Encoder Based Low Voltage Servo Drive
Design Platform
Features

- Low cost complete AC servo drive design platform
- IRMCK201 IC for complete servo control
- Simple design with IR2175 current sensing HVIC
- 48V/350W output power with MOSFET inverter
- High bandwidth torque loop response
- Flexible drive configuration (PMAC or induction motor)
- Quadrature encoder interface
- Low cost A/D interface with multiplexer
- ServoDesigner™ tool for easy operation
- RS232C and fast SPI interface (standard)
- Parallel interface for microcontroller expansion or debug port
- Over-current and ground fault protection
- Over-voltage / Under-voltage protection
- Dynamic Braking control with brake MOSFET/FWD
- Discrete I/Os (START, STOP, FAULT, FLTCLR, SYNC, IFBCAL, PWMACTIVE)
- Configuration data retention at power up/down

Product Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current loop bandwidth (-3dB)</td>
<td>5 kHz (typ)</td>
</tr>
<tr>
<td>Speed loop bandwidth (adjustable)</td>
<td>400 Hz (typ)</td>
</tr>
<tr>
<td>PWM carrier frequency</td>
<td>70 kHz max</td>
</tr>
<tr>
<td>Hardware current loop execution time</td>
<td>6 µsec</td>
</tr>
<tr>
<td>Enhanced low speed regulation by 1/T algorithm</td>
<td></td>
</tr>
<tr>
<td>Continuous output current</td>
<td>6 Arms @20KHz PWM</td>
</tr>
<tr>
<td>Overload output current</td>
<td>18 Arms (3 secs)</td>
</tr>
<tr>
<td>Max SPI comm. speed</td>
<td>6 MHz</td>
</tr>
<tr>
<td>Slave SPI configuration</td>
<td></td>
</tr>
<tr>
<td>Max RS232C speed</td>
<td>57.6 kbps</td>
</tr>
<tr>
<td>Input dc voltage range</td>
<td>22 to 50 V (typical)</td>
</tr>
</tbody>
</table>

Description

IRMCS2013 is a complete servo drive design platform for low voltage AC servo drive applications up to 350W. The system contains the latest advanced motion control IC, IRMCK201, and the ServoDesigner™ software. The complete B/Ms and schematics are provided so that the user can adapt and tailor the design per application needs. The system does not require any software code development due to unique Motion Control Engine implemented in the IRMCK201 IC. User can readily evaluate high performance servo control without spending development effort usually required in the traditional DSP or microcontroller based system. IRMCS2013 contains advanced iMOTION™ chipset such as IR2175 monolithic current sensing ICs and IR2106 gate drive ICs, which enable simple and cost effective motion control design.
Table of Contents

1. Overview ... 4
2. Getting Started ... 5
 2.1 Safety Precautions ... 5
 2.2 Unpacking and Inspecting ... 6
3. Preparing the Motor .. 7
 3.1 Readily Drivable Motor List .. 7
 3.2 Assembling Encoder Connector ... 7
 3.3 Motor Power Cable .. 7
 3.4 Assembling Serial Connector ... 7
4. Hardware Installation .. 8
 4.1 Safety Precautions ... 8
 4.2 Input Power Wiring .. 9
 4.3 Motor Wiring .. 9
 4.4 Encoder Connection ... 10
 4.5 RS232 Connection .. 10
5. Software Installation .. 11
 5.1 Installing from the CD .. 11
 5.2 ServoDesigner Startup .. 11
 Step 1. RS232 Connection ... 11
 Step 2. Numeric Format ... 11
6. Running the System .. 13
 6.1 Power-On ... 13
 6.2 Running motor with ServoDesigner ... 13
 Step 1. Opening the Configuration File ... 13
 Step 2. Checking Communication Status ... 13
 Step 3. Motor Configuration ... 14
 Step 4. Starting Angle .. 14
 Step 5. Running the Motor .. 14
 Step 6. Reference Speed ... 14
 Step 7. Drive Status .. 15
7. Motion Control Engine ... 16
 7.1 Motion Control Engine (MCE) Based Complete Servo Control 16
8. New Motor Adaptation .. 17
9. Appendix ... 19
 9.1 External I/O .. 19
 9.2 RS232C Connector ... 19
 9.3 Parallel Interface Port ... 20
 9.4 SPI Port ... 23
10. Specifications .. 24

This document is the property of International Rectifier and may not be copied or distributed without expressed consent.
List of Figures

Figure 1. IRMCS2013 System Block Diagram... 4
Figure 2. Encoder Interface Connector, J3 ... 7
Figure 3. Location of Power Connector, J2 .. 9
Figure 4. Location of Motor Wiring Connection, J12 ... 9
Figure 5. Location of Encoder Connector, J3 ... 10
Figure 6. Location of RS232 Connector, J4 ... 10
Figure 7. The Connection Dialog .. 11
Figure 8. The Numeric Display Format Dialog ... 12
Figure 9. Open a Configuration File .. 13
Figure 10. Communication Status Indicator .. 14
Figure 11. Setup for Reference Speed Function .. 15
Figure 12. IRMCK201 Based Complete Servo Control .. 16
Figure 13. EXCEL Spreadsheet Inputs ... 18
Figure 14. External I/O Connector, J6 .. 19
Figure 15. RS232C Connector, J4 .. 19
Figure 16. Parallel Interface Port, J7 ... 20
Figure 17. Host Parallel Read Cycle Timing ... 21
Figure 18. Host Parallel Write Cycle Timing ... 22
Figure 19. SPI Timing .. 23

List of Tables

Table 1. Serial Cable Connections .. 7
Table 2. Motor Connections ... 9
Table 3. Microprocessor Interface Module Signal Definitions 20
Table 4. Host Parallel Read Cycle Timing .. 21
Table 5. Host Parallel Write Cycle Timing ... 22
Table 6. SPI Timing .. 23
Table 7. IRMCS2013 Electrical Specification ... 24
1. Overview

The IRMCS2013 is a low voltage design platform for a complete servo drive system based on IRMCK201 IC. The system is based on configurable Motion Control Engine implemented by hardware logics in the IRMCK201. The system has a simple and low cost yet very flexible structure, made possible by advanced IR motion components including the IR2106 gate drive high voltage IC, and IR2175 monolithic current sensing high voltage IC. These components together with IRMCK201 IC simplify hardware construction, and perform complete servo amplifier functions. Figure 1 shows the IRMCS2013 system block diagram. Since all control logic is implemented in hardware logic as opposed to software program, unmatched parallel computation is achieved resulting in high bandwidth torque control.

Despite the fact that technology is based on hardware logic implementation, its design flexibility allows the user to configure different types of motors, position feedback devices, and communication protocols. The system also allows feedforward control in addition to existing PI control.

Design cycle time can be greatly shortened. Unlike a traditional DSP or microcontroller, the architecture is based on configurable register interface and does not require any programming to complete customization for specific application needs. The user only has to configure the drive using ServoDesigner™ interactive design tool and it takes just a matter of hours instead of months and years.

Once the user become satisfied with function and performance, he can generate his own design using IRMCS2013 schematics and B/Ms.

Figure 1. IRMCS2013 System Block Diagram
2. Getting Started

2.1 Safety Precautions
In addition to the precautions listed throughout this manual, you must read and understand the following statements regarding hazards associated with AC servo development system.

ATTENTION: Some ground potential of the IRMCS2013 system may be kept high voltage potential while power is on. When measuring voltage waveform by oscilloscope, the scope ground needs to be isolated. Failure to do so may result in personal injury or death. Darkened display LED is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: The IRMCS2013 system contains high voltage capacitors which take time to discharge after removal of main supply. Before working on drive system, ensure isolation of mains supply from line inputs. Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LED is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: Only personnel familiar with the drive and associated machinery should plan or implement the installation, start-up, and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: The surface temperatures of the drive may become hot, which may cause injury.
ATTENTION: The IRMCS2013 system contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference applicable ESD protection handbook and guideline.

ATTENTION: An incorrectly applied or installed drive can result in component damage or reduction in product life. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

2.2 Unpacking and Inspecting
The IRMCS2013 system is shipped with packing materials that need to be removed prior to installation.

ATTENTION: Failure to remove all debris and packing materials, which are unnecessary for system installation, may result in overheating or abnormal operating condition.

After unpacking, check the items. The following hardware pieces are contained in the IRMCS2013 system.

- IRMCS2013 board with integrated heat sink
- Serial RS232C cable with 9-pin D-sub connectors for ServoDesigner™ development tool
- Installation CD

Before you install and start up the system, check if there is any damaged component. In that case, stop proceeding and contact our technical support.
3. Preparing the Motor

3.1 Readily Drivable Motor List
If the motor is one of the following, it can be run immediately without commissioning.

- Sanyo Denki 70W 8-pole servo motor with 2000-pulse encoder (P50B05007AXS7Z)
- Glentek 160W 4-pole servo motor with 2000-pulse encoder (GMB2005-8-N-02121109)

If any other motor is used, adaptation and re-configuration is required, which can be accomplished by using the ServoDesigner™ tool and the “IRMCx201-DriveParams.xls” file

3.2 Assembling Encoder Connector
Prepare the connector assembly to the encoder cables.

- Assemble 14-pin male connector (Digikey part number WM18046-ND), referring to Figure 2.
- Make sure that the encoder is a 5V type. If it is not a 5V type, proper modification is required.

For permanent magnet motors:
- Eleven pins are used: A+ (pin 2), A- (pin 3), B+ (pin 4), B- (pin 5), Z+ (pin 6), Z- (pin 7), HALL_A (pin 10), HALL_B (pin 11), HALL_C (pin 12), 5V (pin 1 or pin 9) and GND (pin 8 or pin 14).
- If hall sensors have differential output, connect only positive sides and leave negative sides open.

For induction motors:
- Only six pins are used because z-pulse is not necessary for an induction machine. The six pins are: A+ (pin 2), A- (pin 3), B+ (pin 4), B- (pin 5), 5V (pin 1 or pin 9) and GND (pin 8 or pin 14).
- Disable Z pulse by connecting Z+ to GND and Z- to 5V.

3.3 Motor Power Cable
If necessary, prepare the motor power cable. Proper size and length of cable should be used.

3.4 Assembling Serial Connector
Prepare the connector assembly. One side is female D-sub 9 connector and the other side is 3-pin receptacle (Digikey part number A19491-ND). Connect two connectors as shown in Table 1.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Female D-sub 9</th>
<th>3-pin receptacle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>Pin 2</td>
<td>Pin 1</td>
</tr>
<tr>
<td>Rx</td>
<td>Pin 3</td>
<td>Pin 2</td>
</tr>
<tr>
<td>GND</td>
<td>Pin 5</td>
<td>Pin 3</td>
</tr>
</tbody>
</table>

Table 1. Serial Cable Connections

Figure 2. Encoder Interface Connector, J3

Sanyo Denki’s encoder cable wire:
A+ = Blue, A- = Brown
B+ = Green, B- = Purple
Z+ = White, Z- = Yellow
5V = Red, VSS (GND) = Black
This is a wire-saving type encoder. Hall signals are multiplexed with encoder A, B and Z
4. Hardware Installation

4.1 Safety Precautions

ATTENTION: Remove and lock out power from the drive before you disconnect or reconnect wires or perform service. Wait three minutes after removing power to discharge the bus voltage. Do not attempt to service the drive until bus voltage has discharged to zero. Failure to do so may result in bodily injury or death.

ATTENTION: The drive is intended to be commanded by control input that will start and stop the motor. A device that routinely disconnects then reapplies input power to the drive for the purpose of starting and stopping the motor should not be used. Failure to follow this guideline may result in damage of equipment, and/or bodily injury or death.

ATTENTION: Do not connect power factor correction capacitors to drive output terminals U, V, and W. Failure to do so may result in equipment damage or bodily injury.
4.2 Input Power Wiring
Connect DC 48V power to J2 (2-pin, green) as shown in Figure 3. Please pay attention to the polarity. Connecting backward may cause damage to the board.

![Figure 3. Location of Power Connector, J2](image)

Proper size and length of cable should be used.

4.3 Motor Wiring
Connect motor power wires to J12 (3-pin, green) of IRMCS2013 board as shown in Figure 4.

![Figure 4. Location of Motor Wiring Connection, J12](image)

For Sanyo Denki (P50B05007AXS7Z) or Glentek (GMB2005-8-N-02121109), the colored wires should be connected to the associated pins of the IRMCS2013 board as shown in Table 2.

<table>
<thead>
<tr>
<th>Sanyo Denki’s motor cable wire</th>
<th>Glentek motor cable wire</th>
<th>J12 pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>RED (pin A)</td>
<td>U</td>
</tr>
<tr>
<td>WHITE</td>
<td>BLUE (pin C)</td>
<td>V</td>
</tr>
<tr>
<td>BLACK</td>
<td>BLACK (pin B)</td>
<td>W</td>
</tr>
<tr>
<td>GREEN/YELLOW</td>
<td>GREEN (pin D)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Table 2. Motor Connections
4.4 Encoder Connection
Plug the encoder connector into J3 as shown in Figure 5. Make sure that encoder signals are connected properly. Incorrect connection of encoder signals will result in improper rotor position and/or nuisance faults.

4.5 RS232 Connection
Connect the serial cable between the computer COM port and the connector assembly made as described in chapter 3.4. Connect the other side to J4 as shown in Figure 6. If there is more than one COM port, please remember which one you are using. Make sure that the cable is connected properly. Incorrect connection of the serial cable will result in communication errors and/or incorrect communication.
5. Software Installation

5.1 Installing from the CD
The distributed CD contains all necessary documents and software files. Load the CD into the CD-ROM drive on your PC and double-click “IRMCS2013.exe”. It will ask you for a password, which is in the file “iMOTION Install IRMCS2013.pdf”. After you enter the password, an automated procedure will install all necessary software on your PC. The default location for the installation is “C:\Program Files\iMOTION”.

5.2 ServoDesigner Startup
You should follow the instructions in this section the first time you use ServoDesigner to verify your installation and test the reference design. These “quick start” instructions assume that you’re using one of the supported motors listed in section 3.1. If not, you’ll need to enter motor configuration parameters before you can begin testing. Refer to “ServoDesigner User’s Guide” and “IRMCK201 Application Developer’s Guide” for more information.

Step 1. RS232 Connection
ServoDesigner communicates with the IRMCS2013 using a COM port on your PC. Before you start the application, you should attach an RS232 cable to the DB9 connector on the reference platform and connect it to an available COM port on your PC.

The first time you start ServoDesigner, a Connection dialog (shown in Figure 7) appears and presents you with a list of available COM ports on your system. Select the COM port to which you have connected the RS232 cable.

![Figure 7. The Connection Dialog](image)

The Connection dialog also allows you to enable and disable product ID and version checking and status polling. You should have “Product ID and version checking” disabled and “Status polling” enabled!

When you click OK in the Connection dialog, your selections are saved so they can be used next time you start the application. (The dialog won’t appear on startup again.) If you want to change your selections later on, you can access the Connection dialog through the Preferences menu.

The currently configured COM port is shown on the status bar at the bottom of ServoDesigner’s main display.

Step 2. Numeric Format
The first time you start ServoDesigner, the Numeric Display Format dialog appears, as shown in Figure 8. This dialog allows you to select either decimal or hexadecimal format for numeric display. Click the blue button to switch between hexadecimal and decimal. When you click OK, your setting is saved so it can be used next time you run ServoDesigner. (The dialog won’t appear on startup again.) If you want to change the setting later on, you can access the Numeric Display Format dialog through the Preferences menu.
Figure 8. The Numeric Display Format Dialog

Note: Regardless of which display option you choose, you can always enter values in decimal or hexadecimal. ServoDesigner interprets a value you enter as hexadecimal if it begins with “0x” (0x222), and otherwise as decimal (222).
6. Running the System

6.1 Power-On
Apply DC 48V power to the system. Immediately after power-on, the red LED (surface mount LED D17 located close to the IRMCK201) will lit on/off indicating the on-board DC bus has been established.

6.2 Running motor with ServoDesigner

Step 1. Opening the Configuration File
You need to open a configuration file. The configuration file contains the register, functional and monitor definitions that make up ServoDesigner’s tree view. To start, you should open one of the default files that are shipped with the release. Later, when you’ve modified the register values, function definitions and/or tunable parameters, you’ll want to save your custom configuration in another file.

A default configuration file for each supported motor is shipped with the release. The file names include the part number of your product and the part number of the motor, with the file extension “.irc”. For example, one of the configuration files for the IRMCS2013 product is named “IRMCS2013-P50B05007AXS7Z”. The files are located in the \iMOTION\ServoDesigner directory. To open a configuration file, select Open from the File menu or click the toolbar button that shows an open folder. Browse for the file you want and click OK. An example is shown in Figure 9.

Figure 9. Open a Configuration File

Note: Configuration files are saved in text format, but you should not edit the files manually. If you need to make changes to a configuration file, open the file in ServoDesigner, make the changes as described later in this document, and then save the changes by selecting Save or Save As… from the File menu.

Step 2. Checking Communication Status
Until you open a configuration file, the COM port status at the bottom of ServoDesigner’s main display shows “Inactive”. When you open a file, ServoDesigner attempts to establish contact with the IRMCS2013 by executing a read operation. If ServoDesigner receives a reply to its request, the COM port status shows “Up.” If no reply is received, the status changes to “Down.” A “Down” status usually means the reference platform is not powered on, the RS232 cable is not connected, or the cable is connected to the wrong COM port. Figure 10 shows how communication status should appear before you continue your testing.
Step 3. Motor Configuration
The Configure Motor function is one of the pre-defined operations in ServoDesigner’s Function Definitions section. This function initializes the host registers for normal operation. If you click the Configure Motor entry in the tree view, a list of the registers that are written when this operation is executed is displayed in the right pane of the main window. The “Value to Write” column shows the value that will be written to each register. You can click the “+” symbol to the left of the Configure Motor function to access detailed information about each of the registers.

To execute the Configure Motor function, click the Configure Motor toolbar button (the icon shows a hammer and wrench) or double-click on the Configure Motor entry in the tree view. Once this function is executed correctly, the LED will turn to blinking green.

Step 4. Starting Angle
For induction motor operation, skip this step. This function reads the Hall A, B, C inputs and uses the motor magnet position data read from your configuration file to determine the starting position of the motor. (See “ServoDesigner User’s Guide” for more information about motor configuration parameters.)

To execute the function, click the Starting Angle toolbar button (the icon shows the characters “ABC”) or double-click the Starting Angle entry in the tree view.

Step 5. Running the Motor
Start Motor and Stop Motor functions are also pre-defined Function Definitions.

To start the motor, click the Start Motor toolbar button (the green traffic signal) or double-click the Start Motor entry in the tree view.

To stop the motor, click the Stop Motor toolbar button (the red traffic signal) or double-click the Stop Motor entry in the tree view.

When the motor is running, the far right hand status bar pane should show drive status “Run” with a green indicator. When the motor is stopped, the drive status should be “Stop” with a yellow indicator. If a drive fault occurs, the status changes to “Fault” with a red indicator. The status is “Inactive” (blue indicator) when the COM port status is “Down” or “Inactive.”

Step 6. Reference Speed
ServoDesigner provides a special built-in function that allows you to easily control the motor’s reference speed and direction. To modify the settings, see Figure 11. First, locate the Reference Speed entry in the Function Definitions section of the tree view. Right-click on the entry and select Properties. In the Properties dialog, you can enter the desired speed in RPM and the direction (forward or reverse). In the dialog, you can also specify the host register to which the speed/direction setting is written. You should not modify this setting unless you redefine the host register map.
After entering a speed and selecting forward or reverse, click OK in the dialog and then double-click the Reference Speed entry in the tree view to execute the operation. ServoDesigner calculates the appropriate value to be written the host register (based on your specified speed and direction) and performs the write operation.

Figure 11. Setup for Reference Speed Function

Step 7. Drive Status

The Info button on the toolbar (letter “i”) executes the pre-defined Drive Status function, which reads a group of host registers associated with the function.

To get drive status, click the Info button or double-click the Drive Status entry in the tree view. After you’ve executed the function, click on Drive Status in the tree view (if it’s not already selected). In the right pane of the main window, the values read from the Drive Status registers are shown in the Current Value column.
7. Motion Control Engine

7.1 Motion Control Engine (MCE) Based Complete Servo Control

Figure 12 shows the detailed algorithm block diagram including various parameters which can be configured through the host register interface.

Closed loop current and velocity control are implemented in the IRMCK201 IC on the IRMCS2013 board. The closed loop current control algorithm is based on a synchronously rotating frame. The velocity control is available as an outer loop control of the current control and can be disabled in order to configure torque control mode. Additional configuration allows feedforward control, selection of the position feedback devices, induction machine vector control, and selection of communication protocol.

Figure 12. IRMCK201 Based Complete Servo Control
8. New Motor Adaptation

New motor can be configured by simple EXCEL spreadsheet. EXCEL spreadsheet template is provided in the shipment with the filename “IRMCx201-DriveParams.xls”.

This spreadsheet facilitates configuration of parameters which need to go into each host registers inside of the IRMCK201 IC. The spreadsheet calculates current feedback/speed feedback scaling, Proportional plus Integral (PI) gains of current and speed regulators, PWM carrier frequency, deadtime, etc, based on simple motor nameplate and published data input. The output of this spreadsheet is text file containing one-to-one corresponding each registers’ values. User can use the ServoDesigner™ to read this output into the associated registers.

For detailed operation, please refer to “3.1 Drive Parameter Setup” in IRMCK201 Application Developer’s Guide.

Motor Selection:
(Please type the number here!)

P30B06040DXS00M
password: 201

"=================== Motor Information ===================="

(RPM) Rated Speed 3000rpm

(Lq) L_phase 0.00644H (line to line Inductance) / 2
(R_Stator) R_phase 1.4ohms/ph (line to line Resistor) / 2
(Amps) Rated Amps 2.7Arms
(NLC)No Load Current 0Arms (necessary for IM)
(Jm) Inertia of Motor 2.55E-05Kg-m2
(Kt) Torque Constant 0.533N-m/Arms
(Ke) Voltage Constant 18.6V ln-rms/krpm voltage is line to neutral rms
Poles 8
(PPR) Encoder PPR 2000pulse/revolution
Wire-Saving Encoder? TRUE(TRUE / FALSE)

"==================== Application Information ===================="

"------------------------------ General -----------------------------"
Max RPM 4500rpm
(Vdc_Nom) Nominal Vdc 310Volts
(OvLoad) Max pu motor current at rated speed 3pu

"------------------- Speed Regulator Tuning -------------------"
Speed Regulator BW 200rad/sec
Positive Speed Rate limit 1000rpm/sec
Negative Speed Rate limit 1000sec to rate speed
Inertia of Load (measured) 0Kg-m2
SpdLpRate 21 SpdLoop per this # of CurLoop

"------------------- Current Limits -------------------"
Motoring Limit 200%
Regen Limit 200%
"-------- Inverter Switching Frequency --------"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fc) Pwm carrier freq</td>
<td>10KHz</td>
</tr>
<tr>
<td>Dead_Time</td>
<td>0.5usec</td>
</tr>
</tbody>
</table>

"-------- Current Regulator Tuning --------"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ireg_BW) Current Reg BW</td>
<td>2500rad/sec</td>
</tr>
</tbody>
</table>

"---------- Advance Information (Platform fixed) ----------"

Note: Below values are fixed for IRMCS2013 platform however can be changed for other platform

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Clk) IRMCK201 clock freq</td>
<td>33.333MHz</td>
</tr>
<tr>
<td>DC Bus Scaling (Vdc_Scl)</td>
<td>8.1875cts/Volt</td>
</tr>
<tr>
<td>I_Torque (I_Trq_Rated)</td>
<td>4095cts for rated Amps</td>
</tr>
<tr>
<td>(Mod_Pk) - U_Alpha U_Beta max linear modulation</td>
<td>2355Cts</td>
</tr>
</tbody>
</table>

"------- Desired Speed feedback Scaling -------"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Spd_Scale)</td>
<td>16384cts/(Max RPM)</td>
</tr>
</tbody>
</table>

"-------- Current Feedback Scaling --------"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Shunt Resistor</td>
<td>10mOhm</td>
</tr>
<tr>
<td>Max H/W Current</td>
<td>26Apeak</td>
</tr>
</tbody>
</table>

"-------------- Commutation Information ---------------"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Z-pulse (based on UV line to line voltage)</td>
<td>272degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 001</td>
<td>120degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 010</td>
<td>240degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 011</td>
<td>180degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 100</td>
<td>0degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 101</td>
<td>60degree</td>
</tr>
<tr>
<td>Mid Angle when Hall CBA is 110</td>
<td>300degree</td>
</tr>
</tbody>
</table>

Figure 13. EXCEL Spreadsheet Inputs
9. Appendix

9.1 External I/O
Connect External I/O Connector (J7) as needed. All inputs are 5V tolerant and high true logic.

![Diagram of External I/O Connector, J6]

Pin definition
- Pin 1: Analog input (+/-10V)
- Pin 2: Analog GND
- Pin 3: Digital GND
- Pin 4: FAULT status output (3.3V when FAULT)
- Pin 5: SYNC status output (3usec width of active low pulse at every carrier frequency period)
- Pin 6: PWMACTIVE output (3.3V when PWM active)
- Pin 7: +5V
- Pin 8: START input (high to activate)
- Pin 9: STOP input (high to activate)
- Pin 10: Ifb offset calibration input (high to activate)
- Pin 11: Fault Clear input (high to activate)
- Pin 12: Digital GND

Figure 14. External I/O Connector, J6

9.2 RS232C Connector
IRMCS2013 has two serial RS232C connectors on the board. J4 is for IRMCK201 and J5 is for Microchip IC (U19). Adaptation from D-sub 9 pin standard PC female connector to AMP 3 pin connector are required to be directly connectable to PC serial port. As shown in Figure 15, pin 1 is send-signal and pin 2 is receive-signal, and both are 10V signal level. The baud rate is fixed at 57.6 kbps. The signal format is 8 bits, no parity, 1 stop bit.

![Diagram of RS232C Connector, J4]

Figure 15. RS232C Connector, J4
9.3 Parallel Interface Port
IRMCS2013 provides an 8-bit parallel interface port to facilitate microprocessor interface. The interface is generic and compatible with most common 8-bit parallel interfaces such as MCS8051, some Motorola 8-bit uP, MicroChip, etc. Figure 16 shows the connection diagram. The connector J7 is a 2-by-8 connector.

![Figure 16. Parallel Interface Port, J7](image)

Each signal is 3.3V level and data bus is multiplexed. Table 3 summarizes each signal definition.

<table>
<thead>
<tr>
<th>Signal</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP_nCS</td>
<td>I</td>
<td>Active low Host Port Chip Select</td>
</tr>
<tr>
<td>HP_nOE</td>
<td>I</td>
<td>Active Low Host Port Output Enable</td>
</tr>
<tr>
<td>HP_nWE</td>
<td>I</td>
<td>Active low Host Port Write Enable</td>
</tr>
<tr>
<td>HP_A</td>
<td>I/O</td>
<td>Host Port Register Address. 1 = Address register, 0 = Data Register</td>
</tr>
<tr>
<td>HP_Dn</td>
<td>I/O</td>
<td>Bidirectional Host Port data bus, where n = data bit 0 - 7</td>
</tr>
</tbody>
</table>

Table 3. Microprocessor Interface Module Signal Definitions

Figure 17 and Table 4 show read cycle timing for the host parallel interface. Figure 18 and Table 5 show write cycle timing.
Figure 17. Host Parallel Read Cycle Timing

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT S</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{HPCSN})</td>
<td>HP_nCS Period</td>
<td>70</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{HPWENS})</td>
<td>HP_nWE Setup</td>
<td>10</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{HPAS})</td>
<td>HP_A Setup</td>
<td>10</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{AHD})</td>
<td>HP_D[7:0] Access</td>
<td>60</td>
<td>105</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{HPZD})</td>
<td>HP_D[7:0] Active</td>
<td>0</td>
<td>9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{HPDZ})</td>
<td>HP_D[7:0] High Impedance</td>
<td>0</td>
<td>6</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t(_{HPOENH})</td>
<td>HP_nOE Hold</td>
<td>10</td>
<td></td>
<td>ns</td>
<td>Note 3</td>
</tr>
<tr>
<td>t(_{HPOENS})</td>
<td>HP_nOE Setup</td>
<td>10</td>
<td></td>
<td>ns</td>
<td>Note 3</td>
</tr>
<tr>
<td>t(_{HPOEN})</td>
<td>HP_nOE Period</td>
<td>70</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Host Parallel Read Cycle Timing

Note3 : HP_nOE must be stable before and after the high to low transition of HP_nCS.
Table 5. Host Parallel Write Cycle Timing

Note 4: HP_nOE must be asserted high while HP_nCS low during a Host Parallel Write Cycle.

Reference Design
IRMCS2013
9.4 SPI Port

IRMCS2013 provides an SPI port to facilitate microprocessor interface. It works only as a slave. The connector, J10, is a 1-by-6 header connector.

![SPI Timing Diagram](image)

Figure 19. SPI Timing

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>MIN</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SCLK}</td>
<td>ADC Clock Frequency</td>
<td>8</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>t_{SCLK}</td>
<td>ADC Clock Period</td>
<td>125</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{CSS}</td>
<td>CS to SCLK high Setup</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MOSIS}</td>
<td>MOSI to SCLK low Setup</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MISO}</td>
<td>SCLK to MISO Valid</td>
<td>72</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{MIOZ}</td>
<td>CS to MISO High Impedance</td>
<td>15</td>
<td>35</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 6. SPI Timing
10. Specifications

Tc=25°C unless specified

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>22 to 50V</td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>6.1A rms @nominal output</td>
<td>TA=40°C, RthSA=1.0 °C/W</td>
</tr>
<tr>
<td>Input line impedance</td>
<td>4%–8% recommended</td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watt</td>
<td>350W continuous power</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>6.0 Arms nominal, 18 Arms Overload</td>
<td>Vin=48V DC, fPWM=20kHz, f0=60Hz, TA=40°C, RthSA=1.0 °C/W</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Values</td>
<td>Conditions</td>
</tr>
<tr>
<td>Voltage</td>
<td>22 to 50V</td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>6.1A rms @nominal output</td>
<td>TA=40°C, RthSA=1.0 °C/W</td>
</tr>
<tr>
<td>Input line impedance</td>
<td>4%–8% recommended</td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watt</td>
<td>350W continuous power</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current (Parallel Port)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP_nCS, HP_nOE, HP_nWE, HP_A, HP_DATA[8]</td>
<td>3.3V</td>
<td></td>
</tr>
<tr>
<td>D/A</td>
<td>8 bit 4 Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-3.3V output</td>
<td></td>
</tr>
<tr>
<td>A/D</td>
<td>12 bit 2 channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10V for reference input, 5V for DC bus input</td>
<td>5V tolerant, Isolated, Active High logic</td>
</tr>
<tr>
<td>Discrete I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>4 bit, START, STOP, FLTCLR, IFBCAL</td>
<td>133 MHz internal IRMCK201 clock</td>
</tr>
<tr>
<td>Output</td>
<td>3 bit, PWMACTIVE, FAULT, SYNC</td>
<td></td>
</tr>
<tr>
<td>Current feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current sensing device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bit (7.5 nanoseconds counting resolution)</td>
<td>All differential signals are converted to single ended signals including index pulse</td>
</tr>
<tr>
<td>Latency</td>
<td>8.3 usec</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current trip level</td>
<td>28A peak, ±10%</td>
<td></td>
</tr>
<tr>
<td>Ground fault trip level</td>
<td>28A peak, ±10%</td>
<td></td>
</tr>
<tr>
<td>Over-voltage trip level</td>
<td>63.3V</td>
<td></td>
</tr>
<tr>
<td>Under-voltage trip level</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>Dynamic Brake voltage</td>
<td>DB turn-on voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58.7V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DB turn-off voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55.6V</td>
<td></td>
</tr>
<tr>
<td>Encoder Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incremental encoder</td>
<td>Maximum 2 MHz</td>
<td></td>
</tr>
<tr>
<td>Hall A/B/C initialization</td>
<td>Programmable wire saving/dedicated A/B/C</td>
<td>Bootstrap power supply for high side circuit</td>
</tr>
<tr>
<td>Power Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRFB59N10D + IR2106</td>
<td>6 MOSFETs + 3 gate drivers</td>
<td></td>
</tr>
<tr>
<td>System environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>0 to 40°C</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. IRMCS2013 Electrical Specification