DESCRIPTION

The Microsemi LX1918 is a step down buck regulator with a synchronous rectifier. All MOSFET switches and compensation components are built in. The synchronous rectification eliminates the need of an external Schottky diode and maximizes efficiency ($>95 \%$) for a high step-down ratio and a low output voltage. The input supply voltage range is from 2.7 V to 5.5 V with a maximum output current of 1.8 A .

The LX1918 is a current mode PWM with optional PFM under light loads. The LX1918 can switch with a 1 MHz free running internal oscillator or be synchronized with an external oscillator ranging from 500 KHz to 1.25 MHz ; the high frequency allows for small size and low cost external components. The LX1918 output voltage is programmable with two resistors and can be tightly regulated down to 0.6 V .
IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

- Input range voltage 2.7 to 5.5 V
- Maximum output current, 1.8A
- Internal or External Synchronization
- Output Voltage from $\mathrm{V}_{\text {IN }}$ to 0.6 V
- PFM or PWM mode under light load
- EMI support with force PWM mode
- Efficiency up to 95%
- No external Schottky diode
- Thermal shutdown
- Cycle by cycle switch current limit
- UVLO
- Short circuit protection
- 8 pin MLP

APPLICATIONS

- Lower power embedded applications
- WLAN power system
- Portable design with single cell Lion or 3 cells $\mathrm{NiMH} / \mathrm{NiCd}$
- Low power portable storage application

[^0]| F U N CTION A L P IN DE S CR I P T I ON | | |
| :---: | :---: | :--- |
| PIN | Name | Description |
| 1 | FB | Feedback Pin - This pin is regulated to the internal reference voltage. |
| 2 | SGND | Signal Ground - Low current signal ground reference for IC; also attaches to bottom pad. Connect
 to common ground reference. |
| 3 | PGND | Ground - High current ground; connects to common ground reference. |
| 4 | SW | MOSFET Switch (Drain) Connects for inductor. |
| 5 | PWR | Power Input - Connect a decoupled voltage source between 2.7V and 5.5V. |
| 6 | VCC | Reference power supply for IC. |
| 7 | MODE | Light Load Mode Select - Ground for Highest efficiency mode or pull high for Lowest EMI mode
 during light load operation. |
| 8 | E/S | Enable and External Synchronization - Pull high to enable operation with internal oscillator. Apply
 an external oscillator signal to synchronize the PWM switch frequency. Apply logic low to cause IC
 to enter Shutdown mode. |

ELECTRICAL CHARACTERISTICS
Unless otherwise specified, the following specifications apply over the operating ambient temperature ${ }^{2}-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}^{3}$ except where otherwise noted and the following test conditions: $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V} ; \mathrm{VE} / \mathrm{S}=3.7 \mathrm{~V} ; \mathrm{VMODE}=\mathrm{GND}$

Parameter	Symbol	Test Conditions	LX1918			Units
			Min	Typ	Max	
- ENTIRE REGULATOR						
Input Voltage ${ }^{3}$	VPWR, $\mathrm{V}_{\text {cc }}$		2.7		6.0	V
Efficiency ${ }^{1}$	η	$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$, lout $=200 \mathrm{~mA}$		92		\%
Quiescent Current - Active	Icc	$\mathrm{V}_{\mathrm{E} / \mathrm{S}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V} ; \mathrm{T}=25^{\circ} \mathrm{C}$		350	500	$\mu \mathrm{A}$
- Shutdown		$\mathrm{V}_{\mathrm{E} / \mathrm{S}}=\mathrm{GND}$		0.5	1.0	
Line Regulation ${ }^{1}$		$\mathrm{V}_{\text {IN }}=2.7$ to 5.5 V		1		\%
Load Regulation ${ }^{1}$		$\mathrm{l}_{\text {OUt }}=10 \mathrm{~mA}$ to 1.5 A		1		\%
Feedback Voltage	$V_{\text {FB }}$		0.588	0.600	0.612	V
FB Input Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$ to 0.7 V	-50		50	nA
Internal Oscillator frequency	Fosc	$\mathrm{V}_{\text {E/S }}=3.6 \mathrm{~V} ; \mathrm{V}_{\text {MODE }}=3.6 \mathrm{~V}$	0.75	1.00	1.25	MHz
E/S Pin Bias Current		$V_{\text {E/S }}=\mathrm{GND}$		0.1	1.0	$\mu \mathrm{A}$
E/S Logic High Input	$\mathrm{V}_{\mathrm{E} / \mathrm{S}(\mathrm{HI})}$		1.6			V
E/S Logic Low Input	$\mathrm{V}_{\mathrm{E} / \mathrm{S} \text { (LO) }}$				0.4	V
SYNC Capture Range		$\mathrm{V}_{\text {MODE }}=3.6 \mathrm{~V}$	500		1250	kHz
SYNC Minimum Pulse Width		High or Low; $\mathrm{V}_{\text {MODE }}=3.6 \mathrm{~V}$	100			ns
MODE Bias Current		$\mathrm{V}_{\mathrm{E} / \mathrm{S}}=\mathrm{GND}: \mathrm{V}_{\text {MODE }}=\mathrm{V}_{\text {IN }}$		1.0	2.0	$\mu \mathrm{A}$
MODE Logic High	$\left.\mathrm{V}_{\text {MOdE(}} \mathrm{HI}\right)$		$0.9 \times \mathrm{V}_{\text {IN }}$			
MODE Logic Low	$V_{\text {mode(LO) }}$				$\begin{gathered} 0.1 x \\ V_{\text {IN }} \end{gathered}$	V
SW Pin Current Limit		Peak Current	2.0	2.7	3.6	A
Thermal Shutdown Threshold ${ }^{1}$			130	140	150	${ }^{\circ} \mathrm{C}$
Under Voltage Lockout	VuvLo				2.7	V

Notes

1. Guaranteed by design, but not tested.
2. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.
3. Functionality over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range is assured by design, characterization, and correlation.

1.8A Step-Down Synchronous Converter

Figure 1 - Simplified Block Diagram

1.8A Step-Down Synchronous Converter

APPLICATION CIRCUITS

Figure 2 - Typical Application: Highest Light Load Efficiency Mode During Light Load With Internal 1MHz PWM Frequency

Figure 3 - Typical Application: PWM Low EMI Mode Operation During Light Load With External 500kHz Synchronization

THEORY OF OPERATION

LX1918 is synchronous step down converter with input voltage range from 2.7 V to 5.5 V ; and outputs ranging from 0.6 V to 80% of V_{IN}. The LX1918 can deliver a maximum output current up to 1.8A. The LX1918 has two selectable operating modes for light loads: high efficiency PFM ($\mathrm{MODE}=\mathrm{GND}$) or low noise forced PWM (MODE=VCC). Under heavy load, LX1918 always operates in PWM mode and switches at fixed internal 1 MHz frequency or can be synchronized with an external oscillator clock with a frequency ranging from 500 KHz to 1.25 MHz .

Switching frequency

The E/S pin has dual function. If E/S pin pulls HIGH, the 1 MHz internal oscillator is enabled. If E / S pin is held LOW, the LX1918 will enter Shut Down mode. Designers can apply an external oscillator signal, 500 KHz to 1.25 MHz , to E / S pin to synchronize the switching frequency to a system clock. When applying external oscillator signal, the MODE pin must pull up to VCC activating the forced PWM mode.

High Efficiency Operation: PFM, PWM, and EMI force PWM modes

The LX1918 has two selectable operating modes for light loads: high efficiency PFM (MODE=GND) or low noise forced $\mathrm{PWM}(\mathrm{MODE}=\mathrm{VCC})$. Only one mode can be active at any time.

Under light load operation, defined as $\mathrm{I}_{\text {OUT }}<300 \mathrm{~mA}$, if the MODE pin = VCC, the continuous inductor current mode is selected. This forces fixed frequency PWM and synchronous rectification regardless of loading. The inductor ripple current and duty cycle remain the same, the synchronous rectifier allows the inductor current to go positive or negative preventing system from going into discontinuous conduction and preventing possible EMI associated with inductor ringing.

If MODE pin is LOW, discontinuous current is selected The PWM frequency slows down as the load decreases and this reduces switching losses. In this mode, the NMOS switch turns off to prevent negative current flow and allows the inductor current to reduce to zero (which is known as discontinuous conduction mode).

Comparing the efficiency of the two modes of operation under light loading, when $\mathrm{I}_{\text {OUt }}=25 \mathrm{~mA}$, LX1918 efficiency is $80 \%(\mathrm{MODE}=\mathrm{GND})$ and 68% ($\mathrm{MODE}=\mathrm{VCC}$).

Under heavy load ($\mathrm{I}_{\text {Out }}>500 \mathrm{~mA}$), LX1918 always operates in PWM mode, with an efficiency up to 92%.

Protection:

LX1918 provides thermal shutdown, UVLO, and current limit protection:

- Thermal shutdown: if the die temperature reaches $150^{\circ} \mathrm{C}$.
- UVLO: an under voltage lock out, LX1918 will shut down when $\mathrm{V}_{\text {IN }}<2.7 \mathrm{~V}$.
- Current limiting protection:
o Switch current limit: The PMOS switch is limited to a peak current of 2.7 A . The PMOS "switch on" cycle is terminated when the switch current limit is reached.
o Soft start: Upon start up, the switch current is limited to a gradual rise of 0 to 2.7 A in 100us. The synchronous rectifier remains off during soft start preventing reverse load current.
o Hiccup mode: If the PMOS switch is current limited when it attempts to turns on (indicating an output short circuit), the converter will enter a partial soft start cycle mode to prevent a runaway output current.

REGULATION 5V TO 3.3V

EFFICIENCY 3.3V TO 1.8 V
REGULATION 3.3V TO 1.8 V

LINE REGULATION (1.8V OUT)

PACKAGE DIMENSIONS

LD 8 Pin Plastic MLP Dual Exposed Pad

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	0.80	1.00	0.0315	0.0394
A1	0	0.05	0	0.0019
A3	0.20	REF	0.007	REF
b	0.25	0.30	0.010	0.0118
D	3.00 BSC		0.1181 BSC	
D2	1.60	2.50	0.0630	0.0984
e	0.65 BSC		0.0260 BSC	
E	3.00 BSC		0.1181 BSC	
E2	1.35	1.75	0.0531	0.0689
L	0.30	0.50	0.0071	0.0197

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side. Lead dimension shall not include solder coverage.

NOTES

PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

[^0]: Note: Available in Tape \& Reel. Append the letters "TR" to the part number.(i.e. LX1918CLD-TR)

