Current Transducer CKSR 75-NP

$I_{PN} = 75$ A

Ref: CKSR 75-NP

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) multi-range current transducer
- Voltage output
- Single supply
- Compact design for PCB mounting.

Special feature

- Dedicated 5 primary conductors configuration.

Advantages

- Very low temperature coefficient of offset
- Very good $dv/dt$ immunity
- Reduced height
- Reference pin with two modes: Ref IN and Ref OUT
- Extended measuring range for unipolar measurement.

Applications

- AC variable speed and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Solar inverters.

Standards

- IEC 60950-1: 2006
- IEC 61010-1: 2010
- IEC 61326-1: 2012

Application Domain

- Industrial.
Absolute maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supply voltage</td>
<td>$U_{C\ max}$</td>
<td>V</td>
<td>7</td>
</tr>
<tr>
<td>Maximum primary conductor temperature</td>
<td>$T_{B\ max}$</td>
<td>°C</td>
<td>110</td>
</tr>
<tr>
<td>Maximum primary current</td>
<td>$I_{P\ max}$</td>
<td>A</td>
<td>$20 \times I_{P\ N}$</td>
</tr>
<tr>
<td>Maximum ESD rating, Human Body Model (HBM)</td>
<td>$U_{ESD\ max}$</td>
<td>kV</td>
<td>4</td>
</tr>
</tbody>
</table>

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 1

Standards

- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT - Edition 11
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT - Edition 17

Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary involved potential</td>
<td>$V_{AC/DC}$</td>
<td>V</td>
<td>1000</td>
</tr>
<tr>
<td>Max surrounding air temperature</td>
<td>$T_A$</td>
<td>°C</td>
<td>105</td>
</tr>
<tr>
<td>Primary current</td>
<td>$I_P$</td>
<td>A</td>
<td>75</td>
</tr>
<tr>
<td>Secondary supply voltage</td>
<td>$U_C$</td>
<td>V DC</td>
<td>5</td>
</tr>
<tr>
<td>Output voltage</td>
<td>$U_{out}$</td>
<td>V</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Conditions of acceptability

When installed in the end-use equipment, consideration shall be given to the following:

1 - These devices must be mounted in a suitable end-use enclosure.

4 - CKSR series intended to be mounted on the printed circuit wiring board of the end-use equipment (with a minimum CTI of 100).

5 - CKSR series shall be used in a pollution degree 2.

8 - Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).

11 - CKSR series: based on results of temperature tests, in the end-use application, a maximum of 100 °C cannot be exceeded at soldering joint between primary coil pin and soldering point (corrected to the appropriate evaluated max. surrounding air).

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL’s Follow-Up Service. Always look for the Mark on the product.
## Insulation coordination

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS voltage for AC insulation test, 50 Hz, 1 min</td>
<td>$U_d$</td>
<td>kV</td>
<td>4.1</td>
<td>According to UL 94</td>
</tr>
<tr>
<td>Impulse withstand voltage 1.2/50 µs</td>
<td>$U_{ik}$</td>
<td>kV</td>
<td>7.5</td>
<td>According to UL 94</td>
</tr>
<tr>
<td>Partial discharge extinction RMS voltage @ 10 pC</td>
<td>$U_e$</td>
<td>V</td>
<td>1000</td>
<td>According to UL 94</td>
</tr>
<tr>
<td>Clearance (pri. - sec.)</td>
<td>$d_{CI}$</td>
<td>mm</td>
<td>7.5</td>
<td>Shortest internal distance through air ¹)</td>
</tr>
<tr>
<td>Creepage distance (pri. - sec.)</td>
<td>$d_{CP}$</td>
<td>mm</td>
<td>7.5</td>
<td>Shortest internal path along device body ¹)</td>
</tr>
<tr>
<td>Clearance (pri. - sec.)</td>
<td>$d_{CI}$</td>
<td>mm</td>
<td>6.1</td>
<td>When mounted on PCB with recommended layout</td>
</tr>
<tr>
<td>Creepage distance (pri. - sec.)</td>
<td>$d_{CP}$</td>
<td>mm</td>
<td>6.1</td>
<td>When mounted on PCB with recommended layout</td>
</tr>
<tr>
<td>Case material</td>
<td>-</td>
<td>V0</td>
<td></td>
<td>According to UL 94</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Application example RMS voltage line-to-neutral</td>
<td>-</td>
<td>V</td>
<td>300</td>
<td>Reinforced insulation, according to IEC 61010-1 CAT III PD2</td>
</tr>
<tr>
<td>Application example RMS voltage line-to-neutral</td>
<td>-</td>
<td>V</td>
<td>600</td>
<td>Basic insulation, according to IEC 61010-1 CAT III PD2</td>
</tr>
</tbody>
</table>

**Note:** ¹) Inside device enclosure providing protection IP5x.

## Environmental and mechanical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient operating temperature</td>
<td>$T_A$</td>
<td>°C</td>
<td>-40</td>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>$T_S$</td>
<td>°C</td>
<td>-55</td>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>$m$</td>
<td>g</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** ¹) The working conditions have direct impact on the temperature of primary conductor. In any cases, the temperature of conductor must be below 110 °C according to absolute maximum ratings in page 2.
## Electrical data

### CKSR 75-NP

At \( T_A = 25 \, ^\circ\text{C} \), \( U_C = +5 \, \text{V}, \, N_P = 1 \, \text{turn}, \, R_L = 10 \, \text{kΩ} \), internal reference unless otherwise noted (see definition of typ, Min, Max. paragraph in page 8).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary nominal RMS current</td>
<td>( I_{P_N} )</td>
<td>A</td>
<td>75</td>
<td>180</td>
<td></td>
<td>Apply derating according to Figure 1.</td>
</tr>
<tr>
<td>Primary current, measuring range</td>
<td>( I_{P_M} )</td>
<td>A</td>
<td>-180</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary current, measuring range</td>
<td>( I_{P_M} )</td>
<td>A</td>
<td>-182</td>
<td>182</td>
<td></td>
<td>With ( U_C = 4.75 , \text{V}, , T_A = 85 , ^\circ\text{C}, , R_L = 10 , \text{kΩ} ). For other conditions, see Figure 7.</td>
</tr>
<tr>
<td>Number of primary turns</td>
<td>( N_P )</td>
<td>1,2,3,4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>( U_C )</td>
<td>V</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>( I_C )</td>
<td>mA</td>
<td>15 + ( \frac{I_{P_N} , (mA)}{N_S} )</td>
<td>20 + ( \frac{I_{P_N} , (mA)}{N_S} )</td>
<td>( N_S = 966 , \text{turns} )</td>
<td></td>
</tr>
<tr>
<td>Reference voltage @ ( I_p = 0 , \text{A} )</td>
<td>( U_{\text{ref}} )</td>
<td>V</td>
<td>2.495</td>
<td>2.5</td>
<td>2.505</td>
<td>Internal reference</td>
</tr>
<tr>
<td>External reference voltage</td>
<td>( U_{\text{E ref}} )</td>
<td>V</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>( U_{\text{out}} )</td>
<td>V</td>
<td>( U_{\text{ref}} - 1.125 )</td>
<td>( U_{\text{ref}} + 1.125 )</td>
<td>@ ( I_{P_M} )</td>
<td></td>
</tr>
<tr>
<td>Electrical offset voltage</td>
<td>( U_{OE} )</td>
<td>mV</td>
<td>-0.725</td>
<td>0.725</td>
<td>100 % tested</td>
<td>( U_{\text{out}} - U_{\text{ref}} )</td>
</tr>
<tr>
<td>Electrical offset current referred to primary</td>
<td>( I_{OE} )</td>
<td>mA</td>
<td>-116</td>
<td>116</td>
<td>100 % tested</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of ( U_{\text{ref}} )</td>
<td>( TC_{U_{\text{ref}}} )</td>
<td>ppm/K</td>
<td>( \pm 5 )</td>
<td>( \pm 50 )</td>
<td>Internal reference</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of ( U_{\text{out}} ) at ( I_p = 0 , \text{A} )</td>
<td>( TC_{U_{\text{out}}} )</td>
<td>ppm/K</td>
<td>( \pm 4 )</td>
<td>ppm/K of 2.5 V ~-40 °C ... 105 °C (at ±6 Sigma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal sensitivity</td>
<td>( \delta_N )</td>
<td>mV/A</td>
<td>6.25</td>
<td></td>
<td>468.5 mV/( I_{P_N} )</td>
<td></td>
</tr>
<tr>
<td>Sensitivity error</td>
<td>( \varepsilon_S )</td>
<td>%</td>
<td>-0.7</td>
<td>0.7</td>
<td>100 % tested</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of ( S )</td>
<td>( TC_{S} )</td>
<td>ppm/K</td>
<td>-40</td>
<td>40</td>
<td>-40 °C ... 105 °C</td>
<td></td>
</tr>
<tr>
<td>Linearity error</td>
<td>( \varepsilon_L )</td>
<td>% of ( I_{P_N} )</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic offset current (10 \times ( I_{P_N} )) referred to primary</td>
<td>( I_{OM} )</td>
<td>A</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS noise current (spectral density) 100 Hz ... 100 kHz referred to primary</td>
<td>( I_{no} )</td>
<td>( \mu \text{A/Hz}^{0.5} )</td>
<td>20</td>
<td></td>
<td>( R_L = 1 , \text{kΩ} )</td>
<td></td>
</tr>
<tr>
<td>Peak-peak output ripple at oscillator frequency ( f = 450 , \text{kHz} ) (typ.)</td>
<td></td>
<td>mV</td>
<td>10</td>
<td>( R_L = 1 , \text{kΩ} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay time @ 10 % of ( I_{P_N} )</td>
<td>( t_{D10} )</td>
<td>( \mu \text{s} )</td>
<td>0.3</td>
<td>( R_L = 1 , \text{kΩ}, , di/dt = 68 , \text{A/μs} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay time to 90 % of ( I_{P_N} )</td>
<td>( t_{D90} )</td>
<td>( \mu \text{s} )</td>
<td>0.3</td>
<td>( R_L = 1 , \text{kΩ}, , di/dt = 68 , \text{A/μs} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth (±1 dB)</td>
<td>( BW )</td>
<td>kHz</td>
<td>200</td>
<td>( R_L = 1 , \text{kΩ} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency bandwidth (±3 dB)</td>
<td>( BW )</td>
<td>kHz</td>
<td>300</td>
<td>( R_L = 1 , \text{kΩ} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total error</td>
<td>( \varepsilon_{\text{tot}} )</td>
<td>% of ( I_{P_N} )</td>
<td>1.2</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total error @ ( T_A = 105 , ^\circ\text{C} )</td>
<td>( \varepsilon_{\text{tot}} )</td>
<td>% of ( I_{P_N} )</td>
<td>1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>( \varepsilon )</td>
<td>% of ( I_{P_N} )</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error @ ( T_A = 105 , ^\circ\text{C} )</td>
<td>( \varepsilon )</td>
<td>% of ( I_{P_N} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maximum continuous DC primary current

The maximum continuous DC primary current plot shows the boundary of the area for which all the following conditions are true:

- $I_p < I_{p,M}$
- Junction temperature $T_j < 125 \, ^\circ C$
- Primary conductor temperature < 110 °C
- Resistor power dissipation < 0.5 × rated power

Frequency derating

Figure 1: $I_p$ vs $T_A$ for CKSR 75-NP

Figure 2: Maximum RMS AC primary current / maximum DC primary current vs frequency
Ampere-turns and amperes
The transducer is sensitive to the primary current linkage $\theta_p$ (also called ampere-turns).

$$\theta_p = N_p \cdot I_p$$

Where $N_p$ is the number of primary turn (depending on the connection of the primary jumpers).

Caution: As most applications will use the transducer with only one single primary turn ($N_p = 1$), much of this datasheet is written in terms of primary current instead of current linkages. However, the ampere-turns (A) unit is used to emphasis that current linkages are intended and applicable.

Simplified transducer model
The static model of the transducer with current output at temperature $T_A$ is:

$$I_s = S \cdot \theta_p \cdot (1 + \varepsilon)$$

In which (referred to primary):

$$\varepsilon \cdot \theta_p = I_{OE} + I_{OT} + \varepsilon_S \cdot \theta_p + \varepsilon_L \cdot \theta_p + \varepsilon_T \cdot \theta_p + \varepsilon_{(\theta_p \text{ max})} \cdot \theta_p \text{ max} + I_{OM}$$

With:

- $\theta_p = N_p \cdot I_p$ : primary current linkage (A)
- $\theta_p \text{ max}$ : maximum primary current linkage applied to the transducer
- $I_s$ : secondary current (A)
- $S$ : sensitivity of the transducer
- $T_A$ : ambient operating temperature (°C)
- $I_{OE}$ : electrical offset current (A)
- $I_{OM}$ : magnetic offset current (A)
- $I_{OT}$ : temperature variation of $I_{OE}$ (A)
- $\varepsilon_S$ : sensitivity error at 25 °C
- $\varepsilon_L$ : thermal drift of $S$
- $\varepsilon_T$ : linearity error for $\theta_p \text{ max}$

This model is valid for primary ampere-turns $\theta_p$ between $-\theta_p \text{ max}$ and $+\theta_p \text{ max}$ only.

This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\frac{N}{\sum_{i=1}^{N} E_i^2}}$$

Terms and definitions

Sensitivity and linearity
To measure sensitivity and linearity, the primary current (DC) is cycled from 0 to $I_p$, then to $-I_p$ and back to 0 (equally spaced $I_p/10$ steps). The sensitivity $S$ is defined as the slope of the linear regression line for a cycle between $\pm I_p$. The linearity error $\varepsilon_L$ is the maximum positive or negative difference between the measured points and the linear regression line, expressed in % of $I_p$. 

$\varepsilon = \sqrt{\frac{N}{\sum_{i=1}^{N} E_i^2}}$
Magnetic offset referred to primary

The magnetic offset current \( I_{OM} \) is the consequence of a current on the primary side ("memory effect" of the transducer’s ferromagnetic parts). It is measured using the following primary current cycle. \( I_{OM} \) depends on the current value \( I_p \geq I_{PN} \).

\[
I_{OM} = \frac{I_p(3) - I_p(5)}{2}
\]

Electrical offset referred to primary

Using the current cycle shown in figure 3, the electrical offset current \( I_{OE} \) is the residual output referred to primary when the input current is zero.

\[
I_{OE} = \frac{I_p(3) + I_p(5)}{2}
\]

The temperature variation \( I_{OE}(T) \) of the electrical offset current \( I_{OE} \) is the variation of the electrical offset from 25 °C to the considered temperature.

\[
I_{OE}(T) = I_{OE}(25°C) - I_{OE}(T)
\]

Note: the transducer has to be demagnetized prior to the application of the current cycle (for example with a demagnetization tunnel).

Delay times

The delay time \( t_{D10} \) @ 10 % and the delay time \( t_{D90} \) @ 90 % with respect to the primary are shown in the next figure. Both slightly depend on the primary current \( \frac{dI}{dt} \). They are measured at nominal current.

\[
\begin{align*}
K_{OL} & : \text{Overload factor} \\
\text{Figure 3: Current cycle used to measure magnetic and electrical offset (transducer supplied)} \\
I_{OM} & = \frac{I_p(3) - I_p(5)}{2} \\
I_{OE} & = \frac{I_p(3) + I_p(5)}{2} \\
\text{Electrical offset referred to primary} \\
\text{Using the current cycle shown in figure 3, the electrical offset current} \ I_{OE} \ \text{is the residual output referred to primary when the input current is zero.} \\
\text{The temperature variation} \ I_{OE}(T) \ \text{of the electrical offset current} \ I_{OE} \ \text{is the variation of the electrical offset from 25 °C to the considered temperature.} \\
\text{Note: the transducer has to be demagnetized prior to the application of the current cycle (for example with a demagnetization tunnel).} \\
\end{align*}
\]

Total error referred to primary

The total error \( \varepsilon_{tot} \) is the error at \( \pm I_{PN} \), relative to the rated value \( I_{PN} \). It includes all errors mentioned above:

- the electrical offset \( I_{OE} \)
- the magnetic offset \( I_{OM} \)
- the sensitivity error \( \varepsilon_s \)
- the linearity error \( \varepsilon_l \) (to \( I_{PN} \)).

\[
\begin{align*}
\text{Figure 5:} & \ t_{D10} \ (\text{delay time} \ @ \ 10 \%) \ \text{and} \ t_{D90} \ (\text{delay time} \ @ \ 90 \%). \\
\text{Total error} \ \varepsilon_{tot} \ \text{at} \ U_C = ... \ \text{V and} \ T_A = 25 \ °C \\
\end{align*}
\]

\[
\begin{align*}
\text{Figure 6:} & \ \text{Total error} \ \varepsilon_{tot} \\
\end{align*}
\]
Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in “typical” graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. “100 % tested”), the LEM definition for such intervals designated with “min” and “max” is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between −3 sigma and +3 sigma. If “typical” values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between −sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of the product.
Filtering and decoupling

Supply voltage $U_C$

The fluxgate oscillator draws current pulses of up to 30 mA at a rate of ca. 900 kHz. Significant 900 kHz voltage ripple on $U_C$ can indicate a power supply with high impedance. At these frequencies the power supply rejection ratio is low, and the ripple may appear on the transducer output $U_{out}$ and reference $U_{ref}$. The transducer has internal decoupling capacitors, but in the case of a power supply with high impedance, it is advised to provide local decoupling (100 nF or more, located close to the transducer).

Output $U_{out}$

The output $U_{out}$ has a very low output impedance of typically 2 Ohms; it can drive 100 pF directly. Adding series $R_f = 100$ Ohms allows much larger capacitive loads. Empirical evaluation may be necessary to obtain optimum results. The minimum load resistance on $U_{out}$ is 1 kOhm.

Total Primary Resistance

The primary resistance is 0.72 mΩ per conductor.

In the following table, examples of primary resistance according to the number of primary turns.

<table>
<thead>
<tr>
<th>Number of primary turns</th>
<th>Primary resistance $R_p$ [mΩ]</th>
<th>Recommended connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.144</td>
<td>10 9 8 7 6 out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 1 2 3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>10 9 8 7 6 out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 1 2 3 4 5</td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
<td>10 9 8 7 6 out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 1 2 3 4 5</td>
</tr>
</tbody>
</table>

Measurement range

![Figure 7: The measurement range vs. temperature](image_url)
External reference voltage

If the Ref pin of the transducer is not used it could be either left unconnected or filtered according to the previous paragraph “Reference $U_{\text{ref}}$”.

The Ref pin has two modes Ref IN and Ref OUT:

- In the Ref OUT mode the 2.5 V internal precision reference is used by the transducer as the reference point for bipolar measurements; this internal reference is connected to the Ref pin of the transducer through a 680 Ohms resistor. It tolerates sink or source currents up to ±5 mA, but the 680 Ohms resistor prevents this current to exceed these limits.
- In the Ref IN mode, an external reference voltage is connected to the Ref pin; this voltage is specified in the range 0 to 4 V and is directly used by the transducer as the reference point for measurements. The external reference voltage $U_{\text{ref}}$ must be able:

  - either to source a typical current of $\frac{U_{\text{ref}} - 2.5}{680}$, the maximum value will be 2.2 mA typ. when $U_{\text{ref}} = 4$ V.

  - or to sink a typical current of $\frac{2.5 - U_{\text{ref}}}{680}$, the maximum value will be 3.68 mA typ. when $U_{\text{ref}} = 0$ V.
PCB footprint

Assemble on PCB

- Recommended PCB hole diameter: 1.3 mm for primary pin
- Maximum PCB thickness: 2.4 mm
- Wave soldering profile: maximum 260 °C for 10 s
  
- No clean process only

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

⚠️

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer’s operating instructions.

⚠️

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g., primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.
Dimensions (in mm, general linear tolerance ±0.25 mm)

- Clearance between pads on the pcb is 6.1 mm

Connection