C prototype used to call them. The simplest method
of determining the correct signature for a function is to write a dummy C function with
the same prototype and compile it to assembly language using the driver -S option. For
example, suppose you have an assembly language routine called _widget which takes
two int arguments and returns a char value. The prototype used to call this function
from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int
arguments and a char return value would be generated. In order to match the correct
signature the source code for widget needs to contain an assembler SIGNAT pseudo-op
which defines the same signature value. To determine the correct value, you would write
the following code:

char widget(int arg1, int arg2)
{
}

and compile it to assembler code using

86

C Language Features Standard I/O Functions and Serial I/O

Table 3.16: Supported standard I/O functions
Function name Purpose

printf(const char * s, ...) Formatted printing to stdout
sprintf(char * buf, const char * s, ...) Writes formatted text to buf

DSPICC -S x.c

The resultant assembler code includes the following line:

SIGNAT _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which
associates the value 8249 with symbol _widget. The value 8249 is the correct signature
for a function with two int arguments and a char return value. If this line is copied into
the .as file where _widget is defined, it will associate the correct signature with the
function and the linker will be able to check for correct argument passing. For example,
if another .c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-
match which will alert you to the possible existence of incompatible calling conventions.

3.13.3 Linker-Defined Symbols
The link address of a psect can be obtained from the value of a global symbol with name __Lname
where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The
highest address of a psect (i.e. the link address plus the size) is symbol __Hname.

If the psect has different load and link addresses the load start address is specified as __Bname.

3.14 Standard I/O Functions and Serial I/O
A number of the standard I/O functions are provided in the C library with the compiler, specifically
those functions intended to read and write formatted text on standard output and input. A list of the
available functions is in Table 3.16. More details of these functions can be found in Appendix A.

Before any characters can be written or read using these functions, the putch() and getch()
functions must be written. Other routines which may be required include getche() and kbhit().

87

Standard I/O Functions and Serial I/O C Language Features

88

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH for dsPIC/PIC24 assembles source files for dsPIC
and PIC24 MCUs. This chapter describes the usage of the assembler and the directives (assembler
pseudo-ops and controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator
and an object code converter.

•

Athough the term “assembler” is almost universally used to decribe the tool which con-
verts human-readable mnemonics into machine code, both “assembler” and “assembly”
are used to describe the source code which such a tool reads. The latter is more com-
mon and is used in this manual to describe the language. Thus you will see the terms
assembly language (or just assembly), assembly listing and etc, but assembler options,
assembler directive and assembler optimizer.

4.1 Assembler Usage
The assembler is called ASDSPIC and is available to run on Windows, Linux and Mac OS systems.
Note that the assembler will not produce any messages unless there are errors or warnings — there
are no “assembly completed” messages.

Typically the command-line driver, DSPICC, is used to envoke the assembler as it can be passed
assembler source files as input, however the options for the assembler are supplied here for instances

89

Assembler Options Macro Assembler

where the assembler is being called directly, or when they are specified using the command-line
driver option --SETOPTION, see Section 2.4.47.

The usage of the assembler is similar under all of available operating systems. All command-line
options are recognised in either upper or lower case. The basic command format is shown:

ASDSPIC [options] files

files is a space-separated list of one or more assembler source files. Where more than one source
file is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus sign - as
the first character. A full list of possible options is given in Table 4.1, and a full description of each
option follows.

Table 4.1: ASDSPIC command-line options
Option Meaning Default

-A Produce assembler output Produce object code
-C Produce cross-reference file No cross reference
-Cchipinfo Define the chipinfo file dat\dspicc.ini
-E[file|digit] Set error destination/format
-Flength Specify listing form length 66
-H Output hex values for constants Decimal values
-I List macro expansions Don’t list macros
-L[listfile] Produce listing No listing
-O Perform optimization No optimization
-Ooutfile Specify object name srcfile.obj
-Pprocessor Define the processor
-R Specify non-standard ROM
-Twidth Specify listing page width 80
-V Produce line number info No line numbers
-Wlevel Set warning level threshold 0
-X No local symbols in OBJ file

4.2 Assembler Options
The command line options recognised by the assembler are as follows:

90

Macro Assembler Assembler Options

-A An assembler file with an extension .opt will be produced if this option is used. This is useful
when checking the optimized assembler produced using the -O option.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf,
where srcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utility CREF must then be run to produce the formatted
cross reference listing. See Section 4.7 for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is called dspicc.ini and can be found
in the DAT directory of the compiler distribution.

-E[file|digit] The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename.
The -E option with no argument will make the assembler use an alternate format for
error and warning messages.
Specifying a digit as argument has a similar effect, only it allows selection of any of
the available message formats.
Specifying a filename as argument will force the assembler to direct error and warning
messages to a file with the name specified.

-Flength By default the listing format is pageless, i.e. the assembler listing output is continuous.
The output may be formatted into pages of varying lengths. Each page will begin with a
header and title, if specified. The -F option allows a page length to be specified. A zero value
of length implies pageless output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the -A or -L assembler options, this option specifies that
output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-
wise be suppressed by a NOLIST assembler control. The -L option is still necessary to produce
a listing.

-Llistfile This option requests the generation of an assembly listing file. If listfile is specified
then the listing will be written to that file, otherwise it will be written to the standard output.

-O This requests the assembler to perform optimization on the assembly code. Note that the use of
this option slows the assembly process down, as the assembler must make an additional pass
over the input code. Debug information for assembler code generated from C source code
may become unreliable.

91

HI-TECH C Assembly Language Macro Assembler

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source filename and
appending .obj. The -O option allows the user to override the default filename and specify a
new name for the object file.

-Pprocessor This option defines the processor which is being used. The processor type can also be
indicated by use of the PROCESSOR directive in the assembler source file, see Section 4.3.8.17.
You can also add your own processors to the compiler via the compiler’s chipinfo file.

-V This option will include line number and filename information in the object file produced by
the assembler. Such information may be used by debuggers. Note that the line numbers will
correspond with assembler code lines in the assembler file. This option should not be used
when assembling an assembler file produced by the code generator from a C source file.

-Twidth This option allows specification of the listfile paper width, in characters. width should be
a decimal number greater than 41. The default width is 80 characters.

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. The -X option will prevent the local symbols
from being included in the object file, thereby reducing the file size.

4.3 HI-TECH C Assembly Language
The source language accepted by the macro assembler, is described below. All opcode mnemonics
and operand syntax are strictly dsPIC and PIC24 assembly language. Additional mnemonics and
assembler directives are documented in this section.

4.3.1 Statement Formats
Legal statement formats are shown in Table 4.2.

The label field is optional and, if present, should contain one identifier. A label may appear
on a line of its own, or precede a mnemonic as shown in the second format.

The third format is only legal with certain assembler directives, such as MACRO, SET and EQU. The
name field is mandatory and should also contain one identifier.

If the assembly file is first processed by the C preprocessor, see Section 2.4.12, then it may also
contain lines that form valid preprocessor directives. See Section 3.12.1 for more information on the
format for these directives.

There is no limitation on what column or part of the line in which any part of the statement
should appear.

92

Macro Assembler HI-TECH C Assembly Language

Table 4.2: Assembly statement formats
Format 1 label:
Format 2 label: mnemonic operands ; comment
Format 3 name pseudo-op operands ; comment
Format 4 ; comment only
Format 5 <empty line>

4.3.2 Characters
The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
mnemonics and reserved words. Tabs are treated as equivalent to spaces.

4.3.2.1 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the
end of a line.

4.3.2.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is
used for token concatenation. To use the bitwise & operator within a macro body, escape it by using
&& instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

4.3.3 Comments
An assembly comment is initiated with a semicolon that is not part of a string or character constant.

If the assembly file is first processed by the C preprocessor, see Section 2.4.12, then it may also
contain C or C++ style comments using the standard /* ... */ and // syntax.

4.3.3.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are
typically used by the assembler optimizer.

The comment string ;volatile is used to indicate that the memory location being accessed in
the commented instruction is associated with a variable that was declared as volatile in the C
source code. Accesses to this location which appear to be redundant will not be removed by the
assembler optimizer if this string is present.

This comment string may also be used in assembler source to achive the same effect for locations
defined and accessed in assembly code.

93

HI-TECH C Assembly Language Macro Assembler

Table 4.3: Assembly numbers and bases
Radix Format

Binary digits 0 and 1 followed by B
Octal digits 0 to 7 followed by O, Q, o or q
Decimal digits 0 to 9 followed by D, d or nothing
Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h

4.3.4 Constants
4.3.4.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.
The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier

as given in Table 4.3.
Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi-

fiers. Hexadecimal digits are accepted in either upper or lower case.
Note that a binary constant must have an upper case B following it, as a lower case b is used for

temporary (numeric) label backward references.
In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit

format.

4.3.4.2 Character Constants and Strings

A character constant is a single character enclosed in single quotes ’.
Multi-character constants, or strings, are a sequence of characters, not including carriage return

or newline characters, enclosed within matching quotes. Either single quotes ’ or double quotes "
maybe used, but the opening and closing quotes must be the same.

4.3.5 Identifiers
Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-
bol may contain any number of characters drawn from the alphabetics, numerics and the special
characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is significant,
e.g. Fred is not the same symbol as fred. Some examples of identifiers are shown here:

An_identifier
an_identifier
an_identifier1

94

Macro Assembler HI-TECH C Assembly Language

$
?$_12345

4.3.5.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note
that this assembler attaches no significance to any symbol, and places no restrictions or expectations
on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate, overlapping
name spaces, but other than this, the assembler does not care whether a symbol is used to represent
bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits
or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for
the assembler to generate correct code.

4.3.5.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the
same form.

4.3.5.3 Location Counter

The current location within the active program section is accessible via the symbol $. This symbol
expands to the address of the currently executing instruction. Thus:

goto $

will represent code that will jump to itself and form an endless loop. By using this symbol and an
offset, a relative jump destination to be specified.

The address represented by $ is a word address and thus any offset to this symbol represents a
number of instructions. For example:

goto $+1
mov #8, w8
mov w8, _foo

will skip one instruction.

95

HI-TECH C Assembly Language Macro Assembler

4.3.5.4 Register Symbols

Code in assembly modules may gain access to the special function registers by including pre-defined
assembly header files. The appropriate file can be included by add the line:

#include <asdspic.h>

to the assembler source file. Note that the file must be included using a C pre-processor directive and
hence the option to pre-process assembly files must be enabled when compiling, see Section 2.4.12.
This header file contains appropriate commands to ensure that the header file specific for the target
device is included into the souce file.

These header files contain EQU declarations for all byte or multi-byte sized registers and #define
macros for named bits within byte registers.

4.3.5.5 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.
A label definition consists of any valid assembly identifier followed by a colon, :. The defini-

tion may appear on a line by itself or be positioned before a statement. Here are two examples of
legitimate labels interspersed with assembly code.

frank:
mov #1, w0
goto fin

simon44: clrf _input

Here, the label frank will ultimately be assigned the address of the mov instruction, and simon44 the
address of the clrf instruction. Regardless of how they are defined, the assembler list file produced
by the assembler will always show labels on a line by themselves.

Labels may be used (and are prefered) in assembly code rather than using an absolute address.
Thus they can be used as the target location for jump-type instructions or to load an address into a
register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which
they are defined. They may be used by code above their definition. To make a label accessable in
other modules, use the GLOBAL directive. See Section 4.3.8.1 for more information.

4.3.6 Expressions
The operands to instructions and directives are comprised of expressions. Expressions can be made
up of numbers, identifiers, strings and operators.

96

Macro Assembler HI-TECH C Assembly Language

Table 4.4: Assembly operators
Operator Purpose Example
* Multiplication mov #4*33,W0
+ Addition bra $+1
- Subtraction DB 5-2
/ Division mov #100/4,W5
= or eq Equality IF inp eq 66
> or gt Signed greater than IF inp > 40
>= or ge Signed greater than or equal to IF inp ge 66
< or lt Signed less than IF inp < 40
<= or le Signed less than or equal to IF inp le 66
<> or ne Signed not equal to IF inp <> 40
low Low byte of operand mov #low(inp),W2
high High byte of operand mov #high(1008h),W3
highword High 16 bits of operand DW highword(inp)
mod Modulus mov #77mod4,W10
& Bitwise AND clrf inp&0ffh
^ Bitwise XOR (exclusive or) mov #inp^80,W4
| Bitwise OR mov #inp!1,W1
not Bitwise complement mov #not 055h,W6
< < or shl Shift left DB inp> >8
> > or shr Shift right mov #inp shr 2,W3
rol Rotate left DB inp rol 1
ror Rotate right DB inp ror 1
float24 24-bit version of real operand DW float24(3.3)
nul Tests if macro argument is null

97

HI-TECH C Assembly Language Macro Assembler

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The operators
allowable in expressions are listed in Table 4.4. The usual rules governing the syntax of expressions
apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The
HI-TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

4.3.7 Program Sections
Program sections, or psects, are simply a section of code or data. They are a way of grouping together
parts of a program (via the psect’s name) even though the source code may not be physically adjacent
in the source file, or even where spread over several source files.

•

The concept of a program section is not a HI-TECH-only feature. Often referred to as
blocks or segments in other compilers, these grouping of code and data have long used
the names text, bss and data.

A psect is identified by a name and has several attributes. The PSECT assembler directive is used
to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See
Section 4.3.8.3 for full information on psect definitions. Chapter 5 has more information on the
operation of the linker and on optins that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware
of which are compiler-generated or user-defined psects. Unless defined as abs (absolute), psects are
relocatable.

The following is an example showing some executable instructions being placed in the text
psect, and some data being placed in the bss psect.

PSECT text,class=CODE,delta=2
adjust:

goto clear_fred
increment:

inc _fred
PSECT bss,class=RAM,space=1
fred:

DS 2
PSECT text,class=CODE,delta=2
clear_fred:

98

Macro Assembler HI-TECH C Assembly Language

clrf _fred
return

Note that even though the two blocks of code in the text psect are separated by a block in the bss
psect, the two text psect blocks will be contiguous when loaded by the linker. In other words,
the inc _fred instruction will be followed by the clrf instruction in the final ouptut. The actual
location in memory of the text and bss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)
psect.

4.3.8 Assembler Directives
Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemonicss, but either
do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in
Table 4.5, and are detailed below.

4.3.8.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If
the symbols are not defined in the current module, it is a reference to symbols in external modules.
Example:

GLOBAL lab1,lab2,lab3

4.3.8.2 END

END is optional, but if present should be at the very end of the program. It will terminate the assembly
and not even blank lines should follow this directive. If an expression is supplied as an argument,
that expression will be used to define the start address of the program. Whether this is of any use
will depend on the linker. Example:

END start_label

4.3.8.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,
optionally, a comma-separated list of flags. The allowed flags are listed in Table 4.6, below.

Once a psect has been declared it may be resumed later by another PSECT directive, however the
flags need not be repeated.

99

HI-TECH C Assembly Language Macro Assembler

Table 4.5: Assembler Directives
Directive Purpose
GLOBAL Make symbols accessible to other modules or allow reference to

other modules’ symbols
END End assembly
PSECT Declare or resume program section
ORG Set location counter
EQU Define symbol value
SET Define or re-define symbol value
DB Define constant byte(s)
DW Define constant word(s)
DDW Define constant double word(s)
DS Reserve storage
IF Conditional assembly
ELSIF Alternate conditional assembly
ELSE Alternate conditional assembly
ENDIF End conditional assembly
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
ALIGN Align output to the specified boundary
PAGESEL Generate set/reset instruction to set PCLATH for this page
PROCESSOR Define the particular chip for which this file is to be assembled.
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
SIGNAT Define function signature

100

Macro Assembler HI-TECH C Assembly Language

Table 4.6: PSECT flags
Flag Meaning

abs Psect is absolute
bit Psect holds bit objects
class=name Specify class name for psect
delta=size Size of an addressing unit
global Psect is global (default)
limit=address Upper address limit of psect
local Psect is not global
ovrld Psect will overlap same psect in other modules
pure Psect is to be read-only
pad=amount Zero pads psect up to specified alignment
reloc=boundary Start psect on specified boundary
size=max Maximum size of psect
space=area Represents area in which psect will reside
width=size Sets maximum number of bytes used per address
with=psect Place psect in the same page as specified psect

• abs defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

• The bit flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale
value of 8 to indicate that there are 8 addressable units to each byte of storage.

• The class flag specifies a class name for this psect. Class names are used to allow local psects
to be referred to by a class name at link time, since they cannot be referred to by their own
name. Class names are also useful where psects need only be positioned anywhere within a
range of addresses rather than at one specific address.

• The delta flag defines the size of an addressing unit. In other words, the number of bytes
covered for an increment in the address.

• A psect defined as global will be combined with other global psects of the same name from
other modules at link time. This is the default behaviour for psects, unless the local flag is
used.

• The limit flag specifies a limit on the highest address to which a psect may extend.

101

HI-TECH C Assembly Language Macro Assembler

• A psect defined as local will not be combined with other local psects at link time, even if
there are others with the same name. Where there are two local psects in the one module,
they reference the same psect. A local psect may not have the same name as any global
psect, even one in another module.

• A psect defined as ovrld will have the contribution from each module overlaid, rather than
concatenated at runtime. ovrld in combination with abs defines a truly absolute psect, i.e. a
psect within which any symbols defined are absolute.

• The pure flag instructs the linker that this psect will not be modified at runtime and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

• The pad flag instructs the linker that at the end of this psect, it should zero pad it to the next
address which is a multiple of the given value. This is useful when mulitple psects are linked
one after each other as it ensures that the start of each psect will begin on the selected address
boundary.

• The reloc flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g. reloc=100h would specify that this psect must start on an address that is a
multiple of 100h.

• The size flag allows a maximum size to be specified for the psect, e.g. size=100h. This will
be checked by the linker after psects have been combined from all modules.

• The space flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in program memory and data memory may
have a different space value to indicate that the program space address zero, for example,
is a different location to the data memory address zero. Devices which use banked RAM
data memory typically have the same space value as their full addresses (including bank
information) are unique.

• The with flag allows a psect to be placed in the same page with a specified psect. For example
with=text will specify that this psect should be placed in the same page as the text psect.

• The width flag is used to control the maximum number of bytes placed at each address. For
example, even if each address can take a four byte (32-bit) instruction, this flag could be used
to restrict this to a smaller value. On the dsPIC, this is used on data constants to limit only
two bytes of constants per address. This is needed because constants are mapped into data
memory where each addressable location is two bytes (16-bits) wide. This flag is useful only
when used in conjunction with the DB, DW and DDW assembler directives.

102

Macro Assembler HI-TECH C Assembly Language

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE,delta=2

4.3.8.4 ORG

The ORG directive changes the value of the location counter within the current psect. This means that
the addresses set with ORG are relative to the base address of the psect, which is not determined
until link time.

•

The much-abused ORG directive does not necessarily move the location counter to the
absolute address you specify as the operand. This directive is rarely needed in programs.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. It is not
possible to move the location counter backward. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the directive
must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld
ORG 50h

4.3.8.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not
previously been defined. See also Section 4.3.8.6.

103

HI-TECH C Assembly Language Macro Assembler

4.3.8.6 SET

This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET 0h

4.3.8.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be
assembled into one byte. Each character of the string will be assembled into one memory location.
Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a
word with the upper byte set to zero.

4.3.8.8 DW

DW operates in a similar fashion to DB, except that it assembles expressions into words. Example:

DW -1, 3664h, ‘A’, 3777Q

4.3.8.9 DDW

DDW operates in a similar fashion to DW, except that it assembles expressions into double (32-bit)
words. Example:

DDW 12345678h

4.3.8.10 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 2+3 ;Reserve 5 bytes of memory

104

Macro Assembler HI-TECH C Assembly Language

4.3.8.11 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF should be an
absolute expression. If it is non-zero, then the code following it up to the next matching ELSE,
ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching
ELSE or ENDIF will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will termi-
nate the conditional assembly block. Example:

IF ABC
goto aardvark

ELSIF DEF
goto denver

ELSE
goto grapes

ENDIF

In this example, if ABC is non-zero, the first jmp instruction will be assembled but not the second or
third. If ABC is zero and DEF is non-zero, the second jmp will be assembled but the first and third
will not. If both ABC and DEF are zero, the third jmp will be assembled. Conditional assembly blocks
may be nested.

4.3.8.12 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by
the macro name and optionally followed by a comma-separated list of formal parameters. When the
macro is used, the macro name should be used in the same manner as a machine opcode, followed
by a list of arguments to be substituted for the formal parameters.

For example:

;macro: storem
;args: arg1 - the NAME of the source variable
; arg2 - the literal value to load
;descr: Loads two registers with the value in the variable:
ldtwo MACRO arg1,arg2

mov #&arg2, w0
mov w0,&arg1

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

105

HI-TECH C Assembly Language Macro Assembler

storem tempvar,2

expands to:

mov #2,w0
mov w0,tempvar

A point to note in the above example: the & character is used to permit the concatenation of macro
parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro
storage) by opening the comment with a double semicolon, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a
comma (or other delimiter such as a space) in an argument then angle brackets < and > may be used
to quote the argument. In addition the exclamation mark, ! may be used to quote a single character.
The character immediately following the exclamation mark will be passed into the macro argument
even if it is normally a comment indicator.

If an argument is preceded by a percent sign %, that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.
...

ELSE ; argument was supplied
...

ENDIF

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was
invoked. Expansion of the macro in the listing file can be shown by using the EXPAND assembler
control, see Section 4.3.9.2,

4.3.8.13 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

down MACRO count
LOCAL more
more: dec count
cp0 count

106

Macro Assembler HI-TECH C Assembly Language

bra nz, more
ENDM

when expanded will include a unique assembler generated label in place of more. For example:

down foobar

expands to:

??0001 dec foobar
cp0 foobar
bra nz, ??0001

if invoked a second time, the label more would expand to ??0002.

4.3.8.14 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary
in the psect in which the directive is found. The boundary is specified by a number following the
directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address
within a psect, the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on
an even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple
of a certain number. For example, if the above ALIGN directive was placed at the end of a psect, the
psect would have a length that was always an even number of bytes long.

4.3.8.15 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as
determined by its argument. For example:

REPT 3
sl w0
ENDM

will expand to

sl w0
sl w0
sl w0

107

HI-TECH C Assembly Language Macro Assembler

4.3.8.16 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT, however instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP
the list is a conventional macro argument list, in the case or IRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

PSECT romdata,class=CODE,reloc=4,delta=2
IRP number,4865h,6C6Ch,6F00h
DW number

ENDM
PSECT text

would expand to:

PSECT romdata,class=CODE,reloc=4,delta=2
DW 4865h
DW 6C6Ch
DW 6F00h

PSECT text

Note that you can use local labels and angle brackets in the same manner as with conventional
macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-
space characters.

For example:

PSECT romdata,class=CODE,reloc=4,delta=2
IRPC char,ABC
DB ’char’

ENDM
PSECT text

will expand to:

PSECT romdata,class=CODE,reloc=4,delta=2
DB ’A’
DB ’B’
DB ’C’

PSECT text

108

Macro Assembler HI-TECH C Assembly Language

4.3.8.17 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically
set using the --CHIP option to the command-line driver, see Section 2.4.20, or using the assembler
-P option, see Table 4.1, but can also be set with this directive, e.g.

PROCESSOR 30F6014

4.3.8.18 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred,8192

will associate the signature value 8192 with the symbol _fred. If a different signature value for
_fred is present in any object file, the linker will report an error.

4.3.9 Assembler Controls
Assembler controls may be included in the assembler source to control assembler operation such as
listing format. These keywords have no significance anywhere else in the program. The control is
invoked by the directive OPT followed by the control name. Some keywords are followed by one or
more parameters. For example:

OPT EXPAND

A list of keywords is given in Table 4.7, and each is described further below.

4.3.9.1 COND

Any conditional code will be included in the listing output. See also the NOCOND control in Section
4.3.9.5.

4.3.9.2 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the listing output.
See also the NOEXPAND control in Section 4.3.9.6.

109

HI-TECH C Assembly Language Macro Assembler

Table 4.7: ASDSPIC assembler controls
Control1 Meaning Format
COND* Include conditional code in the listing COND
EXPAND Expand macros in the listing output EXPAND
INCLUDE Textually include another source file INCLUDE <pathname>
LIST* Define options for listing output LIST [<listopt>, ...,

<listopt>]
NOCOND Leave conditional code out of the listing NOCOND
NOEXPAND* Disable macro expansion NOEXPAND
NOLIST Disable listing output NOLIST
PAGE Start a new page in the listing output PAGE
SUBTITLE Specify the subtitle of the program SUBTITLE “<subtitle>”
TITLE Specify the title of the program TITLE “<title>”

4.3.9.3 INCLUDE

This control causes the file specified by pathname to be textually included at that point in the
assembly file. The INCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the
working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.4.12 which forces the C preprocessor to preprocess
assembly file, thus allowing use of preprocessor directives, such as #include (see Section 3.12.1).

4.3.9.4 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its own will
turn the listing on.

Alternatively, the LIST control may includes options to control the assembly and the listing. The
options are listed in Table 4.8.

See also the NOLIST control in Section 4.3.9.7.

4.3.9.5 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also
the COND control in Section 4.3.9.1.

110

Macro Assembler HI-TECH C Assembly Language

Table 4.8: LIST control options
List Option Default Description

c=nnn 80 Set the page (i.e. column) width.
n=nnn 59 Set the page length.
t=ON|OFF OFF Truncate listing output lines. The default wraps lines.
p=<processor> n/a Set the processor type.
r=<radix> hex Set the default radix to hex, dec or oct.
x=ON|OFF OFF Turn macro expansion on or off.

4.3.9.6 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See
also the EXPAND control in Section 4.3.9.2. Assembly macro are discussed in Section 4.3.8.12.

4.3.9.7 NOLIST

This control turns the listing output off from this point onward. See also the LIST control in Section
4.3.9.4.

4.3.9.8 NOXREF

NOXREF will disable generation of the raw cross reference file. See also the XREF control in Section
4.3.9.13.

4.3.9.9 PAGE

PAGE causes a new page to be started in the listing output. A Control-L (form feed) character will
also cause a new page when encountered in the source.

4.3.9.10 SPACE

The SPACE control will place a number of blank lines in the listing output as specified by its param-
eter.

4.3.9.11 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string
should be enclosed in single or double quotes. See also the TITLE control in Section 4.3.9.12.

111

HI-TECH C Assembly Language Macro Assembler

4.3.9.12 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be
enclosed in single or double quotes. See also the SUBTITLE control in Section 4.3.9.11.

4.3.9.13 XREF

XREF is equivalent to the driver command line option --CR (see Section 2.4.23). It causes the assem-
bler to produce a raw cross reference file. The utility CREF should be used to actually generate the
formatted cross-reference listing.

112

Chapter 5

Linker and Utilities

5.1 Introduction
HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler driver will automatically
invoke the linker with all necessary arguments. Using the linker directly is not simple, and should
be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects
The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to be relocatable since the files have sufficient information in them so that any
references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus
the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.

113

Program Sections Linker and Utilities

relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

5.3 Program Sections
Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to as psects. These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

5.4 Local Psects
Most psects are global, i.e. they are referred to by the same name in all modules, and any reference
in any module to a global psect will refer to the same psect as any other reference. Some psects
are local, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another module. Local psects can only be referred
to at link time by a class name, which is a name associated with one or more psects via the PSECT
directive class= in assembler code. See Section 4.3.8.3 for more information on PSECT options.

5.5 Global Symbols
The linker handles only symbols which have been declared as GLOBAL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C
source level, this means all names which have storage class external and which are not declared

114

Linker and Utilities Link and load addresses

as static. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker’s job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

5.6 Link and load addresses
The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

5.7 Operation
A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. Files is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Table 5.1 and discussed in the following paragraphs.

Table 5.1: Linker command-line options

Option Effect
-8 Use 8086 style segment:offset address form
-Aclass=low-high,... Specify address ranges for a class
-Cx Call graph options
continued. . .

1In earlier versions of HI-TECH C the linker was called LINK.EXE

115

Operation Linker and Utilities

Table 5.1: Linker command-line options

Option Effect
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based at baseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages to errfile
-F Produce .obj file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in .obj file
-LM Preserve segment relocation items in .obj file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use file avmap to generate an Avocet format symbol file
-Wwarnlev Set warning level (-9 to 9)
-Wwidth Set map file width (>=10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from the symbol file

5.7.1 Numbers in linker options
Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a
hex number, a trailing H should be added, e.g. 765FH will be treated as a hex number.

116

Linker and Utilities Operation

5.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
character x or * after a range, followed by a count.

5.7.3 -Cx

These options allow control over the call graph information which may be included in the map file
produced by the linker. The -CN option removes the call graph information from the map file. The
-CC option only include the critical paths of the call graph. A function call that is marked with a * in
a full call graph is on a critical path and only these calls are included when the -CC option is used.
A call graph is only produced for processors and memory models that use a compiled stack.

5.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

5.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are defined with a delta value.

117

Operation Linker and Utilities

5.7.6 -Dsymfile
Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where
each line has the link address of the symbol followed by the symbol name.

5.7.7 -Eerrfile
Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

5.7.8 -F
Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values. The -F option will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

5.7.9 -Gspec
When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with
the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based on the reloc= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instance the -G option is used to specify a method for
calculating the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

118

Linker and Utilities Operation

The token N is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where
these selectors would represent LDT entries.

5.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile
specifies a file to receive the symbol file. The default file name is l.sym.

5.7.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition
to the standard symbol file, class names associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argument symfile specifies a file to
receive the symbol file. The default file name is l.sym.

5.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).
The default number is 10, but the -J option allows this to be altered.

5.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

5.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

119

Operation Linker and Utilities

5.7.15 -L
When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at
load time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

5.7.16 -LM
Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating .exe files to run under DOS.

5.7.17 -Mmapfile
This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Section 5.9.

5.7.18 -N, -Ns and-Nc
By default the symbol table in the link map will be sorted by name. The -N option will cause it to
be sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly
except that the symbols are grouped by either their space value, or class.

5.7.19 -Ooutfile
This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

5.7.20 -Pspec
Psects are linked together and assigned addresses based on information supplied to the linker via -P
options. The argument to the -P option consists basically of comma-separated sequences thus:

-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-
dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

120

Linker and Utilities Operation

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse
order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data
psect will be linked (and loaded) at an address which is 100 hex plus the length of the text psect,
rounded up as necessary if the data psect has a reloc= value associated with it. Similarly, the bss
psect will concatenate with the data psect. Again:

-Ptext=-100h,data,bss

will link in ascending order bss, data then text with the top of text appearing at address 0ffh.
If the load address is omitted entirely, it defaults to the same as the link address. If the slash /

character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the end of text. The bss psect will concatenate with data
for both link and load addresses.

The load address may be replaced with a dot . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and
loaded at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here
the use of two -P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

121

Operation Linker and Utilities

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE.
If no sufficiently large space is available, an error will result. Note that in this case the data psect
will still be assembled into one contiguous block, whereas other psects in the class CODE will be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in class CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any
address ranges specified with the -A option. This allows a range to be specified with the -A option
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

5.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

5.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

5.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places
a limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a limit= flag on
a PSECT directive).

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h

122

Linker and Utilities Invoking the Linker

5.7.24 -Usymbol
This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.
This is useful for linking entirely from libraries, or for linking a module from a library where the
ordering has been arranged so that by default a later module will be linked.

5.7.25 -Vavmap
To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to
map psect names to Avocet memory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

5.7.26 -Wnum
The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values of num >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

5.7.27 -X
Local symbols can be suppressed from a symbol file with this option. Global symbols will always
appear in the symbol file.

5.7.28 -Z
Some local symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".
The -Z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

5.8 Invoking the Linker
The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of arguments to HLINK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leaving a backslash \ at the end of the

123

Map Files Linker and Utilities

preceding line. In this fashion, HLINK commands of almost unlimited length may be issued. For
example a link command file called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

5.9 Map Files
The map file contains information relating to the relocation of psects and the addresses assigned
to symbols within those psects. The sections in the map file are as follows; first is a copy of the
command line used to invoke the linker. This is followed by the version number of the object code
in the first file linked, and the machine type. This is optionally followed by call graph information,
depended on the processor and memory model selected. Then are listed all object files that were
linked, along with their psect information. Libraries are listed, with each module within the library.
The TOTALS section summarises the psects from the object files. The SEGMENTS section sum-
marises major memory groupings. This will typically show RAM and ROM usage. The segment
names are derived from the name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:
-z -Mmap -pvectors=00h,text,strings,const,im2vecs \
-pbaseram=00h -pramstart=08000h,data/im2vecs,bss/.,stack=09000h \
-pnvram=bss,heap \
-oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
C:\HT-Z80\LIB\z80-sc.lib
Object code version is 2.4
Machine type is Z80

Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.obj

vectors 0 0 71
bss 8000 8000 24
const FB FB 1 0

124

Linker and Utilities Map Files

text 72 72 82
hello.obj text F4 F4 7
C:\HT-Z80\LIB\z80-sc.lib
powerup.obj vectors 71 71 1
TOTAL Name Link Load Length

CLASS CODE
vectors 0 0 72
const FB FB 1
text 72 72 89

CLASS DATA
bss 8000 8000 24

SEGMENTS Name Load Length Top Selector
vectors 000000 0000FC 0000FC 0
bss 008000 000024 008024 8000

5.9.1 Call Graph Information
A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within
a function. When a compiled stack is used, functions are not re-entrant since the function will use a
fixed area of memory for its local objects (parameters/auto variables). A function called foo(), for
example, will use symbols like ?_foo for parameters and ?a_foo for auto variables. Compilers such
as the PIC, 6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and
medium memory models. The call graph shows information relating to the placement of function
parameters and auto variables by the linker. A typical call graph may look something like:

Call graph:
*_main size 0,0 offset 0

_init size 2,3 offset 0
_ports size 2,2 offset 5

* _sprintf size 5,10 offset 0
* _putch

INDIRECT 4194
INDIRECT 4194

_function_2 size 2,2 offset 0
_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own
local objects. In the example above, the symbol _main is associated with the function main(). It is

125

Map Files Linker and Utilities

shown at the far left of the call graph. This indicates that it is the root of a call tree. The run-time
code has the FNROOT assembler directive that specifies this. The size field after the name indicates
the number of parameters and auto variables, respectively. Here, main() takes no parameters and
defines no auto variables. The offset field is the offset at which the function’s parameters and auto
variables have been placed from the beginning of the area of memory used for this purpose. The
run-time code contains a FNCONF directive which tells the compiler in which psect parameters and
auto variables should reside. This memory will be shown in the map file under the name COMMON.

Main() calls a function called init(). This function uses a total of two bytes of parameters
(it may be two objects of type char or one int; that is not important) and has three bytes of auto
variables. These figures are the total of bytes of memory consumed by the function. If the function
was passed a two-byte int, but that was done via a register, then the two bytes would not be included
in this total. Since main() did not use any of the local object memory, the offset of init()’s memory
is still at 0.

The function init() itself calls another function called ports(). This function uses two bytes
of parameters and another two bytes of auto variables. Since ports() is called by init(), its
local variables cannot be overlapped with those of init()’s, so the offset is 5, which means that
ports()’s local objects were placed immediately after those of init()’s.

The function main also calls sprintf(). Since the function sprintf() is not active at the same
time as init() or ports(), their local objects can be overlapped and the offset is hence set to 0.
Sprintf() calls a function putch(), but this function uses no memory for parameters (the char
passed as argument is apparently done so via a register) or locals, so the size and offset are zero and
are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the
two INDIRECT entries in the graph. The number following is the signature value of functions that
could potentially be called by the indirect call. This number is calculated from the parameters and
return type of the functions the pointer can indirectly call. The names of any functions that have this
signature value are listed underneath the INDIRECT entries. Their inclusion does not mean that they
were called (there is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies
that this is the root of another call graph tree. This is an interrupt function which is not called by any
code, but which is automatically invoked when an enabled interrupt occurs. This interrupt routine
calls the function incr(), which is shown shorthand in the graph by the -> symbol followed by the
called function’s name instead of having that function shown indented on the following line. This is
done whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred with * are those functions which are on a critical
path in terms of RAM usage. For example, in the above, (main() is a trivial example) consider
the function sprintf(). This uses a large amount of local memory and if you could somehow
rewrite it so that it used less local memory, it would reduce the entire program’s RAM usage. The
functions init() and ports() have had their local memory overlapped with that of sprintf(), so

126

Linker and Utilities Librarian

reducing the size of these functions’ local memory will have no affect on the program’s RAM usage.
Their memory usage could be increased, as long as the total size of the memory used by these two
functions did not exceed that of sprintf(), with no additional memory used by the program. So if
you have to reduce the amount of RAM used by the program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas have been
overlapped (i.e. ?a_foo was placed at the same address as ?_foo, for example), then check to
make sure that you have actually called the function in your program. If the linker has not seen a
function actually called, then it overlaps these areas of memory since that are not needed. This is
a consequence of the linker’s ability to overlap the local memory areas of functions which are not
active at the same time. Once the function is called, unique addresses will be assigned to both the
parameters and auto objects.

If you are writing a routine that calls C code from assembler, you will need to include the appro-
priate assembler directives to ensure that the linker sees the C function being called.

5.10 Librarian
The librarian program, LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

5.10.1 The Library Format
The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than
the sum of the modules, the linker is speeded up when searching a library since it need read only
the directory and not all the modules on the first pass. On the second pass it need read only those
modules which are required, seeking over the others. This all minimises disk I/O when linking.

127

Librarian Linker and Utilities

Table 5.2: Librarian command-line options
Option Effect
-Pwidth specify page width
-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands
Key Meaning
r Replace modules
d Delete modules
x Extract modules
m List modules
s List modules with symbols

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

5.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which
affect the output of the program. k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols), file.lib is the name of
the library file to be operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 5.2.
The key letters are listed in Table 5.3.
When replacing or extracting modules, the file.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

128

Linker and Utilities Librarian

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with the r and x
key letters, an empty list of modules means all the modules in the library.

5.10.3 Examples
Here are some examples of usage of the librarian. The following lists the global symbols in the
modules a.obj, b.obj and c.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and c.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

5.10.4 Supplying Arguments
Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the console, LIBR will
prompt for input. Multiple line input may be given by using a backslash as a continuation character
on the end of a line. If standard input is redirected from a file, LIBR will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given to LIBR.

5.10.5 Listing Format
A request to LIBR to list module names will simply produce a list of names, one per line, on standard
output. The s keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letter D or U, representing a definition or reference to the symbol
respectively. The -P option may be used to determine the width of the paper for this operation. For
example:

129

Objtohex Linker and Utilities

LIBR -P80 s file.lib

will list all modules in file.lib with their global symbols, with the output formatted for an 80
column printer or display.

5.10.6 Ordering of Libraries
The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

5.10.7 Error Messages
LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the -W option was used. In this case
all warning messages will be suppressed.

5.11 Objtohex
The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility program OBJTOHEX. This allows conversion
of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depend-
ing on whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 5.4. Where an address is required, the format is the
same as for HLINK.

5.11.1 Checksum Specifications
If you are generating a HEX file output, please refer to the hexmate section 5.14 for calculating
checksums. For OBJTOHEX, the checksum specification allows automated checksum calculation and
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

130

Linker and Utilities Objtohex

Table 5.4: OBJTOHEX command-line options
Option Meaning

-8 Produce a CP/M-86 output file
-A Produce an ATDOS .atx output file
-Bbase Produce a binary file with offset of base. Default file name is

l.obj
-Cckfile Read a list of checksum specifications from ckfile or standard

input
-D Produce a COD file
-E Produce an MS-DOS .exe file
-Ffill Fill unused memory with words of value fill - default value is

0FFh
-I Produce an Intel HEX file with linear addressed extended

records.
-L Pass relocation information into the output file (used with .exe

files)
-M Produce a Motorola HEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for an Atari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file into file
-T Produce a Tektronix HEX file.
-TE Produce an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-n,m Format either Motorola or Intel HEX file, where n is the maxi-

mum number of bytes per record and m specifies the record size
rounding. Non-rounded records are zero padded to a multiple of
m. m itself must be a multiple of 2.

131

Cref Linker and Utilities

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix.
Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed
and the sum placed in the locations where1 through where2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, where1 should be less
than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be used
to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

5.12 Cref
The cross reference list utility CREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
--CR option to the compiler. The assembler will generate a raw cross-reference file with a -C option
(most assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line
(PIC assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-
reference files. CREF takes the options listed in Table 5.5.

Each option is described in more detail in the following paragraphs.

5.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\
will exclude any symbols from all files with a path name starting with \.

132

Linker and Utilities Cref

Table 5.5: CREF command-line options
Option Meaning

-Fprefix Exclude symbols from files with a pathname or
filename starting with prefix

-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols

listed.
-Xprefix Exclude and symbols starting with prefix

5.12.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

5.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use a -L55 option. The default is 66 lines.

5.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternatively outfile may be specified as the
output file name.

5.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132
will format the listing for a 132 column printer. The default is 80 columns.

5.12.6 -Sstoplist

The -S option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

133

Cromwell Linker and Utilities

Table 5.6: CROMWELL format types
Key Format

cod Bytecraft COD file
coff COFF file format
elf ELF/DWARF file
eomf51 Extended OMF-51 format
hitech HI-TECH Software format
icoff ICOFF file format
ihex Intel HEX file format
mcoff Microchip COFF file format
omf51 OMF-51 file format
pe P&E file format
s19 Motorola HEX file format

5.12.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument
to -X. For example if it was desired to exclude all symbols starting with the character sequence xyz
then the option -Xxyz would be used. If a digit appears in the character sequence then this will match
any digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by
a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied
by invoking CREF with no arguments and typing the command line in response to the cref> prompt.
A backslash at the end of the line will be interpreted to mean that more command lines follow.

5.13 Cromwell
The CROMWELL utility converts code and symbol files into different formats. The formats available
are shown in Table 5.6.

The general form of the CROMWELL command is:

CROMWELL options input_files -okey output_file

where options can be any of the options shown in Table 5.7. Output_file (optional) is the
name of the output file. The input_files are typically the HEX and SYM file. CROMWELL
automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

134

Linker and Utilities Cromwell

Table 5.7: CROMWELL command-line options
Option Description

-Pname[,architecture] Processor name and architecture
-N Identify code classes
-D Dump input file
-C Identify input files only
-F Fake local symbols as global
-Okey Set the output format
-Ikey Set the input format
-L List the available formats
-E Strip file extensions
-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode

5.13.1 -Pname[,architecture]

The -P options takes a string which is the name of the processor used. CROMWELL may use this in the
generation of the output format selected. Note that to produce output in COFF format an additional
argument to this option which also specifies the processor architecture is required. Hence for this
format the usage of this option must take the form: -Pname,architecture. Table 5.8 enumerates
the architectures supported for producing COFF files.

5.13.2 -N

To produce some output file formats (e.g. COFF), Cromwell requires that the names of the program
memory space psect classes be provided. The names of the classes are given as a comma separated
list. For example, in the DSPIC C compiler these classes are typically “CODE” and “NEARCODE”,
i.e. -NCODE,NEARCODE.

5.13.3 -D

The -D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in Table 5.6.

135

Cromwell Linker and Utilities

Table 5.8: -P option architecture arguments for COFF file output.
Architecture Description
68K Motorola 68000 series chips
H8/300 Hitachi 8 bit H8/300 chips
H8/300H Hitachi 16 bit H8/300H chips
SH Hitachi 32 bit SuperH RISC chips
PIC12 Microchip base-line PIC chips
PIC14 Microchip mid-range PIC chips
PIC16 Microchip high-end (17Cxxx) PIC chips
PIC18 Microchip PIC18 chips
PIC24 Microchip PIC24F and PIC24H chips
PIC30 Microchip dsPIC30 and dsPIC33 chips

5.13.4 -C
This option will attempt to identify if the specified input files are one of the formats as shown in
Table 5.6. If the file is recognised, a confirmation of its type will be displayed.

5.13.5 -F
When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

5.13.6 -Okey
This option specifies the format of the output file. The key can be any of the types listed in Table
5.6.

5.13.7 -Ikey
This option can be used to specify the default input file format. The key can be any of the types
listed in Table 5.6.

5.13.8 -L
Use this option to show what file format types are supported. A list similar to that given in Table 5.6
will be shown.

136

Linker and Utilities Hexmate

5.13.9 -E
Use this option to tell CROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

5.13.10 -B
In formats that support different endian types, use this option to specify big-endian byte ordering.

5.13.11 -M
When generating COD files this option will remove the preceding underscore character from sym-
bols.

5.13.12 -V
Turns on verbose mode which will display information about operations CROMWELL is performing.

5.14 Hexmate
The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link
stage utility that provides the facility to:

• Calculate and store variable-length checksum values

• Fill unused memory locations with known data sequences

• Merge multiple Intel hex files into one output file

• Convert INHX32 files to other INHX formats (eg. INHX8M)

• Detect specific or partial opcode sequences within a hex file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a hex file

• Change or fix the length of data records in a hex file.

• Validate checksums within Intel hex files.

Typical applications for hexmate might include:

137

Hexmate Linker and Utilities

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in program
memory or EEPROM

• Filling unused memory locations with an instruction to send the PC to a known location if it
gets lost.

• Storage of a serial number at a fixed address.

• Storage of a string (eg. time stamp) at a fixed address.

• Store initial values at a particular memory address (eg. initialise EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting hex records to a fixed length as required by some bootloaders

5.14.1 Hexmate Command Line Options
Some of these hexmate operations may be possible from the compiler’s command line driver. How-
ever, if hexmate is to be run directly, its usage is:
hexmate <file1.hex ... fileN.hex> <options>
Where file1.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Ad-
ditional options can be provided to further customize this process. Table 5.9 lists the command line
options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail.

filename.hex A list of INHX32 or INHX8M input files to feed to hexmate. A range restriction
can be applied by appending ,startAddress-endAddress. The data can be stored at an
offset address by appending +offset. For example, myfile.hex,0-1FF+1E00 will read in
code from myfile.hex which falls within address range 0h - 1FFh (inclusive), but write
this code to addresses 1E00h - 1FFFh. Be careful when shifting sections of executable code.
Program code shouldn’t be shifted unless it can be guaranteed that no part of the program
relies upon the absolute location of this code segment.

5.14.1.1 + Prefix

When the + operator precedes a parameter or input file, the data obtained from that parameter will
be forced into the output file and will overwrite other data existing within its address range. For
example, +input.hex +-STRING@1000="My string". Ordinarily, hexmate will issue an error if
two sources try to store differing data at the same location. Using the + operator informs hexmate

138

Linker and Utilities Hexmate

Table 5.9: Hexmate command-line options
Option Effect

-CK Calculate and store a checksum value
-FILL Program unused locations with a known value
-FIND Search and notify if a particular code sequence is detected
-FIND...,REPLACE Replace the code sequence with a new code sequence
-FORMAT Specify maximum data record length or select INHX variant
-HELP Show all options or display help message for specific option
-LOGFILE Save hexmate analysis of output and various results to a file
-Ofile Specify the name of the output file
-SERIAL Store a serial number or code sequence at a fixed address
-STRING Store an ASCII string at a fixed address
-W Adjust warning sensitivity
+ Prefix to any option to overwrite other data in its address range if necessary

that if more than one data source tries to store data to the same address, the one specified with a ’+’
will take priority.

5.14.1.2 -CK

-CK is for calculating a checksum. The usage of this option is:
-CK=start-end@destination[+offset][wWidth][tCode] where:
Start and End specify the address range that the checksum will be calculated over.
Destination is the address where to store the checksum result. This value cannot be within the range
of calculation.
Offset is an optional initial value to add to the checksum result.
Width is optional and specifies the byte-width of the checksum result. Results can be calculated for
byte-widths of 1 to 4 bytes. If a positive width is requested, the result will be stored in big-endian
byte order. A negative width will cause the result to be stored in little-endian byte order. If the width
is left unspecified, the result will be 2 bytes wide and stored in little-endian byte order.
Code is a hexadecimal code that will trail each byte in the checksum result. This can allow each byte
of the checksum result to be embedded within an instruction.
For example, -CK=0-1FFF@2FFE+2100w2 will calculate a checksum over the range 0-1FFFh and
program the checksum result at address 2FFEh, checksum value will apply an initial offset of 2100h.
The result will be two bytes wide.

139

Hexmate Linker and Utilities

5.14.1.3 -FILL

-FILL is used for filling unused memory locations with a known value. The usage of this option is:
-FILL=Code@Start-End where:
Code is the opcode that will be programmed to unused locations in memory. Multi-byte codes should
be entered in little endian order.
Start and End specify the address range that this fill will apply to.
For example, -FILL=3412@0-1FFF will program opcode 1234h in all unused addresses from pro-
gram memory address 0 to 1FFFh (Note the endianism). -FILL accepts whole bytes of hexadecimal
data from 1 to 8 bytes in length.

5.14.1.4 -FIND

This option is used to detect and log occurrences of an opcode or partial code sequence. The usage
of this option is:
-FIND=Findcode[mMask]@Start-End[/Align][w][t”Title”] where:
Findcode is the hexadecimal code sequence to search for and is entered in little endian byte order.
Mask is optional. It allows a bitmask over the Findcode value and is entered in little endian byte
order.
Start and End limit the address range to search through.
Align is optional. It specifies that a code sequence can only match if it begins on an address which
is a multiple of this value.
w, if present will cause hexmate to issue a warning whenever the code sequence is detected.
Title is optional. It allows a title to be given to this code sequence. Defining a title will make log-
reports and messages more descriptive and more readable. A title will not affect the actual search
results.

TUT•RIAL

Let’s look at some examples. The option -FIND=3412@0-7FFF/2w will detect the code
sequence 1234h when aligned on a 2 (two) byte address boundary, between 0h and
7FFFh. w indicates that a warning will be issued each time this sequence is found.
Another example, -FIND=3412M0F00@0-7FFF/2wt"ADDXY" is same as last example
but the code sequence being matched is masked with 000Fh, so hexmate will search for
123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied
to. Any messaging or reports generated by hexmate will refer to this opcode by the
name, ADDXY as this was the title defined for this search.

If hexmate is generating a logfile, it will contain the results of all searches. -FIND accepts whole
bytes of hex data from 1 to 8 bytes in length. Optionally, -FIND can be used in conjunction with

140

Linker and Utilities Hexmate

,REPLACE (described below).

5.14.1.5 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the
-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option
is:
-FIND...,REPLACE=Code[mMask] where:
Code is a little endian hexadecimal code to replace the sequences that match the -FIND criteria.
Mask is an optional bitmask to specify which bits within Code will replace the code sequence that
has been matched. This may be useful if, for example, it is only necessary to modify 4 bits within a
16-bit instruction. The remaining 12 bits can masked and be left unchanged.

5.14.1.6 -FORMAT

-FORMAT can be used to specify a particular variant of INHX format or adjust maximum record
length. The usage of this option is:
-FORMAT=Type[,Length] where:
Type specifies a particular INHX format to generate.
Length is optional and sets the maximum number of bytes per data record. A valid length is between
1 and 16, with 16 being the default.

TUT•RIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed
because it cannot process the extended address records which are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
range 0 to 64k, and that any data in the hex file outside of this range can be safely
disregarded. In this case, by generating the hex file in INHX8M format the operation
might succeed. The hexmate option to do this would be -FORMAT=INHX8M.
Now consider this. What if the same bootloader also required every data record to
contain eight bytes of data, no more, no less? This is possible by combining -FORMAT
with -FILL. Appropriate use of -FILL can ensure that there are no gaps in the data
for the address range being programmed. This will satisfy the minimum data length
requirement. To set the maximum length of data records to eight bytes, just modify the
previous option to become -FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table 5.10. Note that INHX032 is
not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize
the upper address information to zero. This is a requirement of some device programmers.

141

Hexmate Linker and Utilities

Table 5.10: INHX types used in -FORMAT option
Type Description

INHX8M Cannot program addresses beyond 64K.
INHX32 Can program addresses beyond 64K with extended linear address records.
INHX032 INHX32 with initialization of upper address to zero.

5.14.1.7 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of
-HELP will show a detailed help message for the given option. For example, -HELP=string will
show additional help for the -STRING hexmate option.

5.14.1.8 -LOGFILE

-LOGFILE saves hexfile statistics to the named file. For example, -LOGFILE=output.log will
analyse the hex file that hexmate is generating and save a report to a file named output.log.

5.14.1.9 -Ofile

The generated Intel hex output will be created in this file. For example, -Oprogram.hex will save
the resultant output to program.hex. The output file can take the same name as one of its input files,
but by doing so, it will replace the input file entirely.

5.14.1.10 -SERIAL

Store a particular hex value at a fixed address. The usage of this option is:
-SERIAL=Code[+/-Increment]@Address[+/-Interval][rRepetitions] where:
Code is a hexadecimal value to store and is entered in little endian byte order.
Increment is optional and allows the value of Code to change by this value with each repetition (if
requested).
Address is the location to store this code, or the first repetition thereof.
Interval is optional and specifies the address shift per repetition of this code.
Repetitions is optional and specifies the number of times to repeat this code.
For example, -SERIAL=000001@EFFE will store hex code 00001h to address EFFEh.
Another example, -SERIAL=0000+2@1000+10r5 will store 5 codes, beginning with value 0000 at
address 1000h. Subsequent codes will appear at address intervals of +10h and the code value will
change in increments of +2h.

142

Linker and Utilities Hexmate

5.14.1.11 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:
-STRING@Address[tCode]=”Text” where:
Address is the location to store this string.
Code is optional and allows a byte sequence to trail each byte in the string. This can allow the bytes
of the string to be encoded within an instruction.
Text is the string to convert to ASCII and embed.
For example -STRING@1000="My favourite string" will store the ASCII data for the string, My
favourite string (including null terminator) at address 1000h.
Another example, -STRING@1000t34="My favourite string" will store the same string with
every byte in the string being trailed with the hexcode 34h.

143

Hexmate Linker and Utilities

144

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information decomposed into the following categories.

Synopsis the C declaration of the function, and the header file in which it is declared.

Description a narrative description of the function and its purpose.

Example an example of the use of the function. It is usually a complete small program that illus-
trates the function.

Data types any special data types (structures etc.) defined for use with the function. These data
types will be defined in the header file named under Synopsis.

See also any allied functions.

Return value the type and nature of the return value of the function, if any. Information on error
returns is also included

Only those categories which are relevant to each function are used.

145

Library Functions

__CONFIG
Synopsis

#include <htc.h>

__CONFIG(n, data);

Description

This macro is used to program the configuration fuses that set the device into various modes of
operation.

The macro accepts a number corresponding to the configuration register it is to program, then
the value it is to update it with.

Macros have been defined to give a more readable name to the configuration register, also masks
have been created to describe each programmable attribute available on each device. These attribute
masks can be found tabulated in this manual in the Features and Runtime Environment section.

Multiple attributes can be selected by ANDing them together.

Example

#include <htc.h>

__CONFIG(FOSC, XTPLL4);
__CONFIG(FWDT, WDTDIS);
__CONFIG(FBORPOR, MCLREN & BORDIS);

void
main (void)
{
}

146

Library Functions

__EEPROM_DATA
Synopsis

#include <htc.h>

__EEPROM_DATA(a,b,c,d,e,f,g,h)

Description

This macro is used to store initial values into the device’s EEPROM registers at the time of program-
ming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be called
repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will auto-increment the
address written to by 8, each time it is used.

Example

#include <htc.h>

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)
__EEPROM_DATA(0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F)

void
main (void)
{
}

147

Library Functions

ABS
Synopsis

#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

Return Value

The absolute value of j.

148

Library Functions

ACOS
Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 to π

149

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0
Note the newline at the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to a struct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

150

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.

151

Library Functions

ASIN
Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - π

152

Library Functions

ASSERT
Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally
throughout your code at points where correct operation of the code depends upon certain conditions
being true initially. An assert() routine may be used to ensure at run time that an assumption holds
true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);
If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)
{

assert(tp != 0);
}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

153

Library Functions

ATAN
Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range - π

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

154

Library Functions

ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

155

Library Functions

ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

156

Library Functions

ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

157

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar)(const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * p1, const void * p2)
{

return strcmp(((const struct value *)p1)->name,
((const struct value *)p2)->name);

}

void
main (void)
{

char inbuf[80];
int i;
struct value * vp;

158

Library Functions

i = 0;
while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);
i++;

}
qsort(values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if(!vp)

printf("Item ’fred’ was not found\n");
else

printf("Item ’fred’ has value %d\n", vp->value);
}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

159

Library Functions

CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

160

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far.
Other characters are placed in the buffer, with a carriage return or line feed (newline) terminating
the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

getch(), getche(), putch(), cputs()

161

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

162

Library Functions

CLRWDT
Synopsis

#include <htc.h>

CLRWDT();

Description

This macro is used to clear the device’s internal watchdog timer.

Example

#include <htc.h>

void
main (void)
{

WDTCON=1;
/* enable the WDT */

CLRWDT();
}

163

Library Functions

COS
Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

164

Library Functions

COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric functions; cos(), sin()
and tan().

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value

The function cosh() returns the hyperbolic cosine value.
The function sinh() returns the hyperbolic sine value.
The function tanh() returns the hyperbolic tangent value.

165

Library Functions

CPUTS
Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage returns before
each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from puts()
in that it writes to the console directly, rather than using file I/O. In an embedded system cputs() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

cputs(), puts(), putch()

166

Library Functions

CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

167

Library Functions

DI, EI

Synopsis

#include <htc.h>

EI ()
DI ()

Description

The DI() and EI() routines disable and re-enable interrupts respectively. These are implemented as
macros defined in dspic.h. The example shows the use of DI() and EI() around access to a long
variable that is modified during an interrupt. If this was not done, it would be possible to return an
incorrect value, if the interrupt occurred between accesses to successive words of the count value.

Example

#include <htc.h>

volatile long count;

void
interrupt void tick (void) @ T1_VCTR
{

count++;
}

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

DI();
val = count;
EI();
return val;

}

168

Library Functions

Notes

In the above example the variable count must be qualified volatile because it is modified by the
interrupt service routine and is read by code outside that routine. This is a separate issue from that
of accessing a multi-byte variable both within and outside an interrupt service routine.

169

Library Functions

DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value

Returns the quotient and remainder into the div_t structure.

170

Library Functions

EEPROM_ERASE_WORD_ONLY, EEPROM_ERASE_BLOCK_ONLY,
EEPROM_ERASE_ROW_ONLY
Synopsis

#include <htc.h>

void eeprom_erase_word_only(unsigned address)
void eeprom_erase_block_only(unsigned address, unsigned size)
void eeprom_erase_row_only(unsigned address)

Description

These functions erase portions of the on-chip EEPROM (when present). They allow individual
words, blocks of an arbitrary number of words or _EEPROM_ROW word blocks of memory to be erased.
The macro _EEPROM_ROW is defined in dspic.h. Each of these functions take a byte-address within
the EEPROM space. Functions eeprom_erase_word_only and eeprom_erase_block_only ig-
nore the least-significant bit of this address. The function eeprom_erase_row_only rounds this
address down to the nearest preceding whole-row boundary. The EEPROM space is organized into
contiguous _EEPROM_ROW word blocks called “rows”. Hence it is more efficient to use the row-based
function to erase multiple words of data than the equivalent block-based function.

171

Library Functions

EEPROM_READ_ROW, EEPROM_WRITE_ROW
Synopsis

#include <htc.h>

void eeprom_read_row(unsigned address, unsigned row[])
void eeprom_write_row(unsigned address, unsigned row[])

Description

These functions allow access to the on-chip EEPROM (when present) as _EEPROM_ROW word blocks
of memory. The macro _EEPROM_ROW is defined in dspic.h. Each of these functions take a byte-
address which is rounded down to the nearest preceding whole-row boundary. The EEPROM space
is organized into contiguous _EEPROM_ROW word blocks called “rows”. Hence it is more efficient to
use these functions to access multiple words of data than the equivalent block-based functions.

Example

#include <htc.h>

void main(void)
{

unsigned int address = 0x0;
unsigned int row[_EEPROM_ROW];

// read first row
eeprom_read_row(address, row);
// copy first row to second row
address += _EEPROM_ROW;
eeprom_write_row(address, row);

}

Note

The function eeprom_write_row erases the relevant region in EEPROM before writing. So for
maximum device lifetime, do NOT erase the space first when using this functions.

See Also

eeprom_read_block(), eeprom_write_block()

172

Library Functions

EEPROM_READ_WORD, EEPROM_READ_BLOCK
Synopsis

#include <htc.h>

unsigned eeprom_read_word(unsigned address)
void eeprom_read_block(unsigned address, unsigned block[], unsigned size)

Description

These functions allow read access to the on-chip EEPROM (when present) on a word per word basis
or by blocks memory of an arbitrary number of words. Each of these functions take a byte-address
(ignoring the least-significant bit) within the EEPROM space.

Example

#include <htc.h>
#define BLOCK_SIZE 10
void main(void)
{

unsigned int data;
unsigned int block[BLOCK_SIZE];
unsigned int address = 0x10;

data = eeprom_read_word(address);
eeprom_read_block(address, block, BLOCK_SIZE);

}

173

Library Functions

EEPROM_WRITE_WORD, EEPROM_WRITE_BLOCK
Synopsis

#include <htc.h>

void eeprom_write_word(unsigned address, unsigned value)
void eeprom_write_block(unsigned address, unsigned block[], unsigned size)

Description

These functions allow write access to the on-chip EEPROM (when present) on a word per word basis
or by blocks memory of an arbitrary number of words. Each of these functions take a byte-address
(ignoring the least-significant bit) within the EEPROM space.

Example

#include <htc.h>
#define BLOCK_SIZE 4
void main(void)
{

unsigned int data = 0xABCD;
unsigned int block[BLOCK_SIZE] = {0x1234, 0x5678, 0x9ABC, 0xDEF0};
unsigned int address = 0x10;

eeprom_write_word(address, data);
eeprom_write_block(address, block, BLOCK_SIZE);

}

Note

Each of these functions erase the relevant region in EEPROM before writing. So for maximum
device lifetime, do NOT erase the space first when using these functions.

174

Library Functions

EEPROM_WRITE_WORD_ONLY, EEPROM_WRITE_BLOCK_ONLY,
EEPROM_WRITE_ROW_ONLY
Synopsis

#include <htc.h>

void eeprom_write_word_only(unsigned address)
void eeprom_write_block_only(unsigned address, unsigned block[], unsigned size)
void eeprom_write_row_only(unsigned address, unsigned row[])

Description

These functions allow write access to the on-chip EEPROM (when present). They allow individ-
ual words, blocks of an arbitrary number of words or _EEPROM_ROW word blocks of memory to be
programmed. The macro _EEPROM_ROW is defined in dspic.h. Each of these functions take a byte-
address within the EEPROM space. Functions eeprom_write_word_only and eeprom_write_block_only
ignore the least-significant bit of this address.
The function eeprom_write_row_only rounds this address down to the nearest preceding whole-
row boundary. The EEPROM space is organized into contiguous _EEPROM_ROW word blocks called
“rows”. Hence it is more efficient to use the row-based function to write multiple words of data than
the equivalent block-based function.

Note

Each of these functions do not erase the relevant region in EEPROM before writing. They only write
to EEPROM.

175

Library Functions

FLASH_ERASE_ROW_ONLY
Synopsis

#include <htc.h>

void flash_erase_row_only(unsigned long address)

Description

This function allows _FLASH_ROW instruction-word blocks of memory to be erased. The macro
_FLASH_ROW is defined in dspic.h. This function takes a word-address within the program space
but rounds it down to the preceding whole-row boundary.

See Also

eeprom_erase_block_only(), eeprom_erase_row_only()

176

Library Functions

FLASH_READ_ROW, FLASH_WRITE_ROW
Synopsis

#include <htc.h>

void flash_read_row(unsigned long address, unsigned row[])
void flash_write_row(unsigned long address, unsigned row[])

Description

These functions allow access to the flash memory of the target device as _FLASH_ROW instruction-
word blocks of memory. The macro _FLASH_ROW is defined in dspic.h. Each of these functions take
a word-address within the program space which is rounded down to the nearest preceding whole-
row boundary. The flash memory space is organized into contiguous _FLASH_ROW instruction-word
blocks called “rows”. Hence it is more efficient to use these row-based functions than the equivalent
block-based functions.

Note

The function flash_write_row erases the relevant region in flash memory before writing. So for
maximum device lifetime, do NOT erase the space first when using this function. Furthermore only
the lower 24 bits are written to at each memory location.

See Also

eeprom_read_row(), eeprom_write_row(), flash_read_block(), flash_write_block()

177

Library Functions

FLASH_READ_WORD, FLASH_READ_BLOCK
Synopsis

#include <htc.h>

unsigned long flash_read_word(unsigned address)
void flash_read_block(unsigned address, unsigned block[], unsigned size)

Description

These functions allow read access to the flash memory of the target device. They can be used to read
a word at a time or a block of words of an arbitrary size. Each of these functions take a word-address
in the program space ignoring the least-significant bit.

See Also

eeprom_read_word(), eeprom_read_block(), flash_read_row()

178

Library Functions

FLASH_WRITE_ROW_ONLY
Synopsis

#include <htc.h>

void eeprom_write_row_only(unsigned long address)

Description

This function allows write access to the to the flash memory of the target device in _FLASH_ROW
instruction-word blocks of memory. The macro _FLASH_ROW is defined in dspic.h. The function
takes a word-address within the program space which is rounded down to the nearest preceding
whole-row boundary.

Note

This function does not erase the relevant region in flash memory before writing. It only writes to
flash memory. Furthermore only the lower 24 bits are written to at each memory location.

See Also

eeprom_write_row_only(), flash_write_block()

179

Library Functions

EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d, at
x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated at x.

180

Library Functions

EXP
Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

181

Library Functions

FABS
Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also

abs()

182

Library Functions

FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}

183

Library Functions

FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval (0.5,
1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the
result are zero.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

184

Library Functions

GETCH, GETCHE
Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

The getch() function reads a single character from the console keyboard and returns it without echo-
ing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version of getch() that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O
routines. Other modules may also be supplied, e.g. ser180.c has routines for the serial port in a
Z180.

Example

#include <conio.h>

void
main (void)
{

char c;

while((c = getche()) != ’\n’)
continue;

}

See Also

cgets(), cputs(), ungetch()

185

Library Functions

GETCHAR
Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that under
normal circumstances getchar() will NOT return unless a carriage return has been typed on the
console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void
main (void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

186

Library Functions

GETS
Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.
fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editing (with backspace) is available.

Example

#include <stdio.h>

void
main (void)
{

char buf[80];

printf("Type a line: ");
if(gets(buf))

puts(buf);
}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

187

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defined in time.h. The structure is defined in the
’Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

188

Library Functions

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

189

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description

These macros, defined in ctype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all except isascii() are defined for c, if isascii(c) is true or if
c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z
isalpha(c) c is in A-Z or a-z
isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) c is in a-z
isprint(c) c is a printing char
isgraph(c) c is a non-space printable character
ispunct(c) c is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) c is in A-Z
isxdigit(c) c is in 0-9 or a-f or A-F

190

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

191

Library Functions

KBHIT
Synopsis

#include <conio.h>

int kbhit (void)

Description

This function returns 1 if a character has been pressed on the console keyboard, 0 otherwise. Nor-
mally the character would then be read via getch().

Example

#include <conio.h>

void
main (void)
{

int i;

while(!kbhit()) {
cputs("I’m waiting..");
for(i = 0 ; i != 1000 ; i++)

continue;
}

}

See Also

getch(), getche()

Return Value

Returns one if a character has been pressed on the console keyboard, zero otherwise.

192

Library Functions

LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is added to the exponent
of the floating point f and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating point value f.

193

Library Functions

LDIV
Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

The ldiv() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of type long int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div()

Return Value

Returns a structure of type ldiv_t

194

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on Jan
1, 1970, into a broken down time stored in a structure as defined in time.h. The routine localtime()
takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zone is westward of Greenwich. On systems where it is not possible to
predetermine this value, localtime() will return the same result as gmtime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

195

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

196

Library Functions

LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description

The log() function returns the natural logarithm of f. The function log10() returns the logarithm to
base 10 of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

197

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjmp() should be called with a jmp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf argument
from an inner level of execution. Note however that the function which called setjmp() must still be
active when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. The val argument to longjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

198

Library Functions

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
inner();
printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

199

Library Functions

MEMCHR

Synopsis

#include <string.h>

void * memchr (const void * block, int val, size_t length)

Description

The memchr() function is similar to strchr() except that instead of searching null terminated strings,
it searches a block of memory specified by length for a particular byte. Its arguments are a pointer
to the memory to be searched, the value of the byte to be searched for, and the length of the block.
A pointer to the first occurrence of that byte in the block is returned.

Example

#include <string.h>
#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void
main (void)
{

char * cp;

cp = memchr(ary, 0x89, sizeof ary);
if(!cp)

printf("not found\n");
else

printf("Found at offset %u\n", cp - (char *)ary);
}

See Also

strchr()

200

Library Functions

Return Value

A pointer to the first byte matching the argument if one exists; NULL otherwise.

201

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

printf("Equal\n");
}

202

Library Functions

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal
to or greater than the string pointed to by s2 in the collating sequence.

203

Library Functions

MEMCPY
Synopsis

#include <string.h>

void * memcpy (void * d, const void * s, size_t n)

Description

The memcpy() function copies n bytes of memory starting from the location pointed to by s to
the block of memory pointed to by d. The result of copying overlapping blocks is undefined. The
memcpy() function differs from strcpy() in that it copies a specified number of bytes, rather than all
bytes up to a null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buf[80];

memset(buf, 0, sizeof buf);
memcpy(buf, "a partial string", 10);
printf("buf = ’%s’\n", buf);

}

See Also

strncpy(), strncmp(), strchr(), memset()

Return Value

The memcpy() routine returns its first argument.

204

Library Functions

MEMMOVE
Synopsis

#include <string.h>

void * memmove (void * s1, const void * s2, size_t n)

Description

The memmove() function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also

strncpy(), strncmp(), strchr(), memcpy()

Return Value

The function memmove() returns its first argument.

205

Library Functions

MEMSET
Synopsis

#include <string.h>

void * memset (void * s, int c, size_t n)

Description

The memset() function fills n bytes of memory starting at the location pointed to by s with the byte
c.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char abuf[20];

strcpy(abuf, "This is a string");
memset(abuf, ’x’, 5);
printf("buf = ’%s’\n", abuf);

}

See Also

strncpy(), strncmp(), strchr(), memcpy(), memchr()

206

Library Functions

MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each having the
same sign as value. For example, -3.17 would be split into the integral part (-3) and the fractional
part (-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value

The signed fractional part of value.

207

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description

The persist_check() function is used with non-volatile RAM variables, declared with the persistent
qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call
to persist_validate() and a checksum also calculated by persist_validate(). If the magic number and
checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it
will optionally zero out and re-validate the non-volatile RAM area (by calling persist_validate()).
This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example

#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */

208

Library Functions

}

Return Value

FALSE (zero) if the NVRAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

209

Library Functions

POW
Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power of p.

210

Library Functions

PRINTF, VPRINTF
Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()). The printf() routine
is passed a format string, followed by a list of zero or more arguments. In the format string are
conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces
a conversion, followed by an optional width specification m. The n specification is an optional
precision specification (introduced by the dot) and c is a letter specifying the type of the conversion.

A minus sign (’-’) preceding m indicates left rather than right adjustment of the converted value
in the field. Where the field width is larger than required for the conversion, blank padding is per-
formed at the left or right as specified. Where right adjustment of a numeric conversion is specified,
and the first digit of m is 0, then padding will be performed with zeroes rather than blanks. For
integer formats, the precision indicates a minimum number of digits to be output, with leading zeros
inserted to make up this number if required.

A hash character (#) preceding the width indicates that an alternate format is to be used. The
nature of the alternate format is discussed below. Not all formats have alternates. In those cases, the
presence of the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From
within HPD this can be forced by selecting the "Float formats in printf" selection in the options
menu. From the command line driver, use the option -LF.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is

211

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

e
Print the corresponding argument in scientific notation. Otherwise similar to f.

g
Use e or f format, whichever gives maximum precision in minimum width. Any trailing zeros after
the decimal point will be removed, and if no digits remain after the decimal point, it will also be
removed.

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the
case of d, unsigned otherwise. The precision value is the total number of digits to print, and may be
used to force leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. Preceding
the key letter with an l indicates that the value argument is a long integer. The letter X prints out
hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed when using
x. When the alternate format is specified, a leading zero will be supplied for the octal format, and a
leading 0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from
the string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will produce a
single percent sign.

The vprintf() function is similar to printf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument lists.
An example of using vprintf() is given below.

Example

printf("Total = %4d%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

212

Library Functions

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

i = 3;
error("testing 1 2 %d", i);

}

See Also

fprintf(), sprintf()

Return Value

The printf() and vprintf() functions return the number of characters written to stdout.

213

Library Functions

PUTCH
Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the character c to the console screen, prepending a carriage return if
the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls.
In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standard putch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putch(*x++);
putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

214

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putchar(*x++);
putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

215

Library Functions

Note

This routine is not usable in a ROM based system.

216

Library Functions

PUTS
Synopsis

#include <stdio.h>

int puts (const char * s)

Description

The puts() function writes the string s to the stdout stream, appending a newline. The null character
terminating the string is not copied.

Example

#include <stdio.h>

void
main (void)
{

puts("Hello, world!");
}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

217

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,
int (*func)(const void *, const void *))

Description

The qsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,
each of length width bytes, located contiguously in memory at base. The argument func is a pointer
to a function used by qsort() to compare items. It calls func with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the second then func
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int aray[] = {
567, 23, 456, 1024, 17, 567, 66

};

int
sortem (const void * p1, const void * p2)
{

return *(int *)p1 - *(int *)p2;
}

void
main (void)
{

register int i;

218

Library Functions

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);
putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:

int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.

219

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using the srand() call.
The example shows use of the time() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

srand()

220

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

221

Library Functions

REALLOC

Synopsis

#include <stdlib.h>

void * realloc (void * ptr, size_t cnt)

Description

The realloc() function frees the block of memory at ptr, which should have been obtained by a pre-
vious call to malloc(), calloc() or realloc(), then attempts to allocate cnt bytes of dynamic memory,
and if successful copies the contents of the block of memory located at ptr into the new block.

At most, realloc() will copy the number of bytes which were in the old block, but if the new
block is smaller, will only copy cnt bytes.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(255);
if(gets(cp))

cp = realloc(cp, strlen(cp)+1);
printf("buffer now %d bytes long\n", strlen(cp)+1);

}

See Also

malloc(), calloc()

222

Library Functions

Return Value

A pointer to the new (or resized) block. NULL if the block could not be expanded. A request to
shrink a block will never fail.

223

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar func-
tions are available for streams in general, and for strings. The function vscanf() is similar, but takes
a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space" characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assign-
ment suppression character (’*’), optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in the fmt string, there should be two additional
pointer arguments.

The conversion characters are as follows:
o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
field width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

224

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a
field width is specified, then copy that many characters. This differs from the s format in that white
space does not terminate the character sequence.

The conversion characters o, x, u, d and f may be preceded by an l to indicate that the corre-
sponding pointer argument is a pointer to long or double as appropriate. A preceding h will indicate
that the pointer argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)
with input " abcd -3.5"
will assign " abc" to c, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

225

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");

226

Library Functions

inner();
printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

227

Library Functions

SIN
Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

228

Library Functions

SPRINTF, VSPRINTF
Synopsis

#include <stdio.h>

int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead of placing the
converted output on the stdout stream, the characters are placed in the buffer at buf. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

The vsprintf() function is similar to sprintf() but takes a variable argument list pointer rather
than a list of arguments. See the description of va_start() for more information on variable argument
lists.

See Also

printf(), fprintf(), sscanf()

Return Value

Both these routines return the number of characters placed into the buffer.

229

Library Functions

SQRT
Synopsis

#include <math.h>

double sqrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

230

Library Functions

SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the Z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

rand()

231

Library Functions

SSCANF, VSSCANF
Synopsis

#include <stdio.h>

int sscanf (const char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsscanf (const char * buf, const char * fmt, va_list ap)

Description

The sscanf() function operates in a similar manner to scanf(), except that instead of the conversions
being taken from stdin, they are taken from the string at buf.

The vsscanf() function takes an argument pointer rather than a list of arguments. See the de-
scription of va_start() for more information on variable argument lists.

See Also

scanf(), fscanf(), sprintf()

Return Value

Returns the value of EOF if an input failure occurs, else returns the number of input items.

232

Library Functions

STRCAT
Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (concatenates) string s2 to the end of string s1. The result will be null termi-
nated. The argument s1 must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value of s1 is returned.

233

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character c. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

234

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

235

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

236

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

237

Library Functions

STRCPY
Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointer s1 is returned.

238

Library Functions

STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed to by s1 which
consists of characters NOT from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

239

Library Functions

STRDUP
Synopsis

#include <string.h>

char * strdup (const char * s1)

Description

The strdup() function returns a pointer to a new string which is a duplicate of the string pointed to
by s1. The space for the new string is obtained using malloc(). If the new string cannot be created, a
null pointer is returned.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;

ptr = strdup("This is a copy");
printf("%s\n", ptr);

}

Return Value

Pointer to the new string, or NULL if the new string cannot be created.

240

Library Functions

STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

241

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n characters will be
copied, and the result will be null terminated. s1 must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strcat(), strlen()

242

Library Functions

Return Value

The value of s1 is returned.

243

Library Functions

STRNCMP, STRNICMP
Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description

The strncmp() function compares its two, null terminated, string arguments, up to a maximum of n
characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.
The comparison is done with the standard collating sequence, which is that of the ASCII character
set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strcmp("abcxyz", "abcxyz");
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also

strlen(), strcmp(), strcpy(), strcat()

244

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

245

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. At most
n characters are copied. If string s2 is longer than n then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null
terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcat(), strlen(), strcmp()

246

Library Functions

Return Value

The destination buffer pointer s1 is returned.

247

Library Functions

STRPBRK
Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value

Pointer to the first matching character, or NULL if no character found.

248

Library Functions

STRRCHR, STRRICHR
Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated
string s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

249

Library Functions

STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

250

Library Functions

STRSTR, STRISTR
Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value

Pointer to the located string or a null pointer if the string was not found.

251

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

252

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string s2 may be different from call to call.

253

Library Functions

TAN
Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

254

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is
stored into the object pointed to by t.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

255

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

256

Library Functions

TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the tolower()
routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed
in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {
printf("%c", tolower(array1[i]));

}
printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

257

Library Functions

UNGETCH
Synopsis

#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the character c onto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

258

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of type va_list should be declared, then the macro va_start() invoked
with that variable and the name of parmN. This will initialize the variable to allow subsequent calls
of the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventions to int, unsigned int or double. For example if a
character argument has been passed, it should be accessed by va_arg(ap, int) since the char will
have been widened to int.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

259

Library Functions

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
va_end(ap);

}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}

260

Library Functions

XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

261

Library Functions

262

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with
an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
run();

} /* no #endif was found in this module */

263

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a #else. These can only follow a
#if, e.g.:

#ifdef FOO
result = foo;

#else
result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */
result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching #if line. If there is an
apparently corresponding #if line, check for things like extra #endif’s, or improperly terminated
comments, e.g.:

#ifdef FOO
result = foo;

#endif
result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */
result = next(0);

#endif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor #assert failure (Preprocessor)

The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer
induced error.

#assert SIZE == 4 /* size should never be 4 */

264

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching #asm, e.g.:

void cleardog(void)
{
clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */
}

(106) nested #asm directives (Preprocessor)

It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive, e.g.:

#asm
move r0, #0aah

#asm ; the previous #asm must be closed before opening another
sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the # directive. It is probably a misspelling of a pre-processor #
directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if[n][def] without an argument (Preprocessor)

The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if
should be an expression, while the argument to #ifdef or #ifndef should be a single name, e.g.:

#if /* woops -- no argument to check */
output = 10;

#else
output = 20;

#endif

265

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to #include is invalid. The argument to #include must be
a valid file name, either enclosed in double quotes "" or angle brackets < >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* woops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining preprocessor macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1
/* elsewhere: */
#define ONE one /* Is this correct? It will overwrite the first definition. */

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missing closing parenthesis ,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in preprocessor macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

266

Error and Warning Messages

(115) recursive preprocessor macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within preprocessor macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+b)
FUNC(5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a #if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) stack overflow processing #if expression (Preprocessor)

The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) invalid expression in #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator "*" in incorrect context (Preprocessor)

An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */
#define BIG

#endif

267

Error and Warning Messages

(121) expression stack overflow at operator "*" (Preprocessor)

Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced parenthesis at operator "*" (Preprocessor)

The evaluation of a #if expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */
#define ADDED

#endif

(123) misplaced "?" or ":"; previous operator is "*" (Preprocessor)

A colon operator has been encountered in a #if expression that does not match up with a corre-
sponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a #if expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */
int m;

#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a #if expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */
int m;

#endif

268

Error and Warning Messages

(126) strings can’t be used in #if (Preprocessor)

The preprocessor does not allow the use of strings in #if expressions, e.g.:

#if MESSAGE > “hello” /* no string operations allowed by the preprocessor */
#define DEBUG
#endif

(127) bad syntax for defined() in #[el]if (Preprocessor)

The defined() pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

#if defined(a&b) /* woops -- defined expects a name, not an expression */
input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34
#define BIG

#endif

(130) unknown type "*" in #[el]if sizeof() (Preprocessor)

An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate
sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

269

Error and Warning Messages

(131) illegal type combination in #[el]if sizeof() (Preprocessor)

The preprocessor found an illegal type combination in the argument to sizeof() in a #if expres-
sion, e.g.

#if sizeof(short long int) == 2 /* short or long? make up your mind */
i = 0xFFFF;

#endif

(132) no type specified in #[el]if sizeof() (Preprocessor)

Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to
sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */
i = 0;

#endif

(133) unknown type code (0x*) in #[el]if sizeof() (Preprocessor)

The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) syntax error in #[el]if sizeof() (Preprocessor)

The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

(135) unknown operator (*) in #if (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

270

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator ## that is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator ## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(139) end of file in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I’m not sure where I end, though
}

(140) can’t open * file "*": * (Driver, Preprocessor, Code Generator, Assembler)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open * file "*": * (Any)

An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

271

Error and Warning Messages

(144) too many nested #if blocks (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(146) #include filename too long (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many #include directories specified (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for preprocessor macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) preprocessor macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is
normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K
bytes.

(150) illegal "__" preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(151) too many arguments in preprocessor macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31.

(152) bad dp/nargs in openpar(): c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in preprocessor macro "*" argument expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

272

Error and Warning Messages

(155) work buffer overflow concatenating "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer "*" overflow (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) can’t allocate * bytes of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable in preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too many calls to unget() (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of
the later ones will probably go away.

(161) control line "*" within preprocessor macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(162) #warning: * (Preprocessor, Driver)

This warning is either the result of user-defined #warning preprocessor directive or the driver en-
countered a problem reading the the map file. If the latter then please HI-TECH Software technical
support with details

(163) unexpected text in control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

273

Error and Warning Messages

#if defined(END)
#define NEXT

#endif END /* END would be better in a comment here */

(164) #include filename "*" was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened, e.g.:

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(165) #include filename "*" does not match actual name (check upper/lower case) (Prepro-
cessor)

In Windows versions this means the file to be included actually exists and is spelt the same way as
the #include filename, however the case of each does not exactly match. For example, specifying
#include “code.c” will include Code.c if it is found. In Linux versions this warning could occur
if the file wasn’t found.

(166) too few values specified with option "*" (Preprocessor)

The list of values to the preprocessor (CPP) -S option is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes of char, short, int, long, float and double types.

(167) too many values specified with -S option; "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message -s, too
few values specified in * on page ??.

(168) unknown option "*" (Any)

This option given to the component which caused the error is not recognized.

(169) strange character (*) after ## (Preprocessor)

There is an unexpected character after #.

274

Error and Warning Messages

(170) symbol "*" in undef was never defined (Preprocessor)

The symbol supplied as argument to #undef was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM
#undef SYM /* only undefine if defined */

#endif

(171) wrong number of preprocessor macro arguments for "*" (* instead of *)(Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* woops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator # (not to be confused with the leading # used for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */
#define GOOD

#endif

275

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.:

#if CHAR == ’ab’
#define MULTI

#endif

(175) division by zero in #if; zero result assumed (Preprocessor)

Inside a #if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) symbol "*" in -U option was never defined (Preprocessor)

A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

276

Error and Warning Messages

(181) non-scalar types can’t be converted to other types (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* woops -- did you mean: sp = &test; ? */

(182) illegal conversion between types (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains an int, for example, it cannot be assigned to an int
variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;
a = b(c+d); /* b is not a function -- did you mean a = b*(c+d) ? */

(184) calling an interrupt function is illegal (Parser)

A function qualified interrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because an interrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt. An interrupt function can call
other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);
void main(void)
{

277

Error and Warning Messages

int input;
input = get_value(6); /* woops -- the parameter should not be here */

}

(186) too many function arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add(5, 7, input); /* this call has too many arguments */

(187) too few function arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch(input) {
case a: /* woops -- you cannot use a variable as part of a case label */
input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* woops -- exactly which element do you mean? */

278

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the type void, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier "*" (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier "*" (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194) ")" expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dot ., e.g.:

int a;
a.b = 9; /* woops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

279

Error and Warning Messages

(198) undefined struct/union "*" (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand to if, while statements or to boolean operators like ! and &&
must be a scalar integral type, e.g.:

struct FORMAT format;
if(format) /* this operand must be a scaler type */
format.a = 0;

(200) taking the address of a register variable is illegal (Parser)

A variable declared register may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying the & operator, e.g.:

int * proc(register int in)
{
int * ip = ∈ /* woops -- in may not have an address to take */
return ip;

}

(201) taking the address of this object is illegal (Parser)

The expression which was the operand of the & operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];
int * ip;
char c;
array = ip; /* array is not a variable, it cannot be written to */

280

Error and Warning Messages

A typecast does not yield an lvalue, e.g.:

(int)c = 1; /* the contents of c cast to int is only a intermediate value */

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on bit variable (Parser)

Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function can’t return a value (Parser)

A void function cannot return a value. Any return statement should not be followed by an expres-
sion, e.g.:

void run(void)
{
step();
return 1; /* either run should not be void, or remove the 1 */

}

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for "*" (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

281

Error and Warning Messages

(208) operands of "*" not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(211) taking sizeof bit is illegal (Parser)

It is illegal to use the sizeof operator with the HI-TECH C bit type. When used against a type the
sizeof operator gives the number of bytes required to store an object that type. Therefore its usage
with the bit type make no sense and is an illegal operation.

(212) missing number after pragma "pack" (Parser)

The pragma pack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

282

Error and Warning Messages

(215) missing argument to pragma "switch" (Parser)

The pragma switch requires an argument of auto, direct or simple, e.g.:

#pragma switch /* woops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

(216) missing argument to pragma "psect" (Parser)

The pragma psect requires an argument of the form oldname=newname where oldname is an
existing psect name known to the compiler, and newname is the desired new name, e.g.:

#pragma psect /* woops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

The inline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in <stdio.h>.

283

Error and Warning Messages

(220) exponent expected (Parser)

A floating point constant must have at least one digit after the e or E., e.g.:

float f;
f = 1.234e; /* woops -- what is the exponent? */

(221) hexadecimal digit expected (Parser)

After 0x should follow at least one of the hex digits 0-9 and A-F or a-f, e.g.:

a = 0xg6; /* woops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(224) illegal "#" directive (Parser)

An illegal # preprocessor has been detected. Likely a directive has been misspelt in your code
somewhere.

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* woops -- only one character may be specified */

284

Error and Warning Messages

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of the ellipsis symbol, which
must have 3 dots. (An ellipsis is used in function prototypes to indicate a variable number of param-
eters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra dot, or it
was meant to be a structure member operator which would require you remove one dot.

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

c = ‘a‘; /* woops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing argument to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing argument to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

285

Error and Warning Messages

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator @, used to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{
return a*2;

}
long twice(long a) /* only one prototype & definition of rv can exist */
{
return a*2;

}

(238) illegal initialisation (Parser)

You can’t initialise a typedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

typedef unsigned int uint = 99; /* woops -- uint is a type, not a variable */

(239) identifier "*" redefined (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

286

Error and Warning Messages

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

int ivals[3] = { 2, 4, 6, 8}; /* three elements, but four initializers */

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:

double d;
switch(d) { /* woops -- this must be integral */
case ’1.0’:
d = 0;

}

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-
ture. A continue can only be used inside a while, for or do while loop, while break can only be
used inside those loops or a switch statement, e.g.:

switch(input) {
case 0:
if(output == 0)
input = 0xff;

} /* woops -- this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */

287

Error and Warning Messages

(244) "default" case redefined (Parser)

There is only allowed to be one default label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b = 9;
break;

default: /* then what is this? */
b = 10;
break;

(245) "default" case not in switch (Parser)

A label has been encountered called default but it is not enclosed by a switch statement. A
default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many closing
braces in the switch code which would prematurely terminate the switch statement. See example
for Error Message ’case’ not in switch on page ??.

(246) case label not in switch (Parser)

A case label has been encountered, but there is no enclosing switch statement. A case label may
only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many closing braces
in the switch code which would prematurely terminate the switch statement, e.g.:

switch(input) {
case ’0’:
count++;
break;

case ’1’:
if(count>MAX)
count= 0;

} /* woops -- this shouldn’t be here */
break;

case ’2’: /* error flagged here */

288

Error and Warning Messages

(247) duplicate label "*" (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)
goto end;

start: /* error flagged here */
if(a == 0)
goto start; /* which start label do I jump to? */

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with an if statement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...
if(a > b) {
c = 0; /* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */
c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

void set(char a)
{
PORTA = a;

/* the closing brace was left out here */
void clear(void) /* error flagged here */
{
PORTA = 0;

}

289

Error and Warning Messages

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array[5];
int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

extern int calc(int, int); /* this is supposedly calc’s prototype */
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */
return sin(b/a);

}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */
return a + b;

}

(254) undefined *: "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union "*" (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

290

Error and Warning Messages

struct {
int a, b, c;

} data;
if(data.d) /* woops -- there is no member d in this structure */
return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only "register" storage class allowed (Parser)

The only storage class allowed for a function parameter is register, e.g.:

void process(static int input)

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;
volatile vint very_vol; /* woops -- this results in two volatile qualifiers */

(259) can’t be qualified both far and near (Parser)

It is illegal to qualify a type as both far and near, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag "*" (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

291

Error and Warning Messages

(261) struct/union member "*" redefined (Parser)

This name of this member of the struct or union has already been used in this struct or union, e.g.:

struct {
int a;
int b;
int a; /* woops -- a different name is required here */

} input;

(262) struct/union "*" redefined (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;

} ms;
struct {
int a;

} ms; /* was this meant to be the same name as above? */

(263) members can’t be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {
int a;
int get(int); /* this should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type of int (signed or unsigned), e.g.:

struct FREG {
char b0:1; /* woops -- these must be part of an int, not char */
char :6;
char b7:1;

} freg;

292

Error and Warning Messages

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after the colon to define the number of bits in the bitfield,
e.g.:

struct {
unsigned first: /* woops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

struct {
static int first; /* no additional qualifiers may be present with members */

} ;

(267) bad storage class (Code Generator)

The code generator has encountered a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power(static int a) /* parameters may not be static */
{
return foo * a;

}

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.:

extern static int where; /* so is it static or extern? */

293

Error and Warning Messages

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) variable can’t have storage class "register" (Parser)

Only function parameters or auto variables may be declared using the register qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{
return input + gi;

}

(271) type can’t be long (Parser)

Only int and float can be qualified with long.

long char lc; /* what? */

(272) type can’t be short (Parser)

Only int can be modified with short, e.g.:

short float sf; /* what? */

(273) type can’t be both signed and unsigned (Parser)

The type modifiers signed and unsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

(274) type can’t be unsigned (Parser)

A floating point type cannot be made unsigned, e.g.:

unsigned float uf; /* what? */

294

Error and Warning Messages

(275) "..." illegal in non-prototype argument list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */
int a, b;

{

(276) type specifier required for prototyped argument (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

(277) can’t mix prototyped and non-prototyped arguments (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */
int b;
{
return a + b;

}

(278) argument "*" redeclared (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

(279) initialization of function arguments is illegal (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,
e.g.:

extern int proc(int a = 9); /* woops -- a is initialized when proc is called */

295

Error and Warning Messages

(280) arrays of functions are illegal (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,
e.g.:

int * farray[](); /* woops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };
int get_element(int array[two][]) /* should be, e.g.: int array[][7] */
{
return array[1][6];

}

(284) invalid dimension (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */
{
}

296

Error and Warning Messages

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) arrays of bits or pointers to bit are illegal (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not be void. Only a function can be void, e.g.:

int a;
void b; /* this makes no sense */

(289) only functions may be qualified "interrupt" (Parser)

The qualifier interrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have
forgotten out a star * indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* woops -- did you mean const * char ccrv(void) ? */
{ /* error flagged here */
return ccip;

}

297

Error and Warning Messages

(291) K&R identifier "*" not an argument (Parser)

This identifier that has appeared in a K&R style argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process(input)
int unput; /* woops -- that should be int input; */
{
}

(292) function parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(296) out of memory (Objtohex)

This could be an internal compiler error. Contact HI-TECH Software technical support with details.

(297) bad argument (*) to tysize() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) end of file in #asm (Preprocessor)

An end of file has been encountered inside a #asm block. This probably means the #endasm is
missing or misspelt, e.g.:

298

Error and Warning Messages

#asm
mov r0, #55
mov [r1], r0

} /* woops -- where is the #endasm */

(300) unexpected end of file (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)
{
init();
run(); /* is that it? What about the close brace */

(301) end of file on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen "*": * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) can’t allocate * bytes of memory (line *) (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

(306) can’t allocate * bytes of memory for * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many case labels in switch (Code Generator)

There are too many case labels in this switch statement. The maximum allowable number of case
labels in any one switch statement is 511.

299

Error and Warning Messages

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in
your program.

(310) "]" expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process(carray[idx); /* woops -- should be: process(carray[idx]); */

(311) closing quote expected (Parser)

A closing quote was expected for the indicated string.

(312) "*" expected (Parser)

The indicated token was expected by the parser.

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

int get_value(a, b); /* the function block must follow, not a semicolon */

(314) ";" expected (Parser)

A semicolon is missing from a statement. A close brace or keyword was found following a statement
with no terminating semicolon, e.g.:

while(a) {
b = a-- /* woops -- where is the semicolon? */

} /* error is flagged here */

Note: Omitting a semicolon from statements not preceding a close brace or keyword typically results
in some other error being issued for the following code which the parser assumes to be part of the
original statement.

300

Error and Warning Messages

(315) "{" expected (Parser)

An opening brace was expected here. This error may be the result of a function definition missing
the opening brace, e.g.:

void process(char c) /* woops -- no opening brace after the prototype */
return max(c, 10) * 2; /* error flagged here */

}

(316) "}" expected (Parser)

A closing brace was expected here. This error may be the result of a initialized array missing the
closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) "(" expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after a while, for, if,
do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
b = 0;

(318) string expected (Parser)

The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

(319) while expected (Parser)

The keyword while is expected at the end of a do statement, e.g.:

do {
func(i++);

} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end();

301

Error and Warning Messages

(320) ":" expected (Parser)

A colon is missing after a case label, or after the keyword default. This often occurs when a
semicolon is accidentally typed instead of a colon, e.g.:

switch(input) {
case 0; /* woops -- that should have been: case 0: */
state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear after goto, e.g.:

if(a)
goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or "{" expected (Parser)

After the keyword enum must come either an identifier that is or will be defined as an enum tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow a struct or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

struct {
int a;

} my_struct;

(324) too many arguments for printf-style format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

printf(“%d - %d”, low, high, median); /* woops -- missed a placeholder? */

302

Error and Warning Messages

(325) error in printf-style format string (Parser)

There is an error in the format string here. The string has been interpreted as a printf() style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf(“%l”, lll); /* woops -- maybe: printf(“%ld”, lll); */

(326) long int argument required in printf-style format string (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); /* woops -- maybe you meant: printf(“%lx”, 2L);

(327) long long int argument required in printf-style format string (Parser)

A long long argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments, e.g.:

printf(“%llx”, 2); /* woops -- maybe you meant: printf(“%llx”, 2LL);

Note that not all HI-TECH C compilers provide support for a long long integer type.

(328) int argument required in printf-style format string (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* woops -- either wrong number or wrong placeholder */

(329) double argument required in printf-style format string (Parser)

The printf format specifier corresponding to this argument is %f or similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

303

Error and Warning Messages

(330) pointer to * argument required in printf-style format string (Parser)

A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for printf-style format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time, e.g.:

printf(“%d - %d”, low); /* woops -- where is the other value to print? */

(332) "interrupt_level" should be 0 to 7 (Parser)

The pragma interrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */
void interrupt isr(void)
{
/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

The pragma strings was passed a qualifier that was not identified, e.g.:

#pragma strings cinst /* woops -- should that be #pragma strings const ? */

(334) unrecognized qualifier name after "printf_check" (Parser)

The #pragma printf_check was passed a qualifier that could not be identified, e.g.:

#pragma printf_check(printf) cinst /* woops -- should that be const not cinst? */

(335) unknown pragma "*" (Parser)

An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

304

Error and Warning Messages

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay, but is it what you had intended? */

(337) line does not have a newline on the end (Parser)

The last line in the file is missing the newline (operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Any)

The application tried to create or open the named file, but it could not be created. Check that all file
pathnames are correct.

(339) initializer in extern declaration (Parser)

A declaration containing the keyword extern has an initialiser. This overrides the extern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,
how can it be initialized? */

(340) string not terminated by null character. (Parser)

A char array is being initialized with a string literal larger than the array. Hence there is insufficient
space in the array to safely append a null terminating character, e.g.:

char foo[5] = “12345”; /* the string stored in foo won’t have a
null terminating, i.e.
foo = [’1’, ’2’, ’3’, ’4’, ’5’] */

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert a return statement with a
value, or if the function is not to return a value, declare it void, e.g.:

305

Error and Warning Messages

int mydiv(double a, int b)
{
if(b != 0)
return a/b; /* what about when b is 0? */

} /* warning flagged here */

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has a return statement that does not specify a return
value, e.g.:

int get_value(void)
{
if(flag)
return val++;

return; /* what is the return value in this instance? */
}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while(1) /* how does this loop finish? */
process();

flag = FINISHED; /* how do we get here? */

(346) declaration of "*" hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.g.:

int input; /* input has filescope */
void process(int a)
{
int input; /* local blockscope input */
a = input; /* this will use the local variable. Is this right? */

306

Error and Warning Messages

(347) external declaration inside function (Parser)

A function contains an extern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declare extern variables and functions outside any other functions. For example:

int process(int a)
{
extern int away; /* this would be better outside the function */
return away + a;

}

(348) auto variable "*" should not be qualified (Parser)

An auto variable should not have qualifiers such as near or far associated with it. Its storage class
is implicitly defined by the stack organization. An auto variable may be qualified with static, but
it is then no longer auto.

(349) non-prototyped function declaration for "*" (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.g.:

int process(input)
int input; /* warning flagged here */
{
}

This would be better written:

int process(int input)
{
}

(350) unused * "*" (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbols rcsid and sccsid are never reported as being unused.

307

Error and Warning Messages

(352) float parameter coerced to double (Parser)

Where a non-prototyped function has a parameter declared as float, the compiler converts this into
a double float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be converted to double. It is
important that the function declaration be consistent with this convention, e.g.:

double inc_flt(f) /* the parameter f will be converted to double type */
float f; /* warning flagged here */
{
return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a larger unsigned type. Under the
ANSI "value preserving" rules, this will result in the signed value being first sign-extended to a
signed number the size of the target type, then converted to unsigned (which involves no change
in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;
ui = sc; /* if sc contains 0xff, ui will contain 0xffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

ui = (unsigned char)sc;

308

Error and Warning Messages

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

double dd;
int i;
i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the & address operator, e.g.:

int * ip;
int i;
ip = i; /* woops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the * dereference operator, e.g.:

int * ip;
int i;
i = ip; /* woops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

309

Error and Warning Messages

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.g.:

char * cp;
cp = “I am a string of characters”; /* yes, but what sort of characters? */

If the default type for string literals is const char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];
i = input[-2]; /* woops -- this element doesn’t exist */
ip = &input[5];
i = ip[-2]; /* this is okay */

310

Error and Warning Messages

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type int, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywords extern or static as appropriate. For example:

void set(long a, int b); /* I may prevent an error arising from calls below */
void main(void)
{
set(10L, 6); /* by here a prototype for set should have seen */

}

(362) redundant "&" applied to array (Parser)

The address operator & has been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];
int * ip;
ip = &array; /* array is a constant, not a variable; the & is redundant. */

(363) redundant "&" applied to function (Parser)

The address operator "&" has been applied to a function. Since using the name of a function gives
its address anyway, this is unnecessary and has been ignored, e.g.:

extern void foo(void);
void main(void)
{

void(*bar)(void);
/* both assignments are equivalent */
bar = &foo;
bar = foo; /* the & is redundant */

}

311

Error and Warning Messages

(364) attempt to modify object qualified * (Parser)

Objects declared const or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* woops -- writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,
e.g.:

char * get_addr(void)
{
char c;
return &c; /* returning this is dangerous; the pointer could be dereferenced */

}

(366) operands of "*" not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used
the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

(367) identifier is already extern; can’t be static (Parser)

This function was already declared extern, possibly through an implicit declaration. It has now
been redeclared static, but this redeclaration is invalid.

void main(void)
{
set(10L, 6); /* at this point the compiler assumes set is extern... */

}
static void set(long a, int b) /* now it finds out otherwise */
{
PORTA = a + b;

}

312

Error and Warning Messages

(368) array dimension on "*[]" ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

int get_first(int array[10]) /* param should be: “int array[]” or “int *” */
{ /* warning flagged here */
return array[0];

}

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type int, the compiler still
treats it as unsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

} ;

(370) illegal basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type couldn’t not be recognised and the basic type was
assumed to be int, e.g.:

unsigned char bar = (unsigned ling) ’a’; /* here ling is assumed to be int */

(371) missing basic type; int assumed (Parser)

This declaration does not include a basic type, so int has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int i */
func(); /* ditto, use: extern int func(int); */

313

Error and Warning Messages

(372) "," expected (Parser)

A comma was expected here. This could mean you have left out the comma between two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
unsigned chat b; /* thinks: chat & b are unsigned, but where is the comma? */

(373) implicit signed to unsigned conversion (Parser)

An unsigned type was expected where a signed type was given and was implicitly cast to unsigned,
e.g.:

unsigned int foo = -1;
/* the above initialization is implicitly treated as:

unsigned int foo = (unsigned) -1; */

(374) missing basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type was missing and assumed to be int., e.g.:

int foo = (signed) 2; /* here (signed) is assumed to be (signed int) */

(375) unknown FNREC type "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(378) can’t create * file "*" (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

314

Error and Warning Messages

(379) bad record type "*" (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

(380) unknown record type (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record "*" too long (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length (*) too small (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expression * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(387) illegal or too many -G options (Linker)

There has been more than one linker -g option, or the -g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

(388) duplicate -M option (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Section 5.7.9 for information on the correct syntax for
this option.

(389) illegal or too many -O options (Linker)

This linker -o flag is illegal, or another -o option has been encountered. A -o option to the linker
must be immediately followed by a filename with no intervening space.

315

Error and Warning Messages

(390) missing argument to -P (Linker)

There have been too many -p options passed to the linker, or a -p option was not followed by any
arguments. The arguments of separate -p options may be combined and separated by commas.

(391) missing argument to -Q (Linker)

The -Q linker option requires the machine type for an argument.

(392) missing argument to -U (Linker)

The -U (undefine) option needs an argument.

(393) missing argument to -W (Linker)

The -W option (listing width) needs a numeric argument.

(394) duplicate -D or -H option (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing argument to -J (Linker)

The maximum number of errors before aborting must be specified following the -j linker option.

(397) usage: hlink [-options] files.obj files.lib (Linker)

Improper usage of the command-line linker. If you are invoking the linker directly then please refer
to Section 5.7 for more details. Otherwise this may be an internal compiler error and you should
contact HI-TECH Software technical support with details.

(398) output file can’t be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

316

Error and Warning Messages

(402) bad argument to -F (Objtohex)

The -F option for objtohex has been supplied an invalid argument. If you are invoking this
command-line tool directly then please refer to Section 5.11 for more details. Otherwise this may be
an internal compiler error and you should contact HI-TECH Software technical support with details.

(403) bad -E option: "*" (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(406) bad argument to -A (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(407) bad argument to -U (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(408) bad argument to -B (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex
directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(409) bad argument to -P (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex
directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(410) bad combination of options (Objtohex)

The combination of options supplied to OBJTOHEX is invalid.

317

Error and Warning Messages

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on "*" (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on "*" (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low in COFF file (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character (*) in extended TEKHEX line (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(417) seek error in "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed to OBJTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

318

Error and Warning Messages

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from
standard input in response to an option.

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied to OBJTOHEX is syntactically incorrect.

(431) bad argument to -E (Objtoexe)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtoexe
directly then check this argument. Otherwise this may be an internal compiler error and you should
contact HI-TECH Software technical support with details.

319

Error and Warning Messages

(432) usage: objtohex [-ssymfile] [object-file [exe-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then
please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segment selector "*" (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section 5.7.9 for more information.

(438) bad size in -S option (Linker)

The address given in a -S specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

320

Error and Warning Messages

(439) bad -D spec: "*" (Linker)

The format of a -D specification, giving a delta value to a class, is invalid, e.g.:

-DCODE

What is the delta value for this class? Maybe you meant something like:

-DCODE=2

(440) bad delta value in -D spec (Linker)

The delta value supplied to a -D specification is invalid. This value should an integer of base 8, 10
or 16.

(441) bad -A spec: "*" (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(442) missing address in -A spec (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE=

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address "*" in -A spec (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

321

Error and Warning Messages

(444) expected "-" in -A spec (Linker)

There should be a minus sign, -, between the high and low addresses in a -A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address "*" in -A spec (Linker)

The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section 5.7.20 for more information.

(446) bad overrun address "*" in -A spec (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

322

Error and Warning Messages

(447) bad load address "*" in -A spec (Linker)

The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,
e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count "*" in -A spec (Linker)

The repeat count given in a -A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The -A spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

(450) psect "*" was never defined (Linker, Optimiser)

This psect has been listed in a -P option, but is not defined in any module within the program.

(451) bad psect origin format in -P option (Linker)

The origin format in a -p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

323

Error and Warning Messages

(452) bad "+" (minimum address) format in -P option (Linker)

The minimum address specification in the linker’s -p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after "%" in -P option (Linker)

The % operator in a -p option (for rounding boundaries) must have a number after it.

(454) link and load address can’t both be set to "." in -P option (Linker)

The link and load address of a psect have both been specified with a dot character. Only one of these
addresses may be specified in this manner, e.g.:

-Pmypsect=1000h/.
-Pmypsect=./1000h

Both of these options are valid and equivalent, however the following usage is ambiguous:

-Pmypsect=./.

What is the link or load address of this psect?

(455) psect "*" not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the -p option. if necessary.

(456) psect "*" not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a -p option.
For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

(461) can’t create * file "*" (Assembler or Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

324

Error and Warning Messages

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol "*" in FNBREAK record (Linker)

The linker has found an undefined symbol in the FNBREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(466) undefined symbol "*" in FNINDIR record (Linker)

The linker has found an undefined symbol in the FNINDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol "*" in FNADDR record (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol "*" in FNCALL record (Linker)

The linker has found an undefined symbol in the FNCALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol "*" in FNROOT record (Linker)

The linker has found an undefined symbol in the FNROOT record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol "*" in FNSIZE record (Linker)

The linker has found an undefined symbol in the FNSIZE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either use the reentrant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

325

Error and Warning Messages

int test(int a)
{
if(a == 5)
return test(a++); /* recursion may not be supported by some compilers */

return 0;
}

(472) non-reentrant function "*" appears in multiple call graphs: rooted at "*" and "*"
(Linker)

This function can be called from both main-line code and interrupt code. Use the reentrant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr(void)
{
scan(6); /* scan is called from an interrupt function */

}
void process(int a)
{
scan(a); /* scan is also called from main-line code */

}

(474) no psect specified for function variable/argument allocation (Linker)

The FNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startup module was not linked. Ensure you have used the FNCONF
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflicting FNCONF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (location 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

326

Error and Warning Messages

(477) fixup overflow in expression (location 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1), size 1, value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically be the output
of compiling main.c or main.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use the DUMP utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location (loc) of the instruction (0x1FD), the size (in bytes) of the field in the instruction
for the value (1) , and the value which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of
8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 07FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

327

Error and Warning Messages

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.
If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

(478) * range check failed (location 0x* (0x*+*), value 0x* > limit 0x*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(479) circular indirect definition of symbol "*" (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) function signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
int get_value(int in, char type) /* this is different to the declaration */
{

(481) common symbol "*" psect conflict (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

328

Error and Warning Messages

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(483) symbol "*" can’t be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(484) psect "*" can’t be in classes "*" and "*" (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of the -C option to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY

(485) unknown "with" psect referenced by psect "*" (Linker)

The specified psect has been placed with a psect using the psect with flag. The psect it has been
placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

(486) psect "*" selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect "*" type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect "*" memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,
if they are the same psect, place them in the same memory space using the space psect flag, e.g.:

329

Error and Warning Messages

psect spdata,class=RAM,space=0
ds 6

; elsewhere:
psect spdata,class=RAM,space=1

(489) psect "*" memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:
; elsewhere:
psect final,class=CODE,delta=1

(490) class "*" memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

(491) can’t find 0x* words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that
is generated from the program into the memory available for the target device. This error indicates
that the linker was unable to find an area of free memory large enough to accommodate one of the
psects. The error message indicates the name of the psect that the linker was attempting to position
and the segment name which is typically the name of a class which is defined with a linker -A option.

Section 3.9.1 lists each compiler-generated psect and what it contains. Typically psect names
which are, or include, text relate to program code. Names such as bss or data refer to variable
blocks. This error can be due to two reasons.

First, the size of the program or the program’s data has exceeded the total amount of space on
the selected device. In other words, some part of your device’s memory has completely filled. If this
is the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accommodate the psect. The linker is unable to split psects in this situation.
That is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the
linker must be able to find a contiguous block of memory large enough for every psect. If this is the
cause of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section 2.4.9 for
information on how to generate a map file. Search for the string UNUSED ADDRESS RANGES. Under

330

Error and Warning Messages

this heading, look for the name of the segment specified in the error message. If the name is not
present, then all the memory available for this psect has been allocated. If it is present, there will be
one address range specified under this segment for each free block of memory. Determine the size
of each block and compare this with the number of words specified in the error message.

Psects containing code can be reduced by using all the compiler’s optimizations, or restructuring
the program. If a code psect must be split into two or more small psects, this requires splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
5.9.1 has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the string Call graph: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation for auto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES
CODE 00000244-0000025F

00001000-0000102f
RAM 00300014-00301FFB

In the CODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accommodate the psect text which
is 0x34 bytes long. Notice, however, that the total amount of memory available is larger than 0x34
bytes.

(492) attempt to position absolute psect "*" is illegal (Linker)

This psect is absolute and should not have an address specified in a -P option. Either remove the
abs psect flag, or remove the -P linker option.

331

Error and Warning Messages

(493) origin of psect "*" multiply defined (Linker)

The origin of this psect is defined more than once. There is most likely more than one -p linker
option specifying this psect.

(494) bad -P format "*/*" (Linker)

The -P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(497) psect "*" exceeds max size: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using the size psect flag.

(498) psect "*" exceeds address limit: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using the limit psect flag. Either
the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(501) program entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after the END directive. The runtime startup code defines the entry point, e.g.:

powerup:
goto start
END powerup ; end of file and define entry point

; other files that use END should not define another entry point

332

Error and Warning Messages

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for
different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found in object file (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) object file record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file in object file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset (*) out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

333

Error and Warning Messages

(510) complex relocation not supported for -R or -L options (Linker)

The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function "*" is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by function "*" (Linker)

The call graph shows that functions are nested to a depth greater than specified.

334

Error and Warning Messages

(522) library "*" is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument to -W option (*) illegal and ignored (Linker)

The argument to the linker option -w is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file "*": * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address (memory) spaces; space (*) ignored (Linker)

The limit to the number of address spaces (specified with the PSECT assembler directive) is currently
16.

(526) psect "*" not specified in -P option (first appears in "*") (Linker)

This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record; entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using the END directive.

(529) usage: objtohex [-Ssymfile] [object-file [hex-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then
please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(593) can’t find 0x* words (0x* withtotal) for psect "*" in segment "*" (Linker)

See error (491) in Appendix ??.

335

Error and Warning Messages

(594) undefined symbol: (Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(595) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(596) segment "*" (*-*) overlaps segment "*" (*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the -P
linker option.

(599) No psect classes given for COFF write (Cromwell)

Cromwell requires that the program memory psect classes be specified to produce a COFF file.
Ensure that you are using the -N option as per Section 5.13.2.

(600) No chip arch given for COFF write (Cromwell)

Cromwell requires that the chip architecture be specified to produce a COFF file. Ensure that you
are using the -P option as per Section 5.13.1.

(601) Unknown chip arch "*" for COFF write (Cromwell)

The chip architecture specified for producing a COFF file isn’t recognised by Cromwell. Ensure that
you are using the -P option as per Section 5.13.1 and that the architecture specified matches one of
those in Table 5.8.

(602) null file format name (Cromwell)

The -I or -O option to Cromwell must specify a file format.

(603) ambiguous file format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the -ikey and -okey options respectively.

336

Error and Warning Messages

(604) unknown file format name "*" (Cromwell)

The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type of cot, did you mean cof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(608) bad path specification (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(610) missing psect classes after -N (Cromwell)

Cromwell requires that the -N option be given a list of the names of psect classes.

(611) too many input files (Cromwell)

To many input files have been specified to be converted by CROMWELL.

(612) too many output files (Cromwell)

To many output file formats have been specified to CROMWELL.

337

Error and Warning Messages

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(616) option -C is illegal with options -R or -L (Linker)

The linker option -Cbaseaddr cannot be used in conjunction with either the -R or -L linker options.

(618) error reading COD file data (Cromwell)

An error occurred reading the input COD file. Confirm the spelling and path of the file specified on
the command line.

(619) I/O error reading symbol table (Cromwell)

The COD file has an invalid format in the specified record.

(620) filename index out of range in line number record (Cromwell)

The COD file has an invalid value in the specified record.

(621) error writing ELF/DWARF section "*" on "*" (Cromwell)

An error occurred writing the indicated section to the given file. Confirm the spelling and path of
the file specified on the command line.

(622) too many type entries (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(623) bad class in type hashing (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(624) bad class in type compare (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

338

Error and Warning Messages

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in COFF: get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(627) missing "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(629) bad storage class "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(630) invalid syntax for prefix list in SDB file "*" (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(631) syntax error at token "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(632) can’t handle address size (*) (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(633) unknown symbol class (*) (Cromwell)

Cromwell has encountered a symbol class in the symbol table of a COFF, Microchip COFF, or
ICOFF file which it can’t identify.

(634) error dumping "*" (Cromwell)

Either the input file to CROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid HEX file "*" on line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

339

Error and Warning Messages

(636) checksum error in Intel HEX file "*" on line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(637) unknown prefix "*" in SDB file "*" (Cromwell)

This is an internal compiler warning. Contact HI-TECH Software technical support with details.

(638) version mismatch: 0x* expected (Cromwell)

The input Microchip COFF file wasn’t produced using Cromwell.

(639) zero bit width in Microchip optional header (Cromwell)

The optional header in the input Microchip COFF file indicates that the program or data memory
spaces are zero bits wide.

(668) prefix list did not match any SDB types (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(669) prefix list matched more than one SDB type (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(673) missing filename after * option (Objtohex)

The indicated option requires a valid file name. Ensure that the filename argument supplied to this
option exists and is spelt correctly.

(674) too many references to "*" (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

340

Error and Warning Messages

(686) bad switch size (*) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(695) duplicate case label (*) (Code Generator)

There are two case labels with the same value in this switch statement, e.g.:

switch(in) {
case ’0’: /* if this is case ’0’... */
b++;
break;

case ’0’: /* then what is this case? */
b--;
break;

}

(696) out-of-range case label (*) (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in this switch statement has a value which is not a constant.

(699) no case labels in switch (Code Generator)

There are no case labels in this switch statement, e.g.:

switch(input) {
} /* there is nothing to match the value of input */

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

341

Error and Warning Messages

(702) regused(): bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section 5.7.2 for more information.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) bad which in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(708) bad mod "+" for how = "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister "*" can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) bad how in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

342

Error and Warning Messages

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(713) bad initialization list (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma "*" (Code Generator)

The code generator has been passed a pragma directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

(716) bad argument to -M option "*" (Code Generator)

The code generator has been passed a -M option that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

343

Error and Warning Messages

(721) element count must be constant expression (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax in intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) function definitions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op (*) in revlog() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad op "*" in uconval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad op "*" in bconfloat() (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad op "*" in confloat() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad op "*" in conval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

344

Error and Warning Messages

(732) initialization of bit types is illegal (Code Generator)

Variables of type bit cannot be initialised, e.g.:

bit b1 = 1; /* woops -- b1 must be assigned a value after its definition */

(733) bad string "*" in pragma "psect" (Code Generator)

The code generator has been passed a pragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many "psect" pragmas (Code Generator)

Too many #pragma psect directives have been used.

(737) unknown argument "*" to pragma "switch" (Code Generator)

The #pragma switch directive has been used with an invalid switch code generation method. Pos-
sible arguments are: auto, simple and direct.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) zero dimension array is illegal (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bitfield too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in an int, e.g. assuming
an int is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;
unsigned cont : 6; /* woops -- that makes a total of 19 bits */

} object;

345

Error and Warning Messages

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fn1(void)
{
fn3(7, fn2(3), fn2(9)); /* Offending call */

}
char fn2(char fred)
{
return fred + fn3(5,1,0);

}
char fn3(char one, char two, char three)
{
return one+two+three;

}

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3.
The program structure should be modified to prevent this type of call sequence.

(743) divide by zero (Code Generator)

An expression involving a division by zero has been detected in your code.

(744) static object "*" has zero size (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized option "*" to -Z (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable "*" may be used before set (Code Generator)

This variable may be used before it has been assigned a value. Since it is an auto variable, this will
result in it having a random value, e.g.:

346

Error and Warning Messages

void main(void)
{
int a;
if(a) /* woops -- a has never been assigned a value */
process();

}

(749) unknown register name "*" used with pragma (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operators || or && is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is an auto or static local variable whose value has been tracked by the code generator,
e.g.:

{
int a;
a = 6;
if(a || b) /* a is 6, therefore this is always true */

b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

347

Error and Warning Messages

unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveals that 240 * 137 is 32880 which can easily be stored in
an unsigned int, but a warning is produced. Why? Because 240 and 137 and both signed int
values. Therefore the result of the multiplication must also be a signed int value, but a signed
int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;
int b, c;
a = b + c; /* conversion of int to char may result in truncation */

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.g.:

int input;
input < <= 33; /* woops -- that shifts the entire value out of input */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
from 0 to 3, e.g.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;
int compare(void)
{
return (value.mask == 6); /* test can

}

348

Error and Warning Messages

(755) divide by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by an if, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scope (either auto or static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

{
int a, b;
a = 5;
if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be produced for the
comparison if(a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written something like while(1). To produce
an infinite loop, use for(;;).

A similar situation arises with for loops, e.g.:

{
int a, b;
for(a=0; a!=10; a++) /* this loop must iterate at least once */
b = func(a);

In this case the code generator can again pick up that a is assigned the value 0, then immediately
checked to see if it is equal to 10. Because a is modified during the for loop, the comparison
code cannot be removed, but the code generator will adjust the code so that the comparison is not

349

Error and Warning Messages

performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of "=" instead of "==" (Code Generator)

There is an expression inside an if or other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assignment = instead of a compare ==,
e.g.:

int a, b;
if(a = 4) /* this can never be false; always perform the true statement */
b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignment to b always made. Did you mean:

if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code generator does produce code for a statement which
only consists of a variable ID. This may happen for variables which are qualified as volatile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a = b,c; /* “b” has no effect, was that meant to be a comma? */

350

Error and Warning Messages

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

(763) constant left operand to "? :" operator (Code Generator)

The left operand to a conditional operator ? is constant, thus the result of the tertiary operator ?:
will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;
if(c > 300) /* woops -- how can this be true? */
close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of an unsigned value with zero, which will always be true or false, e.g.:

unsigned char c;
if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of a signed value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

351

Error and Warning Messages

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing an unsigned number with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */
b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(776) can’t allocate space for object "*" (offs: *) (Assembler)

The assembler has run out of memory.

(777) can’t allocate space for opnd structure within object "*", (offs: *) (Assembler)

The assembler has run out of memory.

(780) too many psects defined (Assembler)

There are too many psects defined! Boy, what a program!

352

Error and Warning Messages

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) "with" psects are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. The with flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declaration may look
like:

psect my_text,local,class=CODE,with=basecode

which will define a psect called my_text and place this in the same page as the psect basecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) can’t handle "v_rtype" of * in copyexpr (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character "*" in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) end of file inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

353

Error and Warning Messages

(793) unterminated macro argument (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) use of LOCAL outside macros is illegal (Assembler)

The LOCAL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

(797) syntax error in LOCAL argument (Assembler)

A symbol defined using the LOCAL assembler directive in an assembler macro is syntactically incor-
rect. Ensure that all symbols and all other assembler identifiers conform with the assembly language
of the target device.

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directive LOCAL may not include any of the formal parameters to the
macro, e.g.:

mmm macro a1
move r0, #a1
LOCAL a1 ; woops -- the macro parameter cannot be used with local

ENDM

(799) REPT argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [r1]++

endm

(800) undefined symbol "*" (Assembler)

The named symbol is not defined in this module, and has not been specified GLOBAL.

354

Error and Warning Messages

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(802) invalid address after END directive (Assembler)

The start address of the program which is specified after the assembler END directive must be a label
in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(804) write error on object file (Assembler)

The assembler failed to write to an object file. This may be an internal compiler error. Contact
HI-TECH Software technical support with details.

(806) attempted to get an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(807) attempted to set an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(808) bad size in add_reloc() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode (*) (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

355

Error and Warning Messages

(816) duplicate ARCH specification in chipinfo file "*" at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(819) duplicate ZEROREG for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

(820) duplicate SPAREBIT for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

(822) duplicate ROMSIZE for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(824) duplicate LIB for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple LIB values. Only one LIB value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

(830) missing ARCH specification for "*" in chipinfo file (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor
must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

356

Error and Warning Messages

(832) empty chip info file "*" (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembler)

The form length specified using the -Flength option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

(845) multiply defined symbol "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

357

Error and Warning Messages

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(852) radix must be from 2 - 16 (Assembler)

The radix specified using the RADIX assembler directive must be in the range from 2 (binary) to 16
(hexadecimal).

(855) ORG argument must be a positive constant (Assembler)

An argument to the ORG assembler directive must be a positive constant or a symbol which has been
equated to a positive constant, e.g.:

ORG -10 /* this must a positive offset to the current psect */

(856) ALIGN argument must be a positive constant (Assembler)

The align assembler directive requires a non-zero positive integer argument.

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

358

Error and Warning Messages

psect text,class=CODE ; text is implicitly global
move r0, r1

; elsewhere:
psect text,local,class=CODE
move r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(859) argument to C option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s C= option (which sets the column width of the listing
output) must be a positive decimal constant number, e.g.:

LIST C=a0h ; constant must be decimal and positive, try: LIST C=80

(861) argument to N option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s N option (which sets the page length for the listing
output) must be a positive constant number, e.g.:

LIST N=-3 ; page length must be positive

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(863) symbol can’t be both extern and public (Assembler)

If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to be exported
from the current module. It is not possible for a symbol to be both.

(864) argument to "size" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive constant number,
e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

359

Error and Warning Messages

(865) psect flag "size" redefined (Assembler)

The size flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,size=400
; elsewhere:
psect spdata,class=RAM,size=500

(866) argument to "reloc" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s reloc option must be a positive constant number,
e.g.:

psect test,class=CODE,reloc=-4 ; the reloc must be positive

(867) psect flag "reloc" redefined (Assembler)

The reloc flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8

(868) argument to "delta" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive constant number,
e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(869) psect flag "delta" redefined (Assembler)

The ’DELTA’ option of a psect has been redefined more than once in the same module.

(870) argument to "pad" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s ’PAD’ option must be a non-zero positive integer.

360

Error and Warning Messages

(871) argument to "space" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive constant number,
e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

(872) psect flag "space" redefined (Assembler)

The space flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,space=0
; elsewhere:
psect spdata,class=RAM,space=1

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(877) yacc stack overflow (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(878) -S option used: "*" ignored (Driver)

The indicated assembly file has been supplied to the driver in conjunction with the -S option. The
driver really has nothing to do since the file is already an assembly file.

(880) invalid number of parameters. Use "* –HELP" for help (Driver)

Improper command-line usage of the of the compiler’s driver.

(881) setup succeeded (Driver)

The compiler has been successfully setup using the --setup driver option.

361

Error and Warning Messages

(883) setup failed (Driver)

The compiler was not successfully setup using the --setup driver option. Ensure that the directory
argument to this option is spelt correctly, is syntactically correct for your host operating system and
it exists.

(884) please ensure you have write permissions to the configuration file (Driver)

The compiler was not successfully setup using the --setup driver option because the driver was
unable to access the XML configuration file. Ensure that you have write permission to this file. The
driver will search the following configuration files in order:

• the file specified by the environment variable HTC_XML

• the file /etc/htsoft.xml if the directory ’/etc’ is writable and there is no .htsoft.xml file
in your home directory

• the file .htsoft.xml file in your home directory

If none of the files can be located then the above error will occur.

(890) contact HI-TECH Software to purchase and re-activate this compiler (Driver)

The evaluation period of this demo installation of the compiler has expired. You will need to pur-
chase the compiler to re-activate it. If however you sincerely believe the evaluation period has ended
prematurely please contact HI-TECH technical support.

(891) can’t open psect usage map file "*": * (Driver)

The driver was unable to open the indicated file. The psect usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

(892) can’t open memory usage map file "*": * (Driver)

The driver was unable to open the indicated file. The memory usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

362

Error and Warning Messages

(893) can’t open HEX usage map file "*": * (Driver)

The driver was unable to open the indicated file. The HEX usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

(894) unknown source file type "*" (Driver)

The extension of the indicated input file could not be determined. Only files with the extensions as,
c, obj, usb, p1, lib or hex are identified by the driver.

(895) can’t request and specify options in the one command (Driver)

The usage of the driver options --getoption and --setoption is mutually exclusive.

(899) can’t open option file "*" for application "*": * (Driver)

An option file specified by a --getoption or --setoption driver option could not be opened. If
you are using the --setoption option ensure that the name of the file is spelt correctly and that
it exists. If you are using the --getoption option ensure that this file can be created at the given
location or that it is not in use by any other application.

(900) exec failed: * (Driver)

The subcomponent listed failed to execute. Does the file exist? Try re-installing the compiler.

(902) no chip name specified; use "* –CHIPINFO" to see available chip names (Driver)

The driver was invoked without selecting what chip to build for. Running the driver with the –
CHIPINFO option will display a list of all chips that could be selected to build for.

(904) illegal format specified in "*" option (Driver)

The usage of this option was incorrect. Confirm correct usage with –HELP or refer to the part of the
manual that discusses this option.

(905) illegal application specified in "*" option (Driver)

The application given to this option is not understood or does not belong to the compiler.

363

Error and Warning Messages

(907) unknown memory space tag "*" in "*" option specification (Driver)

A parameter to this memory option was a string but did not match any valid tags. Refer to the section
of this manual that describes this option to see what tags (if any) are valid for this device.

(908) exit status = * (Driver)

One of the subcomponents being executed encountered a problem and returned an error code. Other
messages should have been reported by the subcomponent to explain the problem that was encoun-
tered.

(913) "*" option may cause compiler errors in some standard header files (Driver)

Using this option will invalidate some of the qualifiers used in the standard header files resulting in
errors. This issue and its solution are detailed in the section of this manual that specifically discusses
this option.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(920) empty chipinfo file (Driver, Assembler)

The chip configuration file was able to be opened but it was empty. Try re-installing the compiler.

(922) chip "*" not present in chipinfo file "*" (Driver)

The chip selected does not appear in the compiler’s chip configuration file. You may need to contact
HI-TECH Software to see if support for this device is available or upgrade the version of your
compiler.

364

Error and Warning Messages

(923) unknown suboption "*" (Driver)

This option can take suboptions, but this suboption is not understood. This may just be a simple
spelling error. If not, –HELP to look up what suboptions are permitted here.

(924) missing argument to "*" option (Driver)

This option expects more data but none was given. Check the usage of this option.

(925) extraneous argument to "*" option (Driver)

This option does not accept additional data, yet additional data was given. Check the usage of this
option.

(926) duplicate "*" option (Driver)

This option can only appear once, but appeared more than once.

(928) bad "*" option value (Driver, Assembler)

The indicated option was expecting a valid hexadecimal integer argument.

(929) bad "*" option ranges (Driver)

This option was expecting a parameter in a range format (start_of_range-end_of_range), but the
parameter did not conform to this syntax.

(930) bad "*" option specification (Driver)

The parameters to this option were not specified correctly. Run the driver with –HELP or refer to
the driver’s chapter in this manual to verify the correct usage of this option.

(931) command file not specified (Driver)

Command file to this application, expected to be found after ’@’ or ’<’ on the command line was
not found.

(939) no file arguments (Driver)

The driver has been invoked with no input files listed on its command line. If you are getting this
message while building through a third party IDE, perhaps the IDE could not verify the source files
to compile or object files to link and withheld them from the command line.

365

Error and Warning Messages

(940) *-bit checksum * placed at * (Objtohex)

Presenting the result of the requested checksum calculation.

(941) bad "*" assignment; USAGE: ** (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message
and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file "*" (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,
an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)
and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source
to override the other, use the ’+’ specifier. If the two named sources of conflict are the same source,
then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can
happen if the checksum result was to be stored within the address range of the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.
Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters
may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may
be incomplete or entered in the wrong order.

366

Error and Warning Messages

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no
sub-option to list all options.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the
number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one
command.

(960) unexpected record type (*) on line * of "*" (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid
record types.

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source
using the ’+’ specifier store data at the same address. The actual data stored there may not be what
you expect.

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from
the compile-time checksum due to gaps/unused byes within the address range that the checksum is
calculated over. Filling unused locations with a known value will correct this.

(964) unpaired nibble in -FILL value will be truncated (Hexmate)

The hexadecimal code given to the FILL option contained an incomplete byte. The incomplete byte
(nibble) will be disregarded.

(965) -STRPACK option not yet implemented, option will be ignored (Hexmate)

This option currently is not available and will be ignored.

367

Error and Warning Messages

(966) no END record for HEX file "*" (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition "*" (from line *) (Parser)

The indicated static function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning implies the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers "h" and "l" valid with this format (Parser)

Only modifiers h (short) and l (long) are legal with this printf format specifier.

(973) only modifier "l" valid with this format (Parser)

The only modifier that is legal with this format is l (for long).

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

368

Error and Warning Messages

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this identifier is already an enum tag (Parser)

This identifier following a struct or union keyword is already the tag for an enumerated type, and
thus should only follow the keyword enum, e.g.:

enum IN {ONE=1, TWO};
struct IN { /* woops -- IN is already defined */
int a, b;

};

(979) this identifier is already a struct tag (Parser)

This identifier following a union or enum keyword is already the tag for a structure, and thus should
only follow the keyword struct, e.g.:

struct IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(980) this identifier is already a union tag (Parser)

This identifier following a struct or enum keyword is already the tag for a union, and thus should
only follow the keyword union, e.g.:

union IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure, not a pointer to a structure */

369

Error and Warning Messages

(982) unknown op "*" in nxtuse() (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(983) storage class redeclared (Parser)

A variable previously declared as being static, has now be redeclared as extern.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;
char a; /* woops -- what is the correct type? */

(985) qualifiers redeclared (Parser)

This function or variable has different qualifiers in different declarations.

(986) enum member redeclared (Parser)

A member of an enumeration is defined twice or more with differing values. Does the member
appear twice in the same list or does the name of the member appear in more than one enum list?

(987) arguments redeclared (Parser)

The data types of the parameters passed to this function do not match its prototype.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the -C option has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

370

Error and Warning Messages

(990) modulus by zero in #if; zero result assumed (Preprocessor)

A modulus operation in a #if expression has a zero divisor. The result has been assumed to be zero,
e.g.:

#define ZERO 0
#if FOO%ZERO /* this will have an assumed result of 0 */
#define INTERESTING

#endif

(991) integer expression required (Parser)

In an enum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of type int, e.g.:

enum { one = 1, two, about_three = 3.12 }; /* no non-int values allowed */

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1005) a macro name can’t also be a label (Assembler)

The name of an assembler macro has also been used as an assembler label.

(1015) missing "*" specification in chipinfo file "*" at line * (Driver)

This attribute was expected to appear at least once but was not defined for this chip.

(1016) missing argument* to "*" specification in chipinfo file "*" at line * (Driver)

This value of this attribute is blank in the chip configuration file.

(1018) illegal number of "*" specification* (* found; * expected) in chipinfo file "*" at line *
(Driver)

This attribute was expected to appear a certain number of times but it did not for this chip.

(1019) duplicate "*" specification in chipinfo file "*" at line * (Driver)

This attribute can only be defined once but has been defined more than once for this chip.

371

Error and Warning Messages

(1020) unknown attribute "*" in chipinfo file "*" at line * (Driver)

The chip configuration file contains an attribute that is not understood by this version of the com-
piler. Has the chip configuration file or the driver been replaced with an equivalent component from
another version of this compiler?

(1021) syntax error reading "*" value in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified value for this device. If you are modify-
ing this file yourself, take care and refer to the comments at the beginning of this file for a description
on what type of values are expected here.

(1022) syntax error reading "*" range in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified range for this device. If you are modify-
ing this file yourself, take care and refer to the comments at the beginning of this file for a description
on what type of values are expected here.

(1024) syntax error in chipinfo file "*" at line * (Driver)

The chip configuration file contains a syntax error at the line specified.

(1025) unknown architecture in chipinfo file "*" at line * (Driver)

The attribute at the line indicated defines an architecture that is unknown to this compiler.

(1026) missing architecture in chipinfo file "*" at line * (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor
must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(1029) compiler not installed correctly - error code (*) (Driver)

This compiler has failed to find any activation information and cannot proceed to execute. The com-
piler may have been installed incorrectly or incompletely. The error code quoted can help diagnose
the reason for this failure. You may be asked for this failure code if contacting HI-TECH Software
for assistance with this problem.

(1030) HEXMATE - Intel hex editing utility (Build 1.%i) (Hexmate)

Indicating the version number of the Hexmate being executed.

372

Error and Warning Messages

(1031) USAGE: * [input1.hex] [input2.hex]... [inputN.hex] [options] (Hexmate)

The suggested usage of Hexmate.

(1032) use –HELP=<option> for usage of these command line options (Hexmate)

More detailed information is available for a specific option by passing that option to the HELP
option.

(1033) available command-line options: (Hexmate)

This is a simple heading that appears before the list of available options for this application.

(1034) type "*" for available options (Hexmate)

It looks like you need help. This advisory suggests how to get more information about the options
available to this application or the usage of these options.

(1036) bad "*" optional header length (0x* expected) (Cromwell)

The length of the optional header in this COFF file was of an incorrect length.

(1037) short read on * (Cromwell)

When reading the type of data indicated in this message, it terminated before reaching its specified
length.

(1038) string table length too short (Cromwell)

The specified length of the COFF string table is less than the minimum.

(1039) inconsistent symbol count (Cromwell)

The number of symbols in the symbol table has exceeded the number indicated in the COFF header.

(1040) bad checksum: record 0x*, checksum 0x* (Cromwell)

A record of the type specified failed to match its own checksum value.

(1041) short record (Cromwell)

While reading a file, one of the file’s records ended short of its specified length.

373

Error and Warning Messages

(1042) unknown * record type 0x* (Cromwell)

The type indicator of this record did not match any valid types for this file format.

(1043) unknown optional header (Cromwell)

When reading this Microchip COFF file, the optional header within the file header was of an incor-
rect length.

(1044) end of file encountered (Cromwell, Linker)

The end of the file was found while more data was expected. Has this input file been truncated?

(1045) short read on block of * bytes (Cromwell)

A while reading a block of byte data from a UBROF record, the block ended before the expected
length.

(1046) short string read (Cromwell)

A while reading a string from a UBROF record, the string ended before the specified length.

(1047) bad type byte for UBROF file (Cromwell)

This UBROF file did not begin with the correct record.

(1048) bad time/date stamp (Cromwell)

This UBROF file has a bad time/date stamp.

(1049) wrong CRC on 0x* bytes; should be * (Cromwell)

An end record has a mismatching CRC value in this UBROF file.

(1050) bad date in 0x52 record (Cromwell)

A debug record has a bad date component in this UBROF file.

(1051) bad date in 0x01 record (Cromwell)

A start of program record or segment record has a bad date component in this UBROF file.

374

Error and Warning Messages

(1052) unknown record type (Cromwell)

A record type could not be determined when reading this UBROF file.

(1058) assertion (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1059) rewrite loop (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1060) unknown memory model type "*"; using small. (Driver)

The memory model selected is invalid. The build will default to small memory model and continue.
Check your usage of the -B option.

(1081) static initialization of persistent variable "*" (Parser, Code Generator)

A persistent variable has been assigned an initial value. This is somewhat contradictory as the initial
value will be assigned to the variable during execution of the compiler’s startup code, however the
persistent qualifier requests that this variable shall be unchanged by the compiler’s startup code.

(1090) variable "*" is not used (Code Generator)

This variable is declared but has not been used by the program. Consider removing it from the
program.

(1091) main function "*" not defined (Code Generator)

The main function has not been defined. Every C program must have a function called main.

(1118) bad string "*" in getexpr(J) (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1119) bad string "*" in getexpr(LRN) (Code Generator)

This is an internal error. Contact HI-TECH Software.

375

Error and Warning Messages

(1137) match() error: * (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1138) attempt to return bit object on the stack (Code Generator)

A bit type cannot be returned from a function.

(1139) function’s parameter area too large; must be less than 1024 bytes (Code Generator)

The amount of data used by this function for parameters has exceeded its maximum limit. Reduce
the amount of data passed to this function through parameters.

(1141) bad interrupt vector address for "*": 0x* (Code Generator)

An invalid vector address was assigned to this function. It was possibly out of range or not an even
address.

(1142) missing interrupt vector address for function "*" (Code Generator)

This function was qualified as an interrupt function but has not been assigned a vector address.
Assign a vector address to this function.

(1143) function’s auto area too large, must be less than 65536 bytes (Code Generator)

The amount of data used by this function for auto variables has exceeded its maximum limit. Reduce
the number of auto variables.

(1146) unknown register index (Assembler)

This is an internal error. Contact HI-TECH Software.

(1147) unknown opbase (Assembler)

The op-code for this instruction has not been defined. This is an internal error. Contact HI-TECH
Software.

(1148) unknown status bit (*) in nxtuse() (Assembler)

This is an internal error. Contact HI-TECH Software.

376

Error and Warning Messages

(1150) constant operand must be one of: -6, -4, -2, 2, 4, 6 (Assembler)

An illegal value was used in this increment/decrement of this instruction. Only values of -6, -4, -2,
2, 4 and 6 are permitted.

(1151) write back register must be W13 (Assembler)

The working register W13 must be selected as the write back destination.

(1152) increment must be a constant (Assembler)

An invalid increment value was used in this instruction. Negative values are not permitted.

(1153) increment must be 2 (Assembler)

An invalid increment value was used in this instruction. The value 2 was expected.

(1154) prefetch W register must be W8 or W9 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid
destinations are W8 or W9.

(1155) prefetch W register must be W10 or W11 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid
destinations are W10 or W11.

(1156) prefetch destination register must be one of: W4, W5, W6, W7 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid
destinations are W4, W5, W6 or W7.

(1158) W register must be W12 (Assembler)

The working register required here has to be W12, but an other working register was selected.

(1160) invalid W register (Assembler)

An incorrect working register was selected for this instruction. Some instructions have restrictions
on which working registers they can use in certain modes. Refer to the device’s programming guide
to learn more about what working registers can be used here.

377

Error and Warning Messages

(1161) invalid addressing mode (Assembler)

The addressing mode used is not suitable for this instruction. Refer to the device’s programming
guide to find what addressing modes are permitted for this instruction.

(1162) byte operation not permitted (Assembler)

This instruction does not have a byte mode but a byte mode was requested.

(1163) invalid writeback mode (Assembler)

This instruction used an access mode which is not supported in the write back feature.

(1164) psect flag "width" must specify a positive constant 1,2,3 (Assembler)

The width flag used when declaring or resuming this psect has an invalid value.

(1165) psect width redefined (Assembler)

The value of a psect’s width flag differs between declarations of a given psect. All values of width
should be the same for all declarations of a given psect.

(1166) psect flag "pad" redefined (Assembler)

The value of a psect’s pad flag differs between declarations of a given psect. All values of pad
should be the same for all declarations of a given psect.

(1168) unknown conditional type * (Assembler)

A conditional branch instruction tests an unknown condition. This is an internal error. Contact
HI-TECH Software.

(1169) constant out of range (Assembler)

The literal value used in this instruction exceeds the valid range that is expected.

(1170) unknown operand type in emobj() (Assembler)

This is an internal error. Contact HI-TECH Software.

378

Error and Warning Messages

(1171) unknown constant size in emobj() (Assembler)

This is an internal error. Contact HI-TECH Software.

(1172) * constant out of range (Assembler)

The literal value used in this instruction exceeds the valid range that is expected. For example using
the value 300h in an instruction that accepts an 8 bit value would exceed the expected range for this
instruction.

(1173) phase error * != * (Assembler)

This is an internal error. Contact HI-TECH Software.

(1174) invalid psect width size, must be 0, 1 or 2 (Assembler)

The width flag used when declaring or resuming this psect has an invalid value. A valid values of
width are 0, 1 or 2.

(1175) branch out of range (Assembler)

The destination or the offset given to this branch instruction exceeds the maximum range of a branch
instruction. If this instruction is branching to a label, move the label within the reach of the branch
instruction.

(1176) call address must be even (Assembler)

The destination of a call or goto instruction has been declared absolute and is not an even address.
Adjust the address value so that it is an even number.

(1177) invalid register combination (Assembler)

The source and destination operands for this instruction did not conform to an expected relationship.
For example, in this mode:

mov [Ws + Wb],[Wd + Wb] ; expects the same Wb in both source and destination

(1178) the "*" option has been removed and has no effect (Driver)

This option no longer exists in this version of the compiler and has been ignored. Use the compiler’s
–help option or refer to the manual to find a replacement option.

379

Error and Warning Messages

(1180) directory "*" does not exist (Driver)

The directory specified in the setup option does not exist. Create the directory and try again.

(1182) near variables must be global or static (Code Generator)

A variable qualified as near must also be qualified with static or made global. An auto variable
cannot be qualified as near.

(1189) only interrupt functions may be qualified "fast" (Code Generator)

The fast qualifier can only be used on a function that is also qualified with interrupt. As this qualifier
affects the context switching code used by an interrupt function, it serves no purpose in any other
function.

(1190) FAE license only - not for use in commercial applications (Driver)

Indicates that this compiler has been activated with an FAE licence. This licence does not permit the
product to be used for the development of commercial applications.

(1191) licensed for educational use only (Driver)

Indicates that this compiler has been activated with an education licence. The educational licence is
only available to educational facilities and does not permit the product to be used for the development
of commercial applications.

(1192) licensed for evaluation purposes only (Driver)

Indicates that this compiler has been activated with an evaluation licence.

(1193) this licence will expire on * (Driver)

The compiler has been installed as a time-limited trial. This trial will end on the date specified.

(1195) invalid syntax for "*" option (Driver)

A command line option that accepts additional parameters was given inappropriate data or insuffi-
cient data. For example an option may expect two parameters with both being integers. Passing a
string as one of these parameters or supplying only one parameter could result in this error.

380

Error and Warning Messages

(1198) too many "*" specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over
several command lines.

(1199) compiler has not been activated (Driver)

The trial period for this compiler has expired. The compiler is now inoperable until activated with
a valid serial number. Contact HI-TECH Software to purchase this software and obtain a serial
number.

(1200) Found %0*lXh at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the
parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)
will result in an error, but masking with 00FFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported
INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading
zero was omitted. For example the value Fh contains only four bits of significant data and is not a
whole byte. The value 0Fh contains eight bits of significant data and is a whole byte.

(1204) * value must be between 1 and * bytes long (Hexmate)

An illegal length of data was given to this option. The value provided to this option exceeds the
maximum or minimum bounds required by this option.

381

Error and Warning Messages

(1205) using the configuration file *; you may override this with the environment variable
HTC_XML (Driver)

This is the compiler configuration file selected during compiler setup. This can be changed via
the HTC_XML environment variable. This file is used to determine where the compiler has been
installed.

(1207) some of the command line options you are using are now obsolete (Driver)

Some of the command line options passed to the driver have now been discontinued in this version
of the compiler, however during a grace period these old options will still be processed by the driver.

(1208) use –help option or refer to the user manual for option details (Driver)

An obsolete option was detected. Use –help or refer to the manual to find a replacement option that
will not result in this advisory message.

(1210) Visit the HI-TECH Software website (www.htsoft.com) for a possible update (Driver)

Visit our website to see if an update is available to address the issue(s) listed in the previous compiler
message. Please refer to the on-line self-help facilities such as the Frequently asked Questions or
search the On-line forums. In the event of no details being found here, contact HI-TECH Software
for further information.

(1212) Found * (%0*lXh) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1213) duplicate ARCH for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(1218) can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

382

Error and Warning Messages

(1226) invalid instruction or instruction mode for this architecture: "*" (Assembler)

An instruction or instruction mode has been used that is not implemented in this particular device.
This may be because code has been ported to a lesser device that does not implement all of the
features of the original device. Rewrite the section of code that is affected to avoid the use of this
instruction or select another device.

(1227) support for device * in this compiler version is * (Driver)

The chip selected may have a limited or preliminary level of support. Contact HI-TECH Software
for specific details of the limitations to the compiler’s support of this device.

(1228) unable to locate installation directory (Driver)

The compiler cannot determine the directory where it has been installed.

(1229) only vec_reset or vec_func may be selected (Driver)

The --RUNTIME sub-options vec_reset and vec_func are considered mutually exclusive and can-
not be used simultaneously.

(1230) dereferencing uninitialized pointer "*" (Code Generator)

A pointer that has not yet been assigned a value has been dereferenced. This can result in erroneous
behaviour at runtime.

(1236) invalid argument to *: * (Driver)

An option that can take additional parameters was given an invalid parameter value. Check the usage
of the option or the syntax or range of the expected parameter.

(1240) can’t create error file "*" (Driver)

The error file specified after the -Efile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using the d key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

383

Error and Warning Messages

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

library file names should have .lib extension: * (Libr)

Use the .lib extension when specifying a library filename.

module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using the r key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

384

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH for dsPIC/PIC24.

Table C.1: Devices supported by HI-TECH for dsPIC/PIC24

DEVICE ARCH FLASH XDATA EEPROM
24HJ256GP610 PIC24 0-2ABFF 800-47FF
24HJ64GP506 PIC24 0-ABFF 800-27FF
24HJ64GP510 PIC24 0-ABFF 800-27FF
24HJ128GP206 PIC24 0-157FF 800-27FF
24HJ128GP210 PIC24 0-157FF 800-27FF
24HJ128GP306 PIC24 0-157FF 800-47FF
24HJ128GP506 PIC24 0-157FF 800-27FF
24HJ128GP510 PIC24 0-157FF 800-27FF
24HJ128GP310 PIC24 0-157FF 800-27FF
24FJ128GA006 PIC24 0-157FB 800-27FF
24FJ128GA008 PIC24 0-157FB 800-27FF
24FJ128GA010 PIC24 0-157FB 800-27FF
24FJ128GA010PS PIC24 0-157FB 800-27FF
24FJ64GA002 PIC24 0-ABFB 800-27FF
24FJ64GA004 PIC24 0-ABFB 800-27FF
24FJ64GA006 PIC24 0-ABFB 800-27FF
24FJ64GA008 PIC24 0-ABFB 800-27FF
24FJ64GA010 PIC24 0-ABFB 800-27FF
24FJ96GA006 PIC24 0-FFFB 800-27FF
24FJ96GA008 PIC24 0-FFFB 800-27FF
24FJ96GA010 PIC24 0-FFFB 800-27FF
24FJ32GA002 PIC24 0-57FB 800-27FF
24FJ32GA004 PIC24 0-57FB 800-27FF
24FJ48GA002 PIC24 0-83FB 800-27FF
continued. . .

385

Chip Information

Table C.1: Devices supported by HI-TECH for dsPIC/PIC24

DEVICE ARCH FLASH XDATA EEPROM
24FJ48GA004 PIC24 0-83FB 800-27FF
24FJ16GA002 PIC24 0-2BFB 800-17FF
24FJ16GA004 PIC24 0-2BFB 800-17FF
24HJ256GP206 PIC24 0-2ABFE 800-47FF
24HJ256GP210 PIC24 0-2ABFE 800-47FF
24HJ64GP206 PIC24 0-ABFE 800-27FF
24HJ64GP210 PIC24 0-ABFE 800-27FF
30F1010 PIC30 0-FFF 800-8FF
30F2010 PIC30 0-1FFF 800-9FF 7FFC00-7FFFFE
30F2010A PIC30 0-1FFF 800-9FF 7FFC00-7FFFFE
30F2010e PIC30 0-1FFF 1700-18FF 7FFC00-7FFFFE
30F2011 PIC30 0-1FFF 800-BFF
30F2011e PIC30 0-1FFF 1600-19FF
30F2012 PIC30 0-1FFF 800-BFF
30F2012e PIC30 0-1FFF 1600-19FF
30F2020 PIC30 0-1FFF 800-9FF
30F2021 PIC30 0-1FFF 800-9FF
30F2022 PIC30 0-1FFF 800-9FF
30F2023 PIC30 0-1FFF 800-9FF
30F2020PS PIC30 0-1FFF 800-9FF
30F3010 PIC30 0-3FFF 800-BFF 7FFC00-7FFFFE
30F3010e PIC30 0-3FFF 1600-19FF 7FFC00-7FFFFE
30F3011 PIC30 0-3FFF 800-BFF 7FFC00-7FFFFE
30F3011e PIC30 0-3FFF 1600-19FF 7FFC00-7FFFFE
30F3012 PIC30 0-3FFF 800-FFF 7FFC00-7FFFFE
30F3012e PIC30 0-3FFF 1400-1BFF 7FFC00-7FFFFE
30F3013 PIC30 0-3FFF 800-FFF 7FFC00-7FFFFE
30F3013e PIC30 0-3FFF 1400-1BFF 7FFC00-7FFFFE
30F3014 PIC30 0-3FFF 800-FFF 7FFC00-7FFFFE
30F3014e PIC30 0-3FFF 1400-1BFF 7FFC00-7FFFFE
30F4011 PIC30 0-7FFF 800-FFF 7FFC00-7FFFFE
30F4011e PIC30 0-7FFF 1400-1BFF 7FFC00-7FFFFE
30F4012 PIC30 0-7FFF 800-FFF 7FFC00-7FFFFE
30F4012e PIC30 0-7FFF 1400-1BFF 7FFC00-7FFFFE
30F4013 PIC30 0-7FFF 800-FFF 7FFC00-7FFFFE
30F4013e PIC30 0-7FFF 1400-1BFF 7FFC00-7FFFFE
30F5011 PIC30 0-AFFF 800-17FF 7FFC00-7FFFFE
30F5011e PIC30 0-AFFF 1000-1FFF 7FFC00-7FFFFE
30F5013 PIC30 0-AFFF 800-17FF 7FFC00-7FFFFE
30F5013e PIC30 0-AFFF 1000-1FFF 7FFC00-7FFFFE
30F5015 PIC30 0-AFFF 800-FFF 7FFC00-7FFFFE
30F5015e PIC30 0-AFFF 1400-1BFF 7FFC00-7FFFFE
30F5016 PIC30 0-AFFF 800-FFF 7FFC00-7FFFFE
30F6010 PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
30F6010A PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
continued. . .

386

Chip Information

Table C.1: Devices supported by HI-TECH for dsPIC/PIC24

DEVICE ARCH FLASH XDATA EEPROM
30F6011 PIC30 0-15FFF 800-1FFF 7FF800-7FFFFE
30F6011A PIC30 0-15FFF 800-1FFF 7FF800-7FFFFE
30F6012 PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
30F6012A PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
30F6013 PIC30 0-15FFF 800-1FFF 7FF800-7FFFFE
30F6013A PIC30 0-15FFF 800-1FFF 7FF800-7FFFFE
30F6014 PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
30F6014A PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
30F6015 PIC30 0-17FFF 800-27FF 7FF000-7FFFFE
33FJ128GP206 PIC30 0-157FF 800-27FF
33FJ128GP306 PIC30 0-157FF 800-47FF
33FJ128GP310 PIC30 0-157FF 800-47FF
33FJ128GP706 PIC30 0-157FF 800-47FF
33FJ128GP706PS PIC30 0-157FF 800-47FF
33FJ128GP708 PIC30 0-157FF 800-47FF
33FJ128GP708PS PIC30 0-157FF 800-47FF
33FJ128MC510 PIC30 0-157FF 800-27FF
33FJ128MC706 PIC30 0-157FF 800-47FF
33FJ128MC706PS PIC30 0-157FF 800-47FF
33FJ128MC708 PIC30 0-157FF 800-47FF
33FJ128MC708PS PIC30 0-157FF 800-47FF
33FJ256GP510 PIC30 0-2ABFF 800-47FF
33FJ256GP710 PIC30 0-2ABFF 800-7FFF
33FJ256GP710PS PIC30 0-2ABFF 800-7FFF
33FJ256MC510 PIC30 0-2ABFF 800-47FF
33FJ256MC710 PIC30 0-2ABFF 800-47FF
33FJ256MC710PS PIC30 0-2ABFF 800-7FFF
33FJ64GP506 PIC30 0-ABFF 800-47FF
33FJ128GP710 PIC30 0-157FF 800-47FF
33FJ128MC506 PIC30 0-157FF 800-27FF
33FJ128MC710 PIC30 0-157FF 800-47FF
33FJ256GP506 PIC30 0-2ABFF 800-47FF
33FJ64GP206 PIC30 0-ABFF 800-27FF
33FJ64GP306 PIC30 0-ABFF 800-47FF
33FJ64GP310 PIC30 0-ABFF 800-47FF
33FJ64GP706 PIC30 0-157FF 800-47FF
33FJ64GP708 PIC30 0-ABFF 800-47FF
33FJ64GP710 PIC30 0-ABFF 800-47FF
33FJ64MC506 PIC30 0-ABFF 800-27FF
33FJ64MC508 PIC30 0-ABFF 800-27FF
33FJ64MC510 PIC30 0-ABFF 800-27FF
33FJ64MC706 PIC30 0-ABFF 800-47FF
33FJ64MC708 PIC30 0-ABFF 800-47FF
33FJ64MC710 PIC30 0-ABFF 800-47FF
24FJ128GA106 PIC24 0-157F7 800-47FF
continued. . .

387

Chip Information

Table C.1: Devices supported by HI-TECH for dsPIC/PIC24

DEVICE ARCH FLASH XDATA EEPROM
24FJ128GA108 PIC24 0-157F7 800-47FF
24FJ128GA110 PIC24 0-157F7 800-47FF
24FJ128GB106 PIC24 0-157F7 800-47FF
24FJ128GB108 PIC24 0-20BF7 800-47FF
24FJ128GB110 PIC24 0-20BF7 800-47FF
24FJ192GA106 PIC24 0-20BF7 800-47FF
24FJ192GA108 PIC24 0-20BF7 800-47FF
24FJ192GA110 PIC24 0-20BF7 800-47FF
24FJ192GB106 PIC24 0-20BF7 800-47FF
24FJ192GB108 PIC24 0-20BF7 800-47FF
24FJ192GB110 PIC24 0-20BF7 800-47FF
24FJ256GA106 PIC24 0-2ABF7 800-47FF
24FJ256GA108 PIC24 0-2ABF7 800-47FF
24FJ256GA110 PIC24 0-2ABF7 800-47FF
24FJ256GB106 PIC24 0-2ABF7 800-47FF
24FJ256GB108 PIC24 0-2ABF7 800-47FF
24FJ256GB110 PIC24 0-2ABF7 800-47FF
24FJ64GB106 PIC24 0-ABF7 800-47FF
24FJ64GB108 PIC24 0-ABF7 800-47FF
24FJ64GB110 PIC24 0-ABF7 800-47FF
24HJ128GP202 PIC24 0-157FF 800-27FF
24HJ128GP204 PIC24 0-157FF 800-27FF
24HJ128GP302 PIC24 0-157FF 800-27FF
24HJ128GP304 PIC24 0-157FF 800-27FF
24HJ128GP502 PIC24 0-157FF 800-27FF
24HJ128GP504 PIC24 0-157FF 800-27FF
24HJ128GP802 PIC24 0-157FF 800-47FF
24HJ12GP201 PIC24 0-157FF 800-BFF
24HJ12GP202 PIC24 0-157FF 800-BFF
24HJ12MC201 PIC24 0-157FF 800-BFF
24HJ12MC202 PIC24 0-157FF 800-BFF
24HJ16GP304 PIC24 0-2BFF 800-FFF
24HJ16MC302 PIC24 0-2BFF 800-FFF
24HJ16MC304 PIC24 0-2BFF 800-FFF
24HJ32GP202 PIC24 0-57FF 800-FFF
24HJ32GP204 PIC24 0-57FF 800-FFF
24HJ32GP302 PIC24 0-57FF 800-1800
24HJ32GP304 PIC24 0-57FF 800-1800
24HJ32MC202 PIC24 0-57FF 800-FFF
24HJ32MC204 PIC24 0-57FF 800-FFF
24HJ64GP202 PIC24 0-ABFF 800-27FF
24HJ64GP204 PIC24 0-ABFF 800-27FF
24HJ64GP502 PIC24 0-ABFF 800-27FF
24HJ64GP504 PIC24 0-ABFF 800-27FF
30F2005 PIC30 0-15FF 800-8FF
continued. . .

388

Chip Information

Table C.1: Devices supported by HI-TECH for dsPIC/PIC24

DEVICE ARCH FLASH XDATA EEPROM
33FJ06GS101 PIC30 0-1FFF 800-8FF
33FJ06GS102 PIC30 0-1FFF 800-8FF
33FJ06GS202 PIC30 0-1FFF 800-BFF
33FJ128GP202 PIC30 0-157FF 800-27FF
33FJ128GP204 PIC30 0-157FF 800-27FF
33FJ128GP802 PIC30 0-157FF 800-47FF
33FJ128GP804 PIC30 0-157FF 800-47FF
33FJ128MC202 PIC30 0-157FF 800-27FF
33FJ128MC204 PIC30 0-157FF 800-27FF
33FJ128MC802 PIC30 0-157FF 800-47FF
33FJ128MC804 PIC30 0-157FF 800-47FF
33FJ12GP201 PIC30 0-1FFF 800-BFF
33FJ12GP202 PIC30 0-1FFF 800-BFF
33FJ12MC201 PIC30 0-1FFF 800-BFF
33FJ12MC202 PIC30 0-1FFF 800-BFF
33FJ16GP304 PIC30 0-2BFF 800-FFF
33FJ16GS402 PIC30 0-2BFF 800-FFF
33FJ16GS404 PIC30 0-2BFF 800-FFF
33FJ16GS502 PIC30 0-2BFF 800-FFF
33FJ16GS504 PIC30 0-2BFF 800-FFF
33FJ16MC304 PIC30 0-2BFF 800-FFF
33FJ256MC510 PIC30 0-2ABFF 800-47FF
33FJ256MC710 PIC30 0-2ABFF 800-77FFF
33FJ32GP202 PIC30 0-57FF 800-FFF
33FJ32GP204 PIC30 0-57FF 800-FFF
33FJ32GP302 PIC30 0-57FF 800-1800
33FJ32GP304 PIC30 0-57FF 800-1800
33FJ32MC202 PIC30 0-57FF 800-FFF
33FJ32MC204 PIC30 0-57FF 800-FFF
33FJ32MC302 PIC30 0-57FF 800-1800
33FJ32MC304 PIC30 0-57FF 800-1800
33FJ64GP202 PIC30 0-ABFF 800-27FF
33FJ64GP204 PIC30 0-ABFF 800-27FF
33FJ64GP802 PIC30 0-157FF 800-47FF
33FJ64GP804 PIC30 0-ABFF 800-47FF
33FJ64MC202 PIC30 0-ABFF 800-27FF
33FJ64MC204 PIC30 0-ABFF 800-27FF
33FJ64MC802 PIC30 0-157FF 800-47FF
33FJ64MC804 PIC30 0-ABFF 800-47FF

389

Chip Information

390

Index

! macro quote character, 106
. psect address symbol, 120
... symbol, 63
.as files, 42
.c files, 42
.cmd files, 129
.crf files, 27, 91
.lib files, 42, 46, 127, 129
.lnk files, 124
.lst files, 26
.obj files, 42, 120, 129
.opt files, 91
.pro files, 33
.sdb files, 46
.sym files, 46, 119, 122
/ psect address symbol, 120
;; comment suppression characters, 106
<> macro quote characters, 106
? character

in assembler labels, 94
??nnnn type symbols, 95, 107
?_xxxx type symbols, 125
?a_xxxx type symbols, 125
#asm directive, 75
#define, 21
#endasm directive, 75
#pragma directives, 78
#undef, 26
$ character

in assembler labels, 94

$ location counter symbol, 95
% macro argument prefix, 106
& assembly macro concatenation character, 106
_ character

in assembler labels, 94
__Bxxxx type symbols, 87
__CONFIG, 42
__CONFIG macro, 146
__EEPROM_DATA macro, 147
__Hxxxx type symbols, 87
__Lxxxx type symbols, 87

abs function, 148
abs PSECT flag, 101
absolute object files, 120
absolute psects, 101, 102
absolute variables, 62, 82
acos function, 149
additional memory ranges, 34, 35
addresses

link, 115, 120
load, 115, 120

addressing unit, 101
ALIGN directive, 107
alignment

within psects, 107
ANSI standard

conformance, 37
implementation-defined behaviour, 41

argument passing, 63

391

INDEX INDEX

ASCII characters, 54
asctime function, 150
ASDSPIC, see assembler
asin function, 152
asm() C directive, 75
assembler, 89

accessing C objects, 76
comments, 92
controls, 109
directives, 99
expressions, 96
generating from C, 26
label field, 92
line numbers, 92
mixing with C, 73
pseudo-ops, 99
special characters, 93

assembler code
called by C, 73

assembler controls, 109
COND, 109
EXPAND, 109
INCLUDE, 110
LIST, 110
NOCOND, 110
NOEXPAND, 111
NOLIST, 111
NOXREF, 111
PAGE, 111
SPACE, 111
SUBTITLE, 111
TITLE, 112
XREF, 112

assembler directives
ALIGN, 107
DB, 104
DDW, 104
DS, 104
DW, 104

ELSE, 105
ELSIF, 105
END, 99
ENDIF, 105
ENDM, 105
EQU, 77, 103
GLOBAL, 96, 99
IF, 105
IRP, 108
IRPC, 108
LOCAL, 95, 106
MACRO, 105
org, 103
PROCESSOR, 109
PSECT, 98, 99
REPT, 107
SET, 104
SIGNAT, 109
SIGNAT directive, 86

assembler files
preprocessing, 33

assembler listings, 26
expanding macros, 91
generating, 91
hexadecimal constants, 91
page length, 91
page width, 92

assembler operators, 98
assembler optimizer

enabling, 91
assembler options, 90

-A, 91
-C, 91
-Cchipinfo, 91
-E, 91
-Flength, 91
-H, 91
-I, 91
-Llistfile, 91

392

INDEX INDEX

-O, 91
-Ooutfile, 92
-Twidth, 92
-V, 92
-X, 92
-processor, 92

assembler-generated symbols, 95
assembly, 89

character constants, 94
character set, 93
conditional, 105
constants, 94
default radix, 94
delimiters, 93
expressions, 96
identifiers, 94

data typing, 95
include files, 110
initializing

bytes, 104
double words, 104
words, 104

location counter, 95
multi-character constants, 94
radix specifiers, 94
relative jumps, 95
relocatable expression, 98
repeating macros, 107
reserving

locations, 104
special characters, 93
special comment strings, 93
strings, 94
volatile locations, 93

assembly labels, 96
scope, 96, 99

assembly listings
blank lines, 111
disabling macro expansion, 111

enabling, 110
excluding conditional code, 110
expanding macros, 109
including conditional code, 109
new page, 111
subtitles, 111
titles, 112

assembly macros, 105
! character, 106
% character, 106
& symbol, 106
concatenation of arguments, 106
quoting characters, 106
suppressing comments, 106

assembly statements
format of, 92

assert function, 153
atan function, 154
atof function, 155
atoi function, 156
atol function, 157
auto variables, 61
Avocet symbol file, 123

base specifier, see radix specifier
bases

C source, 51
batch files, 29
biased exponent, 56
big endian format, 139
binary constants

assembly, 94
C, 51

bit
PSECT flag, 101

bit types
in assembly, 101

bit-fields, 56
initializing, 57

393

INDEX INDEX

unamed, 56
bitbss psect, 68
bitwise complement operator, 65
blocks, see psects
bootloader, 35, 138, 141
bsearch function, 158
bss psect, 36, 49, 62, 68, 114

clearing, 114

call graph, 125
ceil function, 160
cgets function, 161
char types, 27, 54
char variables, 27
character constants, 52

assembly, 94
checksum endianism, 139
checksum specifications, 130
checksums, 137, 139
chipinfo files, 91
class PSECT flag, 101
classes, 117

address ranges, 117
boundary argument, 122
upper address limit, 122

CLRWDT macro, 163
COD file, 32
command line driver, 17
command lines

HLINK, long command lines, 124
long, 18, 129
verbose option, 26

compiled stack, 125
compiler

options, 18
compiler errors

format, 29
compiler generated psects, 67
compiling

to assembler file, 26
to object file, 21

COND assembler control, 109
conditional assembly, 105
configuration fuses, 42
configuration words, 42
console I/O functions, 87
const psect, 68
const qualifier, 58
constants

assembly, 94
C specifiers, 51
character, 52
string, see string literals

context retrieval, 72
context saving, 72

in-line assembly, 84
copyright notice, 25
cos function, 164
cosh function, 165
cputs function, 166
creating

libraries, 128
creating new, 67
CREF, 91
CREF application, 132
CREF option

-Fprefix, 132
-Hheading, 133
-Llen, 133
-Ooutfile, 133
-Pwidth, 133
-Sstoplist, 133
-Xprefix, 134

CREF options, 132
cromwell application, 134
cromwell option

-B, 137
-C, 136

394

INDEX INDEX

-D, 135
-E, 137
-F, 136
-Ikey, 136
-L, 136
-M, 137
-N, 135
-Okey, 136
-P, 135
-V, 137

cromwell options, 134
cross reference

disabling, 111
generating, 132
list utility, 132

cross reference file, 91
generation, 91

cross reference listings, 27
excluding header symbols, 132
excluding symbols, 133, 134
headers, 133
output name, 133
page length, 133
page width, 133

cross referencing
enabling, 112

ctext psect, 68
ctime function, 167

data psect, 36, 68, 114
copying, 115

data psects, 49
data types, 51

16-bit integer, 54
8-bit integer, 54
assembly, 95
char, 54
floating point, 55
int, 54

short, 54
DB directive, 104
DDW directive, 104
debug information, 23, 42

assembler, 92
optimizers and, 91

default libraries, 18
default psect, 99
default radix

assembly, 94
delta PSECT flag, 101
delta psect flag, 117
dependencies, 36
device selection, 27
DI macro, 168
directives

asm, C, 75
assembler, 99
EQU, 96

div function, 170
divide by zero

result of, 66
driver

command format, 17
file types, 17
long command lines, 18
options, 18
predefined macros, 78
supported data types, 51
version number, 38

driver options
–ASMLIST, 26
–CHAR, 26
–CHAR=type, 54
–CHIP=processor, 27
–CHIPINFO, 27
–CODEOFFSET, 27
–CR=file, 27
–DEBUGGER, 27

395

INDEX INDEX

–ERRFORMAT=format, 28
–ERRORS, 29
–FILL, 30
–GETOPTION, 30
–HELP, 30
–IDE, 30
–LANG, 30
–MEMMAP, 31
–MSGDISABLE, 31
–MSGFORMAT, 31
–NODEL, 31
–NOEXEC, 31
–OPT, 32
–OUTDIR, 32
–OUTPUT, 32
–PRE, 32
–PROTO, 33
–RAM, 34
–ROM, 35
–RUNTIME=type, 35, 48

clear, 36, 50
clib, 36, 50
init, 36, 49
keep, 36, 48
stack, 36, 48
vec_func, 36, 48
vec_reset, 36, 48

–SCANDEP, 35
–SERIAL, 36
–SETOPTION=app,file, 36
–SETUP, 37
–STRICT, 37
–SUMMARY, 37
–SUMMARY=type, 85
–TIME, 37
–VER, 38
–WARN=level, 38
–WARNFORMAT, 38
–WARNFORMAT=format, 28

-C, 21, 85
-D, 21
-E, 22
-G, 23, 42
-I, 23
-L, 24
-M, 25
-N, 25
-O, 25
-P, 25
-Q, 25
-S, 25, 85
-U, 26
-V, 26
-X, 26

DS directive, 104
dsPIC and PIC24 assembly language

functions, 73
dsPIC and PIC24 MCU assembly language, 92
DSPICC, see driver
DW directive, 104

eeprom_erase_block_only function, 171
eeprom_erase_row_only function, 171
eeprom_erase_word_only function, 171
eeprom_read_block function, 173
eeprom_read_row function, 172
eeprom_read_word function, 173
eeprom_write_block function, 174
eeprom_write_block_only function, 175
eeprom_write_row function, 172
eeprom_write_row_only function, 175
eeprom_write_word function, 174
eeprom_write_word_only function, 175
EI macro, 168
ellipsis symbol, 63
ELSE directive, 105
ELSIF directive, 105
embedding serial numbers, 142

396

INDEX INDEX

END directive, 99
ENDIF directive, 105
ENDM directive, 105
enhanced symbol files, 119
environment variable

HTC_ERR_FORMAT, 29
HTC_WARN_FORMAT, 29

EQU directive, 77, 96, 103
equ directive, 92
equating assembly symbols, 103
error files

creating, 118
error messages, 22

formatting, 29
LIBR, 130

eval_poly function, 180
exceptions, 69
exp function, 181
EXPAND assembler control, 109
exponent, 55
expressions

assembly, 96
relocatable, 98

fabs function, 182
far keyword, 59
far qualifier, 59
fast interrupt functions, 73
fast keyword, 73
file formats

assembler listing, 26
Avocet symbol, 123
command, 129
creating with cromwell, 134
cross reference, 91, 132
cross reference listings, 27
dependency, 36
DOS executable, 120
enhanced symbol, 119

library, 127, 129
link, 124
object, 21, 120, 129
preprocessor, 33
prototype, 33
specifying, 32
symbol, 119
symbol files, 42
TOS executable, 120

files
intermediate, 31, 32
output, 32
source, 42
temporary, 31

fill memory, 137
filling unused memory, 30, 140
flash_erase_block_only function, 176
flash_erase_row_only function, 176
flash_read_block function, 178
flash_read_row function, 177
flash_read_word function, 178
flash_write_row function, 177
flash_write_row_only function, 179
floating point data types, 55

biased exponent, 56
exponent, 56
format, 55
mantissa, 55

floating suffix, 52
floor function, 183
fnconf directive, 126
fnroot directive, 126
frexp function, 184
function

return values, 64
function prototypes, 86, 109

ellipsis, 63
function return values, 64
function signatures, 109

397

INDEX INDEX

functions
argument passing, 63
getch, 87
interrupt, 69
interrupt qualifier, 69
kbhit, 87
putch, 87
return values, 64
signatures, 86
written in assembler, 73

getch function, 87, 185
getchar function, 186
getche function, 185
gets function, 187
GLOBAL directive, 96, 99
global optimization, 32
global PSECT flag, 101
global symbols, 114
gmtime function, 188

hardware
initialization, 51

header files
problems in, 37

HEX file format, 141
HEX file map, 142
hex files

address map, 137
calculating check sums, 137
converting to other Intel formats, 137
detecting instruction sequences, 137
embedding serial numbers, 138
filling unused memory, 30, 137
find and replacing instructions, 137
merging multiple, 137
multiple, 118
record length, 137, 141

hexadecimal constants

assembly, 94
hexmate application, 137
hexmate option

+prefix, 138
-CK, 139
-FILL, 140, 141
-FIND, 140
-FIND...,REPLACE, 141
-FORMAT, 141
-HELP, 142
-LOGFILE, 142
-O, 142
-SERIAL, 36, 142
-STRING, 143

hexmate options, 138
HI-TIDE, 30
HLINK, see linker
HTC_ERR_FORMAT, 29
HTC_WARN_FORMAT, 29

I/O
console I/O functions, 87
serial, 87
STDIO, 87

identifier length, 25
identifiers

assembly, 94
IEEE floating point format, 55
IF directive, 105
Implementation-defined behaviour

division and modulus, 66
shifts, 66

implementation-defined behaviour, 41
in-line assembly, 72
INCLUDE assembler control, 110
include files

assembly, 110
INHX32, 137, 141
INHX8M, 137, 141

398

INDEX INDEX

init psect, 67
inline pragma directive, 78
int data types, 54
integer suffix

long, 52
unsigned, 52

integral constants, 52
integral promotion, 65
interrupt functions, 69

context retrieval, 72
context saving, 72, 84
fast, 73

interrupt keyword, 69
interrupt qualifier, 69
interrupt service routines, 69
interrupts

handling in C, 69
IRP directive, 108
IRPC directive, 108
isalnum function, 190
isalpha function, 190
isdigit function, 190
islower function, 190

Japanese character handling, 81
JIS character handling, 81
jis pragma directive, 81

kbhit function, 87, 192
keywords

auto, 61
disabling non-ANSI, 37
far, 59
fast, 73
interrupt, 69
near, 59
persistent, 58
ydata, 59

label field, 92

labels
assembly, 96
local, 106

ldexp function, 193
ldiv function, 194
LIBR, 127, 128

command line arguments, 128
error messages, 130
listing format, 129
long command lines, 129
module order, 130

librarian, 127
command files, 129
command line arguments, 128, 129
error messages, 130
listing format, 129
long command lines, 129
module order, 130

Libraries, 50
libraries

adding files to, 128
creating, 128
default, 18
deleting files from, 128
excluding, 36
format of, 127
linking, 123
listing modules in, 129
module order, 130
scanning additional, 24
used in executable, 120

library
difference between object file, 127
manager, 127

library function
__CONFIG, 146
__EEPROM_DATA, 147
abs, 148
acos, 149

399

INDEX INDEX

asctime, 150
asin, 152
assert, 153
atan, 154
atof, 155
atoi, 156
atol, 157
bsearch, 158
ceil, 160
cgets, 161
cos, 164
cosh, 165
cputs, 166
ctime, 167
div, 170
eeprom_erase_block_only, 171
eeprom_erase_row_only, 171
eeprom_erase_word_only, 171
eeprom_read_block, 173
eeprom_read_row, 172
eeprom_read_word, 173
eeprom_write_block, 174
eeprom_write_block_only, 175
eeprom_write_row, 172
eeprom_write_row_only, 175
eeprom_write_word, 174
eeprom_write_word_only, 175
eval_poly, 180
exp, 181
fabs, 182
flash_erase_block_only, 176
flash_erase_row_only, 176
flash_read_block, 178
flash_read_row, 177
flash_read_word, 178
flash_write_row, 177
flash_write_row_only, 179
floor, 183
frexp, 184

getch, 185
getchar, 186
getche, 185
gets, 187
gmtime, 188
isalnum, 190
isalpha, 190
isdigit, 190
islower, 190
kbhit, 192
ldexp, 193
ldiv, 194
localtime, 195
log, 197
log10, 197
longjmp, 198
memchr, 200
memcmp, 202
memcpy, 204
memmove, 205
memset, 206
modf, 207
persist_check, 208
persist_validate, 208
pow, 210
printf, 211
putch, 214
putchar, 215
puts, 217
qsort, 218
rand, 220
realloc, 222
scanf, 224
setjmp, 226
sin, 228
sinh, 165
sprintf, 229
sqrt, 230
srand, 231

400

INDEX INDEX

sscanf, 232
strcat, 233
strchr, 234
strcmp, 236
strcpy, 238
strcspn, 239
strdup, 240
strichr, 234
stricmp, 236
stristr, 251
strlen, 241
strncat, 242
strncmp, 244
strncpy, 246
strnicmp, 244
strpbrk, 248
strrchr, 249
strrichr, 249
strspn, 250
strstr, 251
strtok, 252
tan, 254
tanh, 165
time, 255
toascii, 257
tolower, 257
toupper, 257
ungetch, 258
va_arg, 259
va_end, 259
va_start, 259
vprintf, 211
vscanf, 224
vsprintf, 229
vsscanf, 232
xtoi, 261

library macro
CLRWDT, 163
DI, 168

EI, 168
limit PSECT flag, 101
link addresses, 115, 120
linker, 113

command files, 123
command line arguments, 115, 123
invoking, 123
long command lines, 123
options from DSPICC, 24
passes, 127
symbols handled, 114

linker defined symbols, 87
linker errors

aborting, 119
undefined symbols, 119

linker options, 115
-Aclass=low-high, 117, 121
-Cpsect=class, 117
-Dsymfile, 118
-Eerrfile, 118
-F, 118
-Gspec, 118
-H+symfile, 119
-Hsymfile, 119
-I, 119
-Jerrcount, 119
-K, 119
-L, 120
-LM, 120
-Mmapfile, 120
-N, 120
-Nc, 120
-Ns, 120
-Ooutfile, 120
-Pspec, 120
-Qprocessor, 122
-Sclass=limit[,bound], 122
-Usymbol, 123
-Vavmap, 123

401

INDEX INDEX

-Wnum, 123
-X, 123
-Z, 123
from DSPICC, 24
numbers in, 116

linking programs, 85
LIST assembler control, 110
list files, see assembler listings

assembler, 26
little endian format, 54, 55, 139
load addresses, 115, 120
LOCAL directive, 95, 106
local PSECT flag, 102
local psects, 114
local symbols, 26

suppressing, 92, 123
local variables, 61

auto, 61
static, 62

localtime function, 195
location counter, 95, 103
log function, 197
LOG10 function, 197
long data types, 54
long integer suffix, 52
longjmp function, 198

MACRO directive, 105
macro directive, 92
macros

disabling in listing, 111
expanding in listings, 91, 109
nul operator, 106
predefined, 78
repeat with argument, 108
undefining, 26
unnamed, 107

mantissa, 55
map files, 120

call graphs, 125
generating, 25
processor selection, 122
segments, 124
symbol tables in, 120
width of, 123

mconst psect, 68
memchr function, 200
memcmp function, 202
memcpy function, 204
memmove function, 205
memory

reserving, 34, 35
specifying, 34, 35
specifying ranges, 117
unused, 30, 120

memory pages, 102
memory summary, 37
memset function, 206
merging hex files, 138
messages

disabling, 31
warning, 31

Microchip COF file, 32
modf function, 207
modules

in library, 127
list format, 129
order in library, 130
used in executable, 120

moving code, 27
MPLAB, 30
multi-character constants

assembly, 94
multiple hex files, 118

near keyword, 59
near qualifier, 59
NOCOND assembler control, 110

402

INDEX INDEX

NOEXPAND assembler control, 111
nojis pragma directive, 81
NOLIST assembler control, 111
non-volatile memory, 68
non-volatile RAM, 58
NOXREF assembler control, 111
numbers

C source, 51
in linker options, 116

nvbit psect, 68
nvram psect, 58, 68

object code, version number, 120
object files, 21

absolute, 120
relocatable, 113
specifying name of, 92
suppressing local symbols, 92
symbol only, 118

OBJTOHEX, 130
command line arguments, 130

offsetting code, 27
Optimizations

assembler, 32
code generator, 32
debugging, 32
global, 32

optimizations
assembler, see assembler optimizer

options
assembler, 90

ORG directive, 103
output

specifying name of, 25
output file, 25
Output file formats

American Automation HEX, 32
Binary, 32
Bytecraft COD, 32

COFF, 32
ELF, 32
Intel HEX, 32
library, 32
Microchip COFF, 32
Motorola S19 HEX, 32
Tektronic, 32
UBROF, 32

output file formats, 120
specifying, 32, 130

overlaid memory areas, 119
overlaid psects, 102
ovrld PSECT flag, 102

pack pragma directive, 81
pad PSECT flag, 102
PAGE assembler control, 111
parameter passing, 63, 73
persist_check function, 208
persist_validate function, 208
persistent keyword, 58
persistent qualifier, 58
persistent variables, 68
pointer

qualifiers, 59
pointers, 59

16bit, 59
32 bit, 59
to functions, 59

pow function, 210
powerup psect, 67
powerup routine, 18, 51
pragma directives, 78

inline, 78
jis, 81
nojis, 81
pack, 81
printf_check, 82
psect, 82

403

INDEX INDEX

regsused, 84
switch, 84

predefined symbols
preprocessor, 78

preprocessing, 25
assembler files, 25

preprocessor
macros, 21
path, 23

preprocessor directives, 78
#asm, 75
#endasm, 75
in assembly files, 92

preprocessor symbols
predefined, 78

printf
format checking, 82

printf function, 211
printf_check pragma directive, 82
processor selection, 27, 109, 122
program sections, 98
psect

bitbss, 68
bss, 36, 49, 68, 114
const, 68
ctext, 68
data, 36, 68, 114
init, 67
mconst, 68
nvbit, 68
nvram, 58, 68
powerup, 67
ramdata, 49
romdata, 49
temp, 68
text, 67
vectors, 68

PSECT directive, 98, 99
PSECT directive flag

limit, 122
PSECT flags

abs, 101
bit, 101
class, 101
delta, 101
global, 101
limit, 101
local, 102
ovrld, 102
pad, 102
pure, 102
reloc, 102
size, 102
space, 102
width, 102
with, 102

psect flags, 99
psect pragma directive, 82
psects, 67, 98, 114

absolute, 101, 102
aligning within, 107
alignment of, 102
basic kinds, 114
class, 117, 122
compiler generated, 67
default, 99
delta value of, 117
differentiating ROM and RAM, 102
linking, 113
listing, 37
local, 114
maximum size of, 102
page boundaries and, 102
renaming, 82
specifying address ranges, 121
specifying addresses, 117, 120
user defined, 82

pseudo-ops

404

INDEX INDEX

assembler, 99
pure PSECT flag, 102
putch function, 87, 214
putchar function, 215
puts function, 217

qsort function, 218
qualifiers, 58

and auto variables, 61
auto, 61
const, 58
far, 59
interrupt, 69
near, 59
persistent, 58
pointer, 59
special, 58
volatile, 58, 93
ydata, 59

quiet mode, 25

radix specifiers
assembly, 94
C source, 51

ramdata psect, 49
rand function, 220
read-only variables, 58
realloc function, 222
redirecting errors, 22
Reference, 116, 124
registers

special function, see special function regis-
ters

regsused pragma directive, 84
relative jump, 95
RELOC, 118, 120
reloc PSECT flag, 102
relocatable

object files, 113

relocation, 113
relocation information

preserving, 120
renaming psects, 82
REPT directive, 107
reserving memory, 34, 35
reset, 51

code executed after, 51
return values, 64
romdata psect, 49
runtime environment, 35
runtime module, 18
runtime startup

variable initialization, 49
vector table initialization, 48

runtime startup code, 47
runtime startup module, 36

scale value, 101
scanf function, 224
search path

header files, 23
segment selector, 118
segments, see psects, 118, 124
serial I/O, 87
serial numbers, 36, 142
SET directive, 104
set directive, 92
setjmp function, 226
SFRs

using in assembler code, 77
shift operations

result of, 66
shifting code, 27
sign extension when shifting, 66
SIGNAT directive, 109
signat directive, 86
signature checking, 86
signatures, 109

405

INDEX INDEX

sin function, 228
sinh function, 165
size PSECT flag, 102
skipping applications, 37
source file

extensions, 42
source files, 42
SPACE assembler control, 111
space PSECT flag, 102
special characters, 93
special function registers

in assembly code, 96
predefined, 77

special type qualifiers, 58
sports cars, 95
sprintf function, 229
sqrt function, 230
srand function, 231
sscanf function, 232
stack, 41, 48
stack pointer, 36, 41
standard type qualifiers, 58
startup module, 18, 36

clearing bss, 114
data copying, 115

static variables, 62
STDIO, 87
storage class, 61
strcat function, 233
strchr function, 234
strcmp function, 236
strcpy function, 238
strcspn function, 239
strdup function, 240
strichr function, 234
stricmp function, 236
string literals, 52, 143

concatenation, 52
strings

assembly, 94
storage location, 52, 143
type of, 52

stristr function, 251
strlen function, 241
strncat function, 242
strncmp function, 244
strncpy function, 246
strnicmp function, 244
strpbrk function, 248
strrchr function, 249
strrichr function, 249
strspn function, 250
strstr function, 251
strtok function, 252
structures

alignment,padding, 81
bit-fields, 56
qualifiers, 57

SUBTITLE assembler control, 111
SUMMARY option

file, 38
hex, 38
mem, 38
psect, 38

switch pragma directive, 84
Symbol files

Avocet format, 123
symbol files, 23, 42

enhanced, 119
generating, 119
local symbols in, 123
old style, 118
removing local symbols from, 26
removing symbols from, 122
source level, 23

symbol tables, 120, 123
sorting, 120

symbols

406

INDEX INDEX

assembler-generated, 95
global, 114, 129
linker defined, 87
undefined, 123

tan function, 254
tanh function, 165
temp psect, 68
text psect, 67
time function, 255
TITLE assembler control, 112
toascii function, 257
tolower function, 257
toupper function, 257
type qualifiers, 58
typographic conventions, 15

unamed structure members, 56
ungetch function, 258
unnamed psect, 99
unsigned integer suffix, 52
unused memory

filling, 137
utilities, 113

va_arg function, 259
va_end function, 259
va_start function, 259
variable argument list, 63
variable initialization, 49
variables

absolute, 62
accessing from assembler, 76, 77
auto, 61
char types, 54
floating point types, 55
int types, 54
local, 61
persistent, 68
static, 62

unique length of, 25
vector table initialization, 48
vectors psect, 68
verbose, 26
version number, 38
volatile qualifier, 58, 93
vprintf function, 211
vscanf function, 224
vsprintf function, 229
vsscanf function, 232

warning level, 38
setting, 123

warning message format, 39
warnings

level displayed, 38
suppressing, 123

width PSECT flag, 102
with PSECT flag, 102
word boundaries, 102

XREF assembler control, 112
xtoi function, 261

ydata keyword, 59
ydata qualifier, 59

407

INDEX INDEX

408

DSPICC Driver Options
Option Meaning

-Bmodel Select memory model
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify -option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--CODEOFFSET Reposition executable code to begin at this address
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--FILL Fill unused program memory with a specified code

sequence.
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MEMMAP=file Display memory summary information for the map

file
continued. . .

DSPICC Driver Options
Option Meaning

--MSGDISABLE Disable warning messages by their message ID num-
ber

--MSGFORMAT Redefine the format of compiler messages
--NODEL Do not remove temporary files generated by the com-

piler
--NOEXEC Go through the motions of compiling without actually

compiling
--OUTDIR Specify output files directory
--OPT<=type> Enable general compiler optimizations
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...>|tag Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SERIAL Insert a serial number at a fixed address in program

memory
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--TIME Display estimates on time taken for each phase of the

build process
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	DSPICC Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	DSPICC Compiler Options
	-Bmodel: Select memory model
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--CODEOFFSET: Offset Program Code to Address
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--ERRFORMAT=format: Define Format for Compiler Messages
	Using the Format Options
	Modifying the Standard Format

	--ERRORS=number: Maximum Number of Errors
	--FILL=opcode: Fill Unused Program Memory
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE being used
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MSGDISABLE=list: Warning messages to disable
	--MSGFORMAT=format: Set Advisory Message Format
	--NODEL: Do not remove temporary files
	--NOEXEC: Don't Execute Compiler
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR: Specify a directory for output files
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SERIAL=hexcode@address: Store a Value at this Program Memory Address
	--SETOPTION=app,file: Set The Command-line Options for Application
	--SETUP=dir: Setup the product
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--TIME: Report time taken for each phase of build process
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	C Language Features
	ANSI Standard Issues
	Implementation-defined behaviour

	Processor-related Features
	Stack
	Configuration Fuses

	Files
	Source Files
	Symbol Files
	Library Files
	Standard Libraries
	Formatted Output Functions
	EEPROM and Flash Functions

	Runtime startup Modules
	Software Stack
	Initialization of Interrupt Vector Tables
	Initialization of Data psects
	Clearing the Bss Psects
	Linking in the C Libraries
	The powerup Routine

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	YData Type Qualifier
	Near and Far Type Qualifier

	Pointer Types
	Data Pointers
	Function Pointers
	Qualifiers and Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	X and Y DATA Variables
	Absolute Variables
	Near Variables
	Far Variables
	Objects in the Program Space

	Functions
	Function Argument Passing
	Function Return Values
	Integral Return Values
	Structure Return Values

	Register Usage
	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Psects
	Compiler-generated Psects

	Interrupt Handling in C
	Interrupt Functions
	Context Saving on Interrupts
	Context Restoration
	Fast Interrupt Functions

	Enabling Interrupts

	Mixing C and Assembler Code
	External Assembly Language Functions
	#asm, #endasm and asm()
	Accessing C objects from within Assembly Code
	Equivalent Assembly Symbols
	Accessing specifal function register names from assembler

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma inline Directive
	The #pragma jis and nojis Directives
	The #pragma pack Directive
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma switch Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Location Counter
	Register Symbols
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DW
	DDW
	DS
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	PROCESSOR
	SIGNAT

	Assembler Controls
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	SPACE
	SUBTITLE
	TITLE
	XREF

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Call Graph Information

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname[,architecture]
	-N
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	+ Prefix
	-CK
	-FILL
	-FIND
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-Ofile
	-SERIAL
	-STRING

	Library Functions
	Error and Warning Messages
	Chip Information
	Index

