RF Power LDMOS Transistor

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial, scientific and medical applications and sub-GHz aerospace and defense and mobile radio applications. Its unmatched input and output design allows for wide frequency range use from 1.8 to 1215 MHz.

Typical Performance: V_{DD} = 50 Vdc

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
30-520 (1,2)	CW	50 CW	14.0	40.0
520 (3)	CW	85 CW	25.6	73.3

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
520 (3)	CW	> 65:1 at all Phase Angles	0.56 (3 dB Overdrive)	50	No Device Degradation

1. Measured in 30-520 MHz broadband reference circuit.

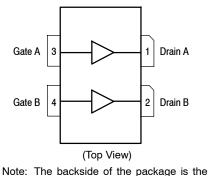
- 2. The values shown are the minimum measured performance numbers across the indicated frequency range.
- 3. Measured in 520 MHz narrowband test circuit (page 5).

Features

- · Unmatched input and output allowing wide frequency range utilization
- Device can be used single-ended or in a push-pull configuration
- Characterized from 30 to 50 V for ease of use
- Suitable for linear application
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation

Typical Applications

- Industrial, scientific, medical (ISM)
 - Laser generation
 - Plasma etching
 - Particle accelerators
 - Industrial heating, welding and drying systems
- Broadcast
 - Radio broadcast
 - VHF TV broadcast
- Aerospace
 - VHF omnidirectional range (VOR)
 - HF and VHF communications
 - Weather radar
- Mobile radio
- VHF and UHF radios



VRoHS

1.8–1215 MHz, 85 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTOR

Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating		Symbol	Va	lue	Unit
Drain-Source Voltage		V _{DSS}	-0.5,	+133	Vdc
Gate-Source Voltage			-6.0, +10		Vdc
Operating Voltage		V _{DD}	50	, +0	Vdc
Storage Temperature Range		T _{stg}	-65 to	o +150	°C
Case Operating Temperature Range		Т _С	-40 to	o +150	°C
Operating Junction Temperature Range (1,2)		TJ	-40 to	+225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C		P _D		35 18	W W/°C
Table 2. Thermal Characteristics					
Characteristic		Symbol	Valu	e ^(2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 85°C, 85 W CW, 50 Vdc, I _{DQ(A+B)} = 100 mA, 5	520 MHz	$R_{ extsf{ heta}JC}$	0.	85	°C/W
Table 3. ESD Protection Characteristics					
Test Methodology			Cla	ass	
Human Body Model (per JESD22-A114)			2, passe	s 2000 V	
Charge Device Model (per JESD22-C101)			C2, pass	ses 500 V	
Fable 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise no	ted)				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			400	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 50 mA)	V _{(BR)DSS}	133	—	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	2	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	7	μAdc
On Characteristics					•
Gate Threshold Voltage ⁽⁴⁾ (V_{DS} = 10 Vdc, I _D = 85 μ Adc)	V _{GS(th)}	1.5	2.0	3.0	Vdc
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_{D(A+B)} = 100 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.0	2.6	3.3	Vdc
Drain-Source On-Voltage ⁽⁴⁾ ($V_{GS} = 10 \text{ Vdc}, I_D = 210 \text{ mAdc}$) $V_{DS(on)}$			0.27	_	Vdc
Dynamic Characteristics ⁽⁴⁾				•	
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	—	0.17	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	—	14.7	—	pF
Input Capacitance	C _{iss}	_	39.0		pF

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.nxp.com/RF/calculators</u>.
Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <u>http://www.nxp.com/RF</u> and search for AN1955.

4. Each side of device measured separately.

(continued)

Characteristic				Min	Тур	Max	Unit
Functional Test	_{DQ(A+B)} = 100 r	nA, P _{out} = 85	W CW, f = 52	0 MHz			
Power Gain				24.0	25.6	28.0	dB
Drain Efficiency			η _D	70.0	73.3	_	%
Input Return Loss			IRL	—	-21	-9	dB
Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) I _{DQ} = 150 mA							
Frequency	Signal		P.,				

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Frequency Signal

Frequency (MHz)	Signai Туре	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
520	CW	> 65:1 at all Phase Angles	0.56 (3 dB Overdrive)	50	No Device Degradation

Table 5. Ordering Information

Device	Tape and Reel Information	Package
MRF085HR3	R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel	NI-650H-4L
MRF085HR5	R5 Suffix = 50 Units, 44 mm Tape Width, 13-inch Reel	NI-650H-4L

TYPICAL CHARACTERISTICS

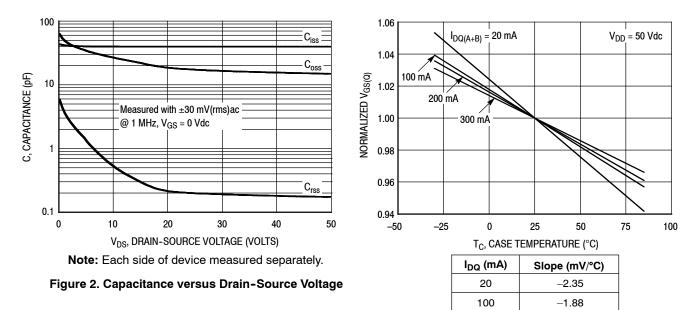


Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

-1.78

-1.59

200

300

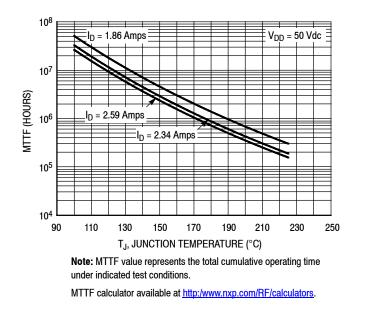


Figure 4. MTTF versus Junction Temperature – CW

520 MHz NARROWBAND PRODUCTION TEST FIXTURE - 4.0" × 5.0" (10.2 mm × 12.7 mm)

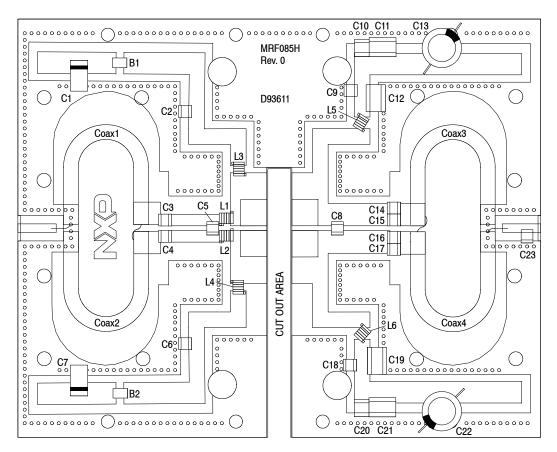


Figure 5. MRF085H Narrowband Test Circuit Component Layout – 520 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Short RF Bead	2743019447	Fair-Rite
C1, C7	22 µF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C2, C6, C9, C18	240 pF Chip Capacitor	ATC100B241JT200XT	ATC
C3, C4	51 pF Chip Capacitor	ATC100B510GT500XT	ATC
C5	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C8	5.1 pF Chip Capacitor	ATC100B5R1CT500XT	ATC
C10, C20	10 pF Chip Capacitor	ATC200B103KT50XT	ATC
C11, C21	0.01 μF Chip Capacitor	C1825C103K1GACTU	Kemet
C12, C19	0.1 μF Chip Capacitor	C1812F104K1RACTU	Kemet
C13, C22	220 µF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26-RH	Multicomp
C14, C15, C16, C17	120 pF Chip Capacitor	ATC100B121JT300XT	ATC
C23	5.6 pF Chip Capacitor	ATC100B5R6CT500XT	ATC
Coax1, 2, 3, 4	25 Ω, Semi Rigid Coax, 2.4" Shield Length	UT141-25	Precision Tube Company
L1, L2, L5, L6	2.5 nH Inductor, 1 Turn	A01TKLC	Coilcraft
L3, L4	22 nH Inductor, 7 Turns	B07TJLC	Coilcraft
PCB	Arlon AD255A, 0.030", $\epsilon_r = 2.55$	D93611	MTL

5

TYPICAL CHARACTERISTICS – 520 MHz PRODUCTION TEST FIXTURE

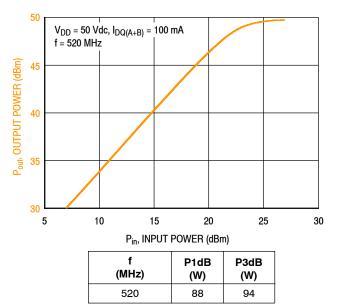


Figure 6. CW Output Power versus Input Power

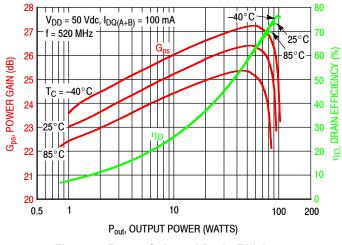


Figure 8. Power Gain and Drain Efficiency versus CW Output Power

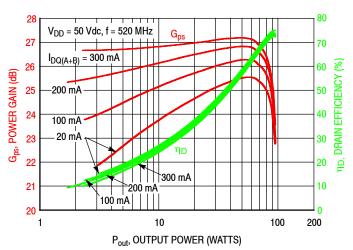


Figure 7. Power Gain and Drain Efficiency versus CW Output Power and Quiescent Current

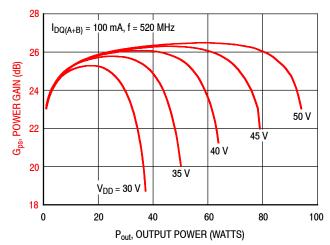


Figure 9. Power Gain versus CW Output Power and Drain-Source Voltage

520 MHz NARROWBAND PRODUCTION TEST FIXTURE

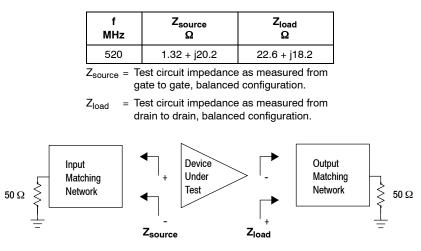
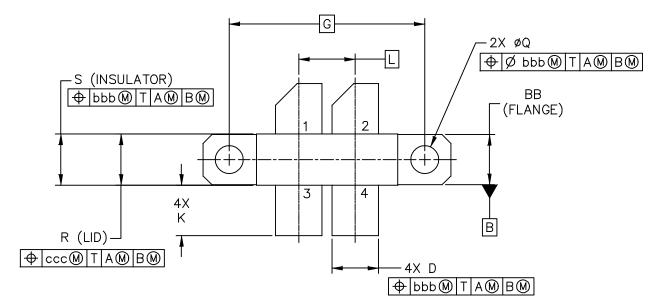
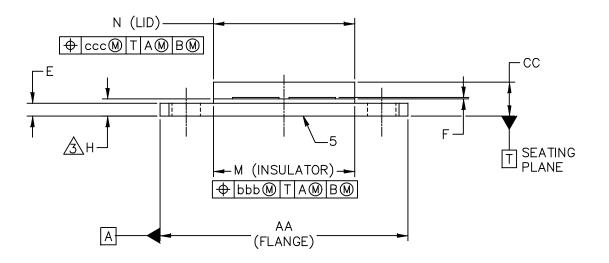




Figure 10. Narrowband Series Equivalent Source and Load Impedance — 520 MHz

PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT TO	SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18494C	REV: F
NI-650H-4L		STANDAF	RD: NON-JEDEC	
		SOT1911-	-1 26	JAN 2017

MRF085H

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.

A DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM THE FLANGE PARALLEL TO DATUM B TO CLEAR EPOXY FLOW OUT.

4. DELETED REV. B.

	IN	СН	MILL	IMETER			INCH	MILLI	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.135	1.145	28.83	29.08	Q	ø.125	ø.135	ø3.18	ø3.43
BB	.225	.235	5.72	5.97	R	.227	.233	5.77	5.92
CC	.135	.178	3.43	4.52	S	.225	.235	5.72	5.97
D	.210	.220	5.33	5.59	bbb		010	0.	25
E	.055	.065	1.40	1.65	ccc	.	015	0.	38
F	.004	.006	0.10	0.15					
G	.900	BSC	22.	86 BSC					
Н	.077	.087	1.96	2.21					
K	.220	.250	5.59	6.35					
L	.260	BSC	6.6	30 BSC					
М	.643	.657	16.33	16.69					
N	.638	.650	16.21	16.51					
0	NXP SEMICON ALL RIGHT	NDUCTORS N.V. S RESERVED		MECHANICA	L 0U1	LINE	PRINT VERS	SION NOT T	O SCALE
TITLE:			·			DOCUMEN	T NO: 98ARB1	8494C	REV: F
		NI-650)H-4L			STANDAR	D: NON-JEDEC	C	
						SOT1911-	1	26	JAN 2017

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description					
0	July 2017	Initial release of data sheet					
1	Oct. 2017	• Table 5, Ordering Information: added MRF085HR3 to table and R3 suffix tape and reel information, p. 3					

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

