20 V, single N-channel Trench MOSFET 12 September 2012

Product data sheet

1. Product profile

1.1 General description

N-channel enhancement mode Field-Effect Transistor (FET) in a leadless medium power DFN2020MD-6 (SOT1220) Surface-Mounted Device (SMD) plastic package using Trench MOSFET technology.

1.2 Features and benefits

- Trench MOSFET technology
- Small and leadless ultra thin SMD plastic package: 2 x 2 x 0.65 mm
- Exposed drain pad for excellent thermal conduction
- Tin-plated 100 % solderable side pads for optical solder inspection

1.3 Applications

- Charging switch for portable devices
- DC-to-DC converters
- Power management in battery-driven portable devices
- Hard disk and computing power management

1.4 Quick reference data

Table 1. Qui	ck reference data						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	20	V
V _{GS}	gate-source voltage			-8	-	8	V
I _D	drain current	V_{GS} = 4.5 V; T_{amb} = 25 °C; t ≤ 5 s	[1]	-	-	9.4	А
Static characteristics							
R _{DSon}	drain-source on-state resistance	V _{GS} = 4.5 V; I _D = 6.6 A; T _j = 25 °C		-	19	25	mΩ

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for drain 6 cm².

20 V, single N-channel Trench MOSFET

2. Pinning information

Table 2.	Pinning	information			
Pin	Symbol	Description	Simplified outline	Graphic symbol	
1	D	drain		D	
2	D	drain			
3	G	gate		G C C	
4	S	source		\$ 017aaa253	
5	D	drain	Transparent top view	Transparent top view	C T ABALOO
6	D	drain	DFN2020MD-6 (SOT1220)		
7	D	drain			
8	S	source			

3. Ordering information

Table 3. Orderin	g information		
Type number	Package		
	Name	Description	Version
PMPB20UN	DFN2020MD-6	plastic thermal enhanced ultra thin small outline package; no leads; 6 terminals	SOT1220

4. Marking

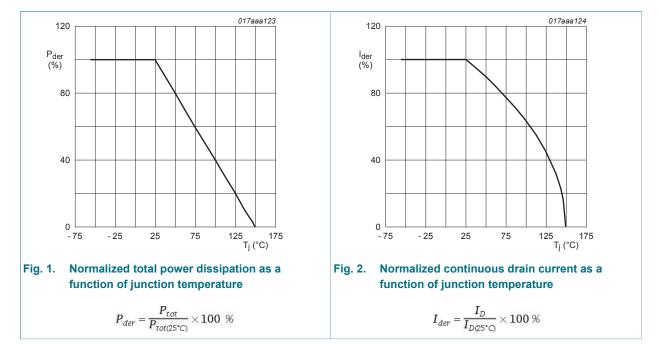
Table 4. Marking codes	
Type number	Marking code
PMPB20UN	1G

5. Limiting values

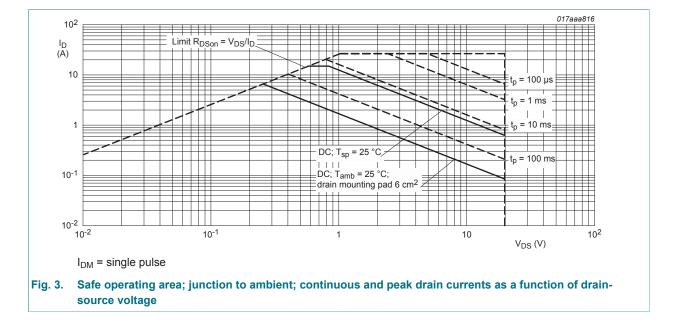
Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	20	V
V _{GS}	gate-source voltage			-8	8	V
I _D	drain current	V _{GS} = 4.5 V; T _{amb} = 25 °C; t ≤ 5 s	[1]	-	9.4	А
		V _{GS} = 4.5 V; T _{amb} = 25 °C	[1]	-	6.6	А
		V _{GS} = 4.5 V; T _{amb} = 100 °C	[1]	-	4.1	А
I _{DM}	peak drain current	T_{amb} = 25 °C; single pulse; $t_p \le 10 \ \mu s$		-	27	А
P _{tot}	total power dissipation	T _{amb} = 25 °C	[1]	-	1.7	W
MPB20UN	All info	ormation provided in this document is subject to legal disclaimers.		©N	XP B.V. 2012. /	All rights reser


NXP Semiconductors

PMPB20UN


20 V, single N-channel Trench MOSFET

Symbol	Parameter	Conditions		Min	Мах	Unit
		T _{amb} = 25 °C; t ≤ 5 s	[1]	-	3.5	W
		T _{sp} = 25 °C		-	12.5	W
Tj	junction temperature			-55	150	°C
T _{amb}	ambient temperature			-55	150	°C
T _{stg}	storage temperature			-65	150	°C
Source-drai	in diode					_
I _S	source current	T _{amb} = 25 °C	[1]	-	1.8	А

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for drain 6 cm².

20 V, single N-channel Trench MOSFET

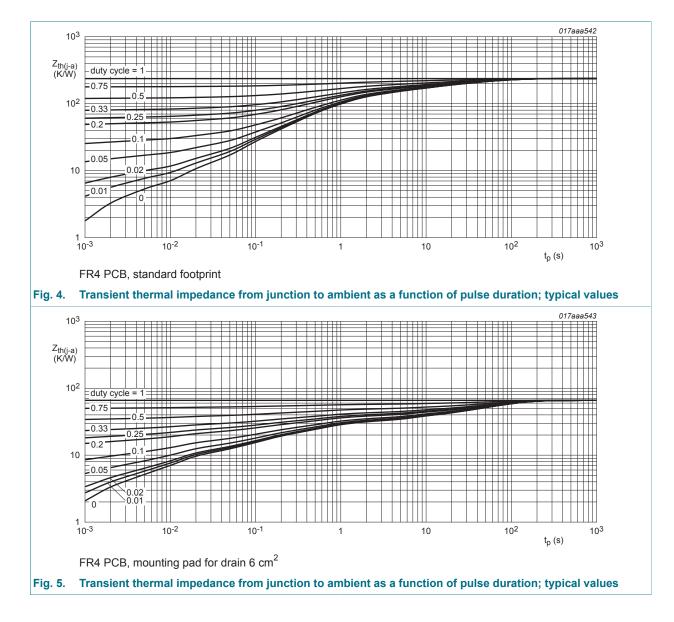

6. Thermal characteristics

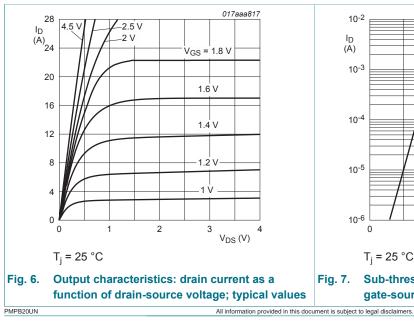
Table 6. Th	nermal characteristics						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance	in free air	[1]	-	235	270	K/W
	from junction to ambient		[2]	-	67	74	K/W
	ampient	in free air; t ≤ 5 s	[2]	-	33	36	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point			-	5	10	K/W

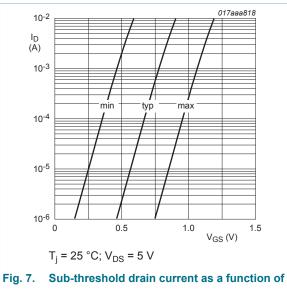
[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 6 cm².

20 V, single N-channel Trench MOSFET

7. Characteristics

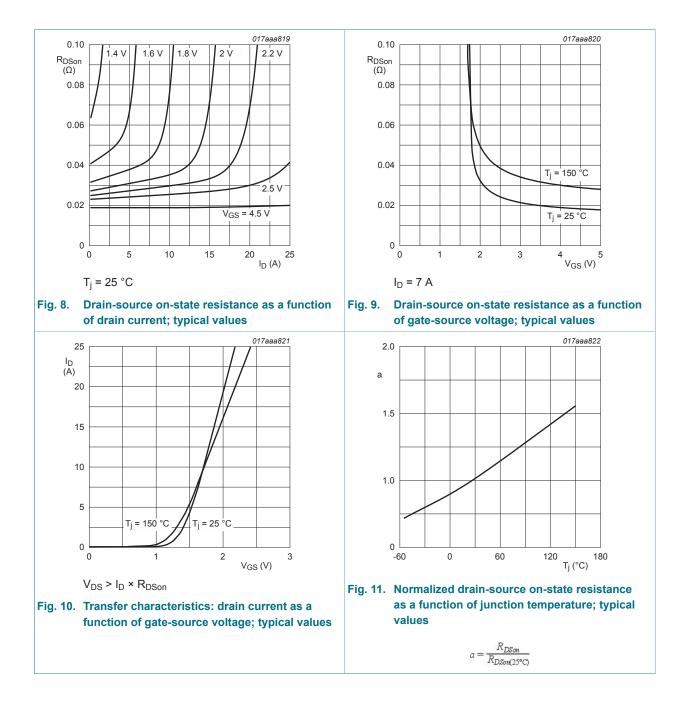

Parameter	Conditions	Min	Тур	Max	Unit
teristics					
drain-source breakdown voltage	I_D = 250 µA; V_{GS} = 0 V; T_j = 25 °C	20	-	-	V
gate-source threshold voltage	I_D = 250 µA; V_{DS} = V_{GS} ; T_j = 25 °C	0.4	0.7	1	V
drain leakage current	V_{DS} = 20 V; V_{GS} = 0 V; T_j = 25 °C	-	-	1	μA
gate leakage current	V_{GS} = -8 V; V_{DS} = 0 V; T_j = 25 °C	-	-	-100	nA
	teristics drain-source breakdown voltage gate-source threshold voltage drain leakage current	teristicsdrain-source breakdown voltage $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ gate-source threshold voltage $I_D = 250 \ \mu A; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^C$ drain leakage current $V_{DS} = 20 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$	teristicsdrain-source breakdown voltage $I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ 20gate-source threshold voltage $I_D = 250 \ \mu\text{A}; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^C$ 0.4drain leakage current $V_{DS} = 20 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ -	teristicsdrain-source breakdown voltage $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ 20-gate-source threshold voltage $I_D = 250 \ \mu A; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^C$ 0.40.7drain leakage current $V_{DS} = 20 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$	teristicsdrain-source breakdown voltage $I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ $20 \ -$ -gate-source threshold voltage $I_D = 250 \ \mu\text{A}; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^C$ $0.4 \ 0.7 \ 1$ drain leakage current $V_{DS} = 20 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$

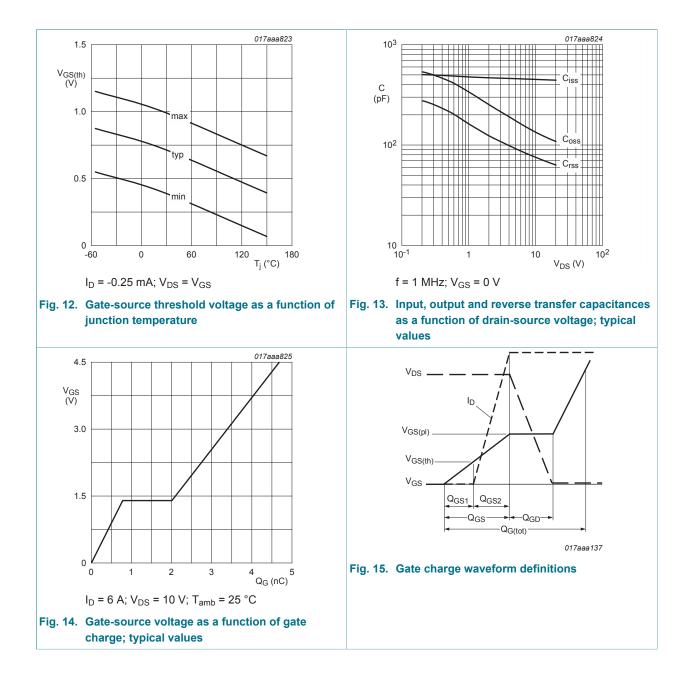

Product data sheet

20 V, single N-channel Trench MOSFET

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V_{GS} = 8 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
R _{DSon}	drain-source on-state	V_{GS} = 4.5 V; I _D = 6.6 A; T _j = 25 °C	-	19	25	mΩ
	resistance	V _{GS} = 4.5 V; I _D = 6.6 A; T _j = 150 °C	-	30	39	mΩ
		V_{GS} = 2.5 V; I _D = 5.6 A; T _j = 25 °C	-	25	34	mΩ
		V_{GS} = 1.8 V; I _D = 1.7 A; T _j = 25 °C	-	36	57	mΩ
9fs	forward transconductance	V _{DS} = 10 V; I _D = 6.6 A; T _j = 25 °C	-	25	-	S
R _G	gate resistance	f = 1 MHz	-	1.2	-	Ω
Dynamic c	haracteristics			I		
Q _{G(tot)}	total gate charge	V_{DS} = 10 V; I _D = 6.6 A; V _{GS} = 4.5 V;	-	4.7	7.1	nC
Q _{GS}	gate-source charge	T _j = 25 °C	-	0.8	-	nC
Q _{GD}	gate-drain charge		-	1.2	-	nC
C _{iss}	input capacitance	V _{DS} = 10 V; f = 1 MHz; V _{GS} = 0 V;	-	460	-	pF
C _{oss}	output capacitance	T _j = 25 °C	-	135	-	pF
C _{rss}	reverse transfer capacitance	_	-	75	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = 10 V; I _D = 6.6 A; V _{GS} = 4.5 V;	-	7	-	ns
t _r	rise time	R _{G(ext)} = 6 Ω; T _j = 25 °C	-	19	-	ns
t _{d(off)}	turn-off delay time		-	17	-	ns
t _f	fall time		-	26	-	ns
Source-dra	in diode	1	· · ·			
V _{SD}	source-drain voltage	$I_{\rm S}$ = 1.8 A; $V_{\rm GS}$ = 0 V; $T_{\rm j}$ = 25 °C	-	0.7	1.2	V

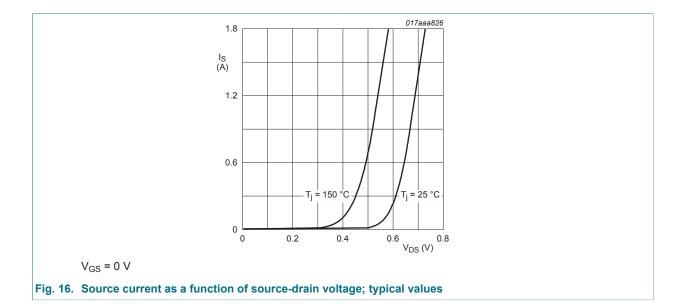
1.2

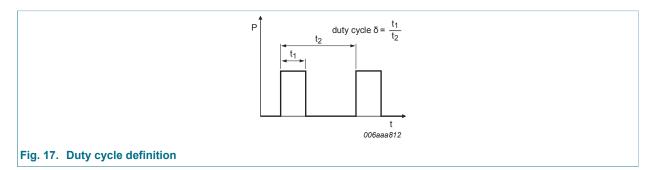



gate-source voltage

© NXP B.V. 2012. All rights reserved

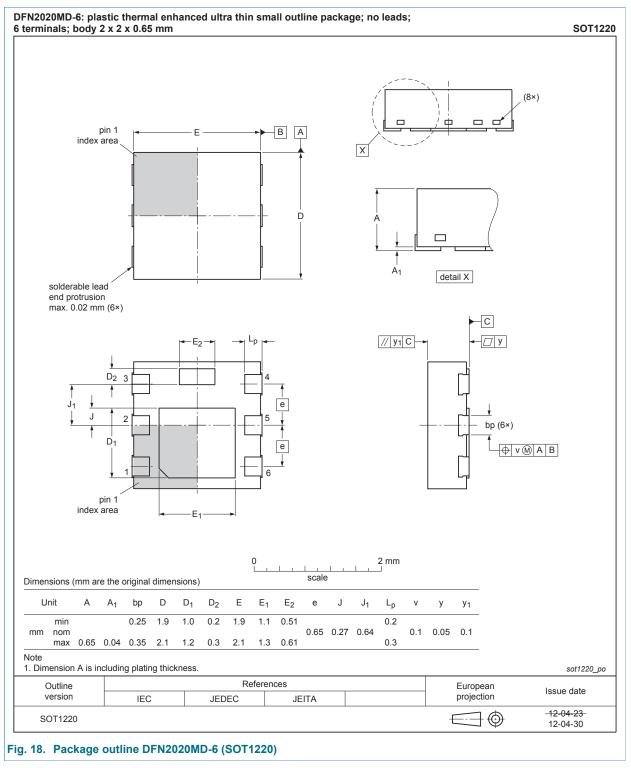
20 V, single N-channel Trench MOSFET


20 V, single N-channel Trench MOSFET


NXP Semiconductors

PMPB20UN

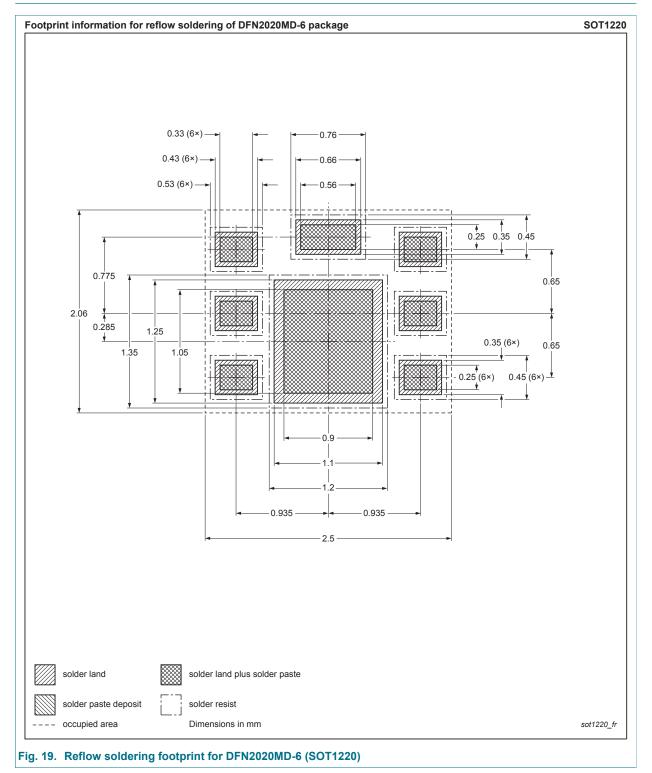
20 V, single N-channel Trench MOSFET



8. Test information

20 V, single N-channel Trench MOSFET

9. Package outline



PMPB20UN

All information provided in this document is subject to legal disclaimers.

20 V, single N-channel Trench MOSFET

10. Soldering

20 V, single N-channel Trench MOSFET

11. Revision history

Table 8. Revision his	e 8. Revision history				
Data sheet ID	Release date	Data sheet status	Change notice	Supersedes	
PMPB20UN v.1	20120912	Product data sheet	-	-	

20 V, single N-channel Trench MOSFET

13. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking2
5	Limiting values2
6	Thermal characteristics4
7	Characteristics5
8	Test information9
9	Package outline 10
10	Soldering 11
11	Revision history12
12	Legal information
12.1	Data sheet status
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks

© NXP B.V. 2012. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 12 September 2012