TVS Diodes
Transient Voltage Suppressor Diodes

ESD5V0S1U-02V
Uni-directional ESD / Transient Protection Diode

Data Sheet
Revision 1.1, 2012-05-31
Final
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Revision History: Rev. 1.0, 2011-02-21

<table>
<thead>
<tr>
<th>Page or Item</th>
<th>Subjects (major changes since previous revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 1.1, 2012-05-31</td>
<td></td>
</tr>
<tr>
<td>Page 8</td>
<td>Table 3 updated</td>
</tr>
</tbody>
</table>

Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPI™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, HiRF™, ISOFACE™, IsoPACK™, MIPaq™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SMART™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.

Other Trademarks

Last Trademarks Update 2010-10-26
Table of Contents

Table of Contents ... 4

1 Uni-directional ESD / Transient Protection Diode ... 5
 1.1 Features ... 5
 1.2 Application Examples .. 5

2 Product Description ... 5

3 Characteristics ... 6
 3.1 Electrical Characteristics at $T_A=25^\circ$C, unless otherwise specified 6
 3.2 Typical Performance characteristics at $T_A = 25$ °C, unless otherwise specified 8

4 Application Information ... 10

5 Ordering information scheme (examples) .. 11

6 Package Information .. 12
 6.1 SC79 Package .. 12

7 Date Code Marking for SC79 ... 13

References .. 14

Terminology ... 15
1 Uni-directional ESD / Transient Protection Diode

1.1 Features

• ESD / transient protection according to:
 – IEC61000-4-2 (ESD): ±25 kV (air) 20 kV (contact)
 – IEC61000-4-4 (EFT): 50 A / 2.5 kV (5/50 ns)
 – IEC61000-4-5 (surge): 5.5 A / 66 W (8/20 μs)
• Uni-directional, working voltage: $V_{RWM} = 5 \text{ V}$
• Ultra low clamping voltage, protects against both positive and negative ESD strikes
• Ultra low dynamic resistance: R_{DYN} down to 0.2 Ω
• Very fast response time
• Pb-free (RoHS compliant) and halogen free package

1.2 Application Examples

• Notebooks, computers and consumer electronics
• Industrial applications, white goods, portable instrumentation
• Mobile communication

2 Product Description

Table 1 Ordering information

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Configuration</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD5V0S1U-02V</td>
<td>SC79</td>
<td>1 line, uni-directional</td>
<td>U</td>
</tr>
</tbody>
</table>

Figure 1 Pin configuration and schematic diagram
3 Characteristics

Table 2 Maximum Rating at $T_A = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>ESD air discharge1</td>
<td>V_{ESD}</td>
<td>-25</td>
<td>–</td>
</tr>
<tr>
<td>ESD contact discharge1</td>
<td>V_{ESD}</td>
<td>-20</td>
<td>–</td>
</tr>
<tr>
<td>Peak pulse current ($t_p = 8/20 , \mu s$)2</td>
<td>I_{PP}</td>
<td>-5.5</td>
<td>–</td>
</tr>
<tr>
<td>Peak pulse power ($t_p = 8/20 , \mu s$)2</td>
<td>P_{pk}</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{OP}</td>
<td>-55</td>
<td>–</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65</td>
<td>–</td>
</tr>
</tbody>
</table>

1) V_{ESD} according to IEC61000-4-2
2) I_{pp} according to IEC61000-4-5

3.1 Electrical Characteristics at $T_A = 25 \, ^\circ C$, unless otherwise specified

![Diode_Characteristic_Curve_Uni-directional.vsd](image-url)

Figure 2 Definitions of electrical characteristics

Table 3 DC characteristics at $T_A = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse working voltage</td>
<td>V_{RWM}</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>V_{BR}</td>
<td>5.7</td>
<td>6.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Characteristics

Table 4 RF characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode capacitance</td>
<td>C_L</td>
<td>–</td>
<td>35</td>
<td>40 pF $V_R = 0 , \text{V}, f = 1 , \text{MHz}$</td>
</tr>
<tr>
<td>Diode capacitance</td>
<td>C_L</td>
<td>–</td>
<td>20</td>
<td>– pF $V_R = 2.5 , \text{V}, f = 1 , \text{MHz}$</td>
</tr>
</tbody>
</table>

Table 5 ESD characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note / Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage</td>
<td>V_{CL}</td>
<td>–</td>
<td>7.6</td>
<td>– V $I_{pp} = 5 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 1-2$</td>
</tr>
<tr>
<td>Clamping voltage</td>
<td>V_{CL}</td>
<td>–</td>
<td>10.5</td>
<td>– V $I_{pp} = 16 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 1-2$</td>
</tr>
<tr>
<td>Clamping voltage</td>
<td>V_{CL}</td>
<td>–</td>
<td>14.5</td>
<td>– V $I_{pp} = 30 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 1-2$</td>
</tr>
<tr>
<td>Forward clamping</td>
<td>V_{FC}</td>
<td>–</td>
<td>2</td>
<td>– V $I_{pp} = 5 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 2-1$</td>
</tr>
<tr>
<td>Forward clamping</td>
<td>V_{FC}</td>
<td>–</td>
<td>4.3</td>
<td>– V $I_{pp} = 16 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 2-1$</td>
</tr>
<tr>
<td>Forward clamping</td>
<td>V_{FC}</td>
<td>–</td>
<td>7.3</td>
<td>– V $I_{pp} = 30 , \text{A}, t_p = 30 , \text{ns}, \text{pin } 2-1$</td>
</tr>
<tr>
<td>Dynamic resistance</td>
<td>R_{DYN}</td>
<td>–</td>
<td>0.2</td>
<td>– Ω $f_p = 30 , \text{ns}, \text{pin } 1-2$</td>
</tr>
<tr>
<td>Dynamic resistance</td>
<td>R_{DYN}</td>
<td>–</td>
<td>0.3</td>
<td>– Ω $f_p = 30 , \text{ns}, \text{pin } 1-2$</td>
</tr>
</tbody>
</table>

1)According TLP tests. Please refer to Application Note AN-210 [1]
3.2 Typical Performance characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

Figure 3 Capacitance characteristics: $C_L = f(V_R)$ - $f = 1 \, \text{MHz}$

Figure 4 Reverse characteristics: $I_R = f(T_A)$ - $V_R = 3.3 \, \text{V}$
Figure 5 Forward TLP characteristics (Pin 2 to 1)

Figure 6 Reverse TLP characteristics (Pin 1 to 2)
The protection diode should be placed very close to the location where the ESD can occur to keep loops and inductances as small as possible.
5 Ordering information scheme (examples)

Figure 8 Ordering Information Scheme

ESD 0P1 RF - XX YY

- **Package**
 - XX = Pin number (i.e.: 02 = 2 pins; 03 = 3 pins)
 - YY = Package family:
 - LS = TSSLP
 - LRH = TSLP

- For **Radio Frequency** Applications

- **Line Capacitance** C_L in pF: (i.e.: 0P1 = 0.1pF)

ESD 5V3 Un U - XX YY

- **Package or Application**
 - XX = Pin number (i.e.: 02 = 2 pins; 03 = 3 pins)
 - YY = Package family:
 - LS = TSSLP
 - LRH = TSLP
 - S = SOT363
 - U = SC74

- XX = Application family:
 - LC = Low Clamp
 - HDMI

- **Uni- / Bi-directional or Rail to Rail protection**

- **Number of protected lines** (i.e.: 1 = 1 line; 4 = 4 lines)

- **Capacitance**: Standard (>10pF), Low (<10pF), Ultra-low (<1pF)

- **Maximum working voltage** V_{RWM} in V: (i.e.: 5V3 = 5.3V)
6 Package Information

6.1 SC79 Package

Figure 9 SC79: Package outline (dimension in mm)

Figure 10 SC79: Footprint (dimension in mm)

Figure 11 SC79: Packing (dimension in mm)

Figure 12 SC79: Marking (example)
7 Date Code Marking for SC79

one digit (SCD80, SC79, SC75) CES-Code

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>02</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
</tr>
<tr>
<td>03</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
</tr>
<tr>
<td>04</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>05</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
</tr>
<tr>
<td>06</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
</tr>
<tr>
<td>07</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
</tr>
<tr>
<td>08</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>09</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
</tr>
<tr>
<td>11</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 13 Date Code marking for SC79 packages
References

Terminology

CES Character Encoding Scheme
CL Line capacitance
EFT Electrical Fast Transient
ESD Electrostatic Discharge
I_{pp} Peak pulse current
I_{R} Reverse current
RoHs Restriction of Hazardous Substance Directive
T_{A} Ambient Temperature
T_{OP} Operation temperature
T_{p} Pulse duration
T_{stg} Storage temperature
V_{CL} Reverse clamping voltage
V_{ESD} Electrostatic discharge voltage
V_{FC} Forward Clamping Voltage
V_{R} Reverse voltage
V_{RWM} Reverse working voltage maximum
V_{BR} Breakdown voltage
R_{DYN} Dynamic resistance