Convenient, concise, well-organized, and precise

Perfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips—whether you’re refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.

- **Unique:** the first and only encyclopedia set on electronic components, distilled into three separate volumes
- **Incredibly detailed:** includes information distilled from hundreds of sources
- **Easy to browse:** parts are clearly organized by component type
- **Authoritative:** fact-checked by expert advisors to ensure that the information is both current and accurate
- **Reliable:** a more consistent source of information than online sources, product datasheets, and manufacturer’s tutorials
- **Instructive:** each component description provides details about substitutions, common problems, and workarounds
- **Comprehensive:** Volume 1 covers power, electromagnetism, and discrete semiconductors; Volume 2 includes integrated circuits, and light and sound sources; Volume 3 covers a range of sensing devices.

Charles Platt

Charles Platt’s lifelong love of electronics began when he built a telephone answering machine at age 15. A contributing editor to Make Magazine, he wrote the widely acclaimed Make: Electronics. He’s also a science-fiction writer (author of *The Silicon Man*), and a former senior writer at Wired magazine.

US $29.99 CAN $31.99
Encyclopedia of Electronic Components
Volume 2

Charles Platt
with Fredrik Jansson
In fond memory of my father, Maurice Platt
Table of Contents

How to Use This Book ... xxi

> DISCRETE SEMICONDUCTOR

> > THYRISTOR

1. SCR ... 1
 What It Does ... 1
 How It Works ... 1
 Switching Behavior ... 2
 Internal Configuration ... 3
 Breakdown and Breakover Voltage 4
 SCR Concept Demo .. 4
 AC Current Applications ... 5
 Variants ... 5
 Values .. 5
 Commonly Used Abbreviations 6
 How to Use It .. 6
 Phase Control .. 7
 Overvoltage Protection ... 7
 What Can Go Wrong ... 8
 Unexpected Triggering Caused by Heat 8
 Unexpected Triggering Caused by Voltage 8
 Confusion of AC and DC Ratings 8
 Maximum Current versus Conduction Angle 9
 Confusing Symbols ... 9

2. diac ... 11
 What It Does ... 11
Overheating Caused by Overloading ... 30
Overheating Caused by Bad Terminal Contact 30
Overheating Caused by Changing Duty Cycle 30
Overheating Caused by Component Crowding 30
Overheating in Dual Packaging .. 30
Reverse-Voltage Burnout ... 30
Low Voltage Output Current May Not Work 30
Inability to Measure AC Output .. 30
Relay Turns On but Won’t Turn Off ... 31
Relays in Parallel Won’t Work ... 31
Output Device Doesn’t Run at Full Power 31
Solid-State Relays and Safety Disconnects 31

5. optocoupler ... 33
 What It Does ... 33
 How It Works ... 34
 Variants .. 35
 Internal Sensors ... 35
 Basic Optocoupler Types .. 36
 Values .. 36
 How to Use It ... 36
 What Can Go Wrong ... 37
 Age .. 37
 LED Burnout ... 37
 Transistor Burnout ... 37

6. comparator ... 39
 What It Does ... 39
 Hysteresis ... 39
 How It Works ... 39
 Differences from an Op-Amp ... 42
 Variants ... 42
 Values ... 43
 How to Use It ... 44
 AND gate ... 44
 Bistable Multivibrator .. 46
 Relaxation Oscillator ... 46
 Level Shifter .. 46
 Window Comparator ... 46
 Other Applications .. 47
 What Can Go Wrong .. 47
 Oscillating Output .. 47
 Confused Inputs ... 48
 Wrong Chip Type .. 48
 Omitted Pullup Resistor .. 48
 CMOS Issues ... 48
 Erratic Output ... 48
 Swapped Voltages .. 48
 Heat-Dependent Hysteresis ... 48
7. op-amp

- **What It Does** ... 49
- **How It Works** ... 49
 - Dual Inputs ... 50
 - Negative Feedback ... 51
 - Op-Amps and Comparators 52
- **Variants** ... 52
- **Values** ... 52
- **How to Use It** ... 53
 - Controlling the Gain ... 53
 - Calculating Amplification 53
 - Unintentional DC Voltage Amplification 54
 - Low-Pass Filter .. 54
 - High-Pass Filter .. 55
 - Relaxation Oscillator .. 55
 - Single Power Source ... 56
 - Offset Null Adjustment 56
- **What Can Go Wrong** ... 57
 - Power Supply Problems 57
 - Bad Connection of Unused Sections 57
 - Oscillating Output .. 57
 - Confused Inputs .. 58

8. digital potentiometer

- **What It Does** .. 59
- **Advantages** .. 59
- **How It Works** .. 60
- **Variants** ... 61
 - Volatile and Nonvolatile Memory 61
 - Taper ... 62
 - Data Transfer ... 62
 - SPI ... 62
 - I2C Protocol .. 63
 - Up/Down Protocol ... 63
 - Other Control Systems 64
 - Connections and Modes 64
- **Values** ... 65
- **How to Use It** .. 66
 - Achieving Higher Resolution 66
- **What Can Go Wrong** ... 67
 - Noise and Bad Inputs .. 67
 - Wrong Chip .. 67
 - Controller and Chip Out of Sync 67
 - Nonlinear Effects ... 67
 - Data Transfer Too Fast 67

9. timer

- **What It Does** .. 69
- **Monostable Mode** .. 69
Astable Mode .. 70
How It Works .. 70
Variants ... 70
The 555 Timer .. 70
555 Monostable Operation ... 71
555 Astable Operation ... 72
556 Timer ... 73
558 Timer ... 73
CMOS 555 Timer ... 74
5555 Timer ... 74
7555 Timer ... 74
7556 Timer ... 74
4047B Timer ... 75
Dual Monostable Timers ... 75
Values ... 76
555 Timer Values .. 76
Time Calculation in Monostable Mode 77
Time Calculation in Astable Mode 77
Dual Monostable Timers ... 77
How to Use It .. 79
555 Monostable Mode ... 79
555 Astable Mode ... 80
 Separate Control of High and Low Output Times 80
555 Fifty Percent Astable Duty Cycle: 1 80
555 Fifty Percent Astable Duty Cycle: 2 81
Use of the 555 Control Pin ... 81
555 Flip-Flop Emulation .. 82
555 Hysteresis .. 83
555 and Coupling Capacitors 84
555 Loudspeaker Connection 84
Burst Mode .. 84
“You Lose” Game Sound .. 85
What Can Go Wrong ... 85
Dead Timer .. 85
CMOS Confused with Bipolar 86
The Pulse that Never Ends ... 86
Erratic Chip Behavior ... 86
Interference with Other Components 86
Erratic Behavior of Output Devices 86
Fatal Damage Caused by Inductive Loads 87

10. logic gate ... 89
What It Does .. 89
Origins ... 89
How It Works .. 89
Inversion ... 90
Single-Input Gates ... 90
Gates with More than Two Inputs ... 91
Boolean Notation ... 91
Arithmetical Operations ... 91
Other Operations ... 92
Variants ... 93
Part Numbers .. 94
Families ... 95
Family Interoperability ... 96
Gates per Chip ... 96
Two Inputs, Single Gate ... 96
Three Inputs, Single Gate .. 97
Single Gate, Selectable Function ... 97
Two Inputs, Dual Gate ... 98
Original 74xx 14-Pin Format ... 98
Quad Two-Input 74xx Pinouts .. 98
Triple Three-Input 74xx Pinouts ... 99
Dual Four-Input 74xx Pinouts ... 100
Single Eight-Input 74xx Pinouts ... 100
74xx Inverters ... 101
Additional Variations ... 102
Pinouts in the Original 4000 Series .. 102
4000 Series Inverters ... 103
How to Use It ... 103
Which Family ... 103
Applications ... 104
What Can Go Wrong .. 105
Static .. 105
Floating Pins ... 105
Family Incompatibilities .. 105
Overloaded Outputs ... 105
Output Pulled Down ... 105
Incorrect Polarity and Voltages ... 105
Bent Pins ... 105
Unclean Input ... 106
Analog Input .. 106

11. flip-flop .. 107
What It Does .. 107
How It Works .. 107
NAND-Based SR Flip-Flop .. 108
NOR-Based SR Flip-Flop ... 109
Forbidden States .. 110
The JK Flip-Flop .. 112
Master-Slave Flip-Flop .. 113
D-Type Flip-Flops .. 114
Summary .. 116
Variants .. 116
Packaging ... 117
Values ... 117
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending Output</td>
<td>136</td>
</tr>
<tr>
<td>Programmable Counters</td>
<td>137</td>
</tr>
<tr>
<td>Examples</td>
<td>137</td>
</tr>
<tr>
<td>Values</td>
<td>137</td>
</tr>
<tr>
<td>What Can Go Wrong</td>
<td>137</td>
</tr>
<tr>
<td>Lock-Out</td>
<td>137</td>
</tr>
<tr>
<td>Asynchronous Artifacts</td>
<td>137</td>
</tr>
<tr>
<td>Noise</td>
<td>138</td>
</tr>
<tr>
<td>14. encoder</td>
<td>139</td>
</tr>
<tr>
<td>What It Does</td>
<td>139</td>
</tr>
<tr>
<td>Schematic Symbol</td>
<td>139</td>
</tr>
<tr>
<td>Similar Devices</td>
<td>140</td>
</tr>
<tr>
<td>How It Works</td>
<td>140</td>
</tr>
<tr>
<td>Variants</td>
<td>140</td>
</tr>
<tr>
<td>Values</td>
<td>142</td>
</tr>
<tr>
<td>How to Use It</td>
<td>142</td>
</tr>
<tr>
<td>Cascaded Encoders</td>
<td>142</td>
</tr>
<tr>
<td>What Can Go Wrong</td>
<td>143</td>
</tr>
<tr>
<td>15. decoder</td>
<td>145</td>
</tr>
<tr>
<td>What It Does</td>
<td>145</td>
</tr>
<tr>
<td>Input Devices</td>
<td>145</td>
</tr>
<tr>
<td>LED Driver</td>
<td>146</td>
</tr>
<tr>
<td>Schematic Symbol</td>
<td>146</td>
</tr>
<tr>
<td>Similar Devices</td>
<td>146</td>
</tr>
<tr>
<td>How It Works</td>
<td>148</td>
</tr>
<tr>
<td>Variants</td>
<td>148</td>
</tr>
<tr>
<td>Values</td>
<td>148</td>
</tr>
<tr>
<td>How to Use It</td>
<td>149</td>
</tr>
<tr>
<td>What Can Go Wrong</td>
<td>149</td>
</tr>
<tr>
<td>Glitches</td>
<td>149</td>
</tr>
<tr>
<td>Unhelpful Classification</td>
<td>149</td>
</tr>
<tr>
<td>Active-Low and Active-High</td>
<td>149</td>
</tr>
<tr>
<td>16. multiplexer</td>
<td>151</td>
</tr>
<tr>
<td>What It Does</td>
<td>151</td>
</tr>
<tr>
<td>Differential Multiplexer</td>
<td>152</td>
</tr>
<tr>
<td>Similar Devices</td>
<td>152</td>
</tr>
<tr>
<td>How It Works</td>
<td>153</td>
</tr>
<tr>
<td>Schematic Symbol</td>
<td>153</td>
</tr>
<tr>
<td>Pin Identifiers</td>
<td>154</td>
</tr>
<tr>
<td>Variants</td>
<td>155</td>
</tr>
<tr>
<td>Values</td>
<td>155</td>
</tr>
<tr>
<td>How to Use It</td>
<td>156</td>
</tr>
<tr>
<td>Other Application Notes</td>
<td>157</td>
</tr>
<tr>
<td>What Can Go Wrong</td>
<td>157</td>
</tr>
<tr>
<td>Pullup Resistors</td>
<td>157</td>
</tr>
<tr>
<td>Break Before Make</td>
<td>157</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>> Light Source, Indicator, or Display</td>
<td></td>
</tr>
<tr>
<td>> > Reflective</td>
<td></td>
</tr>
<tr>
<td>17. LCD</td>
<td>159</td>
</tr>
<tr>
<td>What It Does</td>
<td>159</td>
</tr>
<tr>
<td>How It Works</td>
<td>159</td>
</tr>
<tr>
<td>Variants</td>
<td>160</td>
</tr>
<tr>
<td>Active and Passive Types</td>
<td>161</td>
</tr>
<tr>
<td>Crystal Types</td>
<td>161</td>
</tr>
<tr>
<td>Seven-Segment Displays</td>
<td>161</td>
</tr>
<tr>
<td>Additional Segments</td>
<td>162</td>
</tr>
<tr>
<td>Dot-Matrix Displays</td>
<td>163</td>
</tr>
<tr>
<td>Color</td>
<td>166</td>
</tr>
<tr>
<td>Backlighting Options</td>
<td>167</td>
</tr>
<tr>
<td>Zero-Power Displays</td>
<td>167</td>
</tr>
<tr>
<td>How to Use It</td>
<td>167</td>
</tr>
<tr>
<td>Numeric Display Modules</td>
<td>167</td>
</tr>
<tr>
<td>Alphanumeric Display Module</td>
<td>168</td>
</tr>
<tr>
<td>What Can Go Wrong</td>
<td>169</td>
</tr>
<tr>
<td>Temperature Sensitivity</td>
<td>169</td>
</tr>
<tr>
<td>Excessive Multiplexing</td>
<td>170</td>
</tr>
<tr>
<td>DC Damage</td>
<td>170</td>
</tr>
<tr>
<td>Bad Communications Protocol</td>
<td>170</td>
</tr>
<tr>
<td>Wiring Errors</td>
<td>170</td>
</tr>
<tr>
<td>> > Single Source</td>
<td></td>
</tr>
<tr>
<td>18. Incandescent Lamp</td>
<td>171</td>
</tr>
<tr>
<td>What It Does</td>
<td>171</td>
</tr>
<tr>
<td>History</td>
<td>172</td>
</tr>
<tr>
<td>How It Works</td>
<td>172</td>
</tr>
<tr>
<td>Spectrum</td>
<td>173</td>
</tr>
<tr>
<td>Non-Incandescent Sources</td>
<td>174</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>175</td>
</tr>
<tr>
<td>Variants</td>
<td>175</td>
</tr>
<tr>
<td>Miniature Lamps</td>
<td>175</td>
</tr>
<tr>
<td>Panel-Mount Indicator Lamps</td>
<td>176</td>
</tr>
<tr>
<td>Halogen or Quartz-Halogen</td>
<td>176</td>
</tr>
<tr>
<td>Oven Lamps</td>
<td>176</td>
</tr>
<tr>
<td>Base Variants</td>
<td>177</td>
</tr>
<tr>
<td>Values</td>
<td>177</td>
</tr>
<tr>
<td>Power</td>
<td>177</td>
</tr>
<tr>
<td>Illuminance</td>
<td>178</td>
</tr>
</tbody>
</table>
19. neon bulb ... 183
 What It Does .. 183
 How It Works .. 184
 Construction .. 184
 Ionization ... 184
 Negative Resistance ... 185
 How to Use It .. 186
 Limited Light Output .. 187
 Efficiency ... 187
 Ruggedness .. 187
 Power-Supply Testing ... 188
 Life Expectancy ... 188
 Variants ... 189
 Nixie Tubes .. 189
 What Can Go Wrong ... 189
 False Indication ... 189
 Failure in a Dark Environment 189
 Premature Failure with DC 190
 Premature Failure through Voltage Fluctuations 190
 Replacement .. 190

20. fluorescent light ... 191
 What It Does .. 191
 How It Works .. 191
 Ballast and Starter .. 192
 Flicker ... 193
 Variants ... 193
 CCFLs ... 194
 Sizes ... 194
 Comparisons .. 194
 Values ... 195
 Brightness ... 195
 Spectrum ... 195
 What Can Go Wrong ... 195
 Unreliable Starting ... 195
 Terminal Flicker .. 195
21. Laser

What It Does ... 197
How It Works ... 198
 - Laser Diode .. 198
 - Coherent Light 200
Variants ... 201
 - CO2 Lasers ... 201
 - Fiber Lasers ... 201
 - Crystal Lasers 201
Values ... 201
How to Use It ... 202
 - Common Applications 202
What Can Go Wrong 202
 - Risk of Injury 202
 - Inadequate Heat Sink 202
 - Uncontrolled Power Supply 203
 - Polarity ... 203

22. LED Indicator

What It Does ... 205
Schematic Symbols 206
Common Usage .. 206
How It Works ... 207
 - Multicolor LEDs and Color Mixing 207
Variants ... 208
 - Size and Shape 208
 - Intensity .. 208
 - Efficacy .. 208
 - Diffusion ... 209
 - Wavelength and Color Temperature 209
 - Internal Resistor 210
 - Multicolored .. 210
 - Infrared .. 211
 - Ultraviolet ... 211
Values ... 211
 - Forward Current 211
 - Low-Current LEDs 211
 - Forward Voltage 212
 - Color Rendering Index 212
 - Life Expectancy 212
 - Light Output and Heat 212
 - View Angle .. 213
How to Use It ... 213
 - Polarity ... 213
 - Series Resistor Value 214
23. LED area lighting 217
 What It Does .. 217
 Trends in Cost and Efficiency 218
 Schematic Symbol 218
 How It Works .. 218
 Visible Differences 220
 Side-by-Side Comparison 220
 Heat Dissipation 222
 Efficacy .. 222
 Dimming .. 222
 Ultraviolet Output 222
 Color Variation 222
 Variants ... 223
 Comparisons 223
 Values .. 225
 What Can Go Wrong 225
 Wrong Voltage 225
 Overheating .. 225
 Fluorescent Ballast Issues 225
 Misleading Color Representation 226

> > MULTI-SOURCE OR PANEL

24. LED display 227
 What It Does .. 227
 How It Works 228
 Variants ... 228
 LCD comparisons 228
 Seven-Segment Displays 228
 Multiple Numerals 229
 Additional Segments 229
 Dot-Matrix Displays 230
 Pixel Arrays .. 231
 Multiple Bar Display 232
 Single Light Bar 232
 Values .. 232
 How to Use It 232
 Seven-Segment Basics 232
Driver Chips and Multiplexing ... 233
Sixteen-Segment Driver Chip ... 234
Dot-Matrix LED Display Modules 234
Pixel Arrays ... 235
Multiple Bar Display Driver .. 236
One-Digit Hexadecimal Dot Matrix 236
What Can Go Wrong ... 237
Common Anode versus Common Cathode 237
Incorrect Series Resistance .. 237
Multiplexing Issues ... 237

25. vacuum-fluorescent display 239
 What It Does .. 239
 How It Works .. 239
 Anode, Cathode, and Grid 240
 How to Use It .. 240
 Modern Application .. 241
 Variants .. 241
 Color .. 241
 Character Sets and Pictorial Design 242
 Comparisons .. 242
 What Can Go Wrong .. 242
 Fading ... 242

26. electroluminescence .. 243
 What It Does .. 243
 How It Works .. 243
 Phosphors .. 244
 Derivation .. 244
 Variants .. 244
 Panels ... 244
 Flexible Ribbons ... 245
 Rope Light .. 245
 OLED ... 246

27. transducer .. 249
 What It Does .. 249
 How It Works .. 249
 Variants .. 250
 Electromagnetic ... 250
 Piezoelectric .. 250
 Ultrasonic Transducer ... 250
 Formats ... 251
 Values ... 251
Frequency Range ... 251
Sound Pressure .. 251
Weighted Sound Values 252
Unweighted Values 253
Measurement Location 253
Limitations .. 253
Voltage ... 254
Current ... 254
How to Use It .. 254
 Appropriate Sound Intensity 254
 Volume Control ... 254
 AC Supply ... 254
 Self-Drive Transducer Circuit 254
What Can Go Wrong 254
 Overvoltage ... 254
 Leakage .. 255
 Component Mounting Problems 255
 Moisture .. 255
 Transducer-Indicator Confusion 255
 Connection with a Microcontroller 255

28. audio indicator ... 257
 What It Does ... 257
 How It Works .. 257
 Audio Frequency 258
 History ... 258
 Variants .. 258
 Sound Patterns 258
 Formats ... 258
 Values .. 259
 Voltage ... 259
 Current .. 260
 Frequency .. 260
 Duty Cycle ... 260
 How to Use It .. 260
 Appropriate Sound Intensity 260
 Volume Control 260
 Wiring .. 260
 What Can Go Wrong 260

> > REPRODUCER

29. headphone ... 261
 What It Does ... 261
 How It Works .. 261
 Audio Basics ... 261
 Variants .. 262
 Moving Coil ... 262
 Other Types .. 263
This is the second of three volumes. Its purpose is to provide an overview of the most commonly used electronic components, for reference by students, engineers, hobbyists, and instructors. While you can find much of this information dispersed among datasheets, introductory books, websites, and technical resources maintained by manufacturers, the *Encyclopedia of Electronic Components* gathers all the relevant facts in one place, properly organized and verified, including details that may be hard to find elsewhere. Each entry includes typical applications, possible substitutions, cross-references to similar devices, sample schematics, and a list of common problems and errors.

You can find a more detailed rationale for this encyclopedia in the Preface to Volume 1.

Volume Contents

Practical considerations influenced the decision to divide this encyclopedia into three volumes. Each deals with broad subject areas as follows.

Volume 1

Power; electromagnetic devices; discrete semiconductors

The *power* category includes sources of electricity and methods to distribute, store, interrupt, convert, and regulate power. The *electromagnet-ic devices* category includes devices that exert force linearly, and others that create a turning force. *Discrete semiconductors* include the primary types of diodes and transistors. A contents listing for Volume 1 appears in Figure P-1.

Volume 2

Thyristors (SCRs, diacs, and triacs); integrated circuits; light sources, indicators, and displays; and sound sources

Integrated circuits are divided into analog and digital components. *Light sources, indicators, and displays* are divided into reflective displays, single sources of light, and displays that emit light. *Sound sources* are divided into those that create sound, and those that reproduce sound. A contents listing for Volume 2 appears in Figure P-2.

Volume 3

Sensing devices

The field of sensors has become so extensive, they easily merit a volume to themselves. *Sensing devices* include those that detect light, sound, heat, motion, pressure, gas, humidity, orientation, electricity, proximity, force, and radiation.

At the time of writing, Volume 3 is still in preparation, while Volume 1 is complete and is available in a variety of formats.
<table>
<thead>
<tr>
<th>Primary Category</th>
<th>Secondary Category</th>
<th>Component Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>source</td>
<td>battery</td>
</tr>
<tr>
<td></td>
<td>connection</td>
<td>jumper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pushbutton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rotary switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rotational encoder</td>
</tr>
<tr>
<td>moderation</td>
<td>relay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>resistor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>potentiometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>capacitor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable capacitor</td>
<td></td>
</tr>
<tr>
<td>conversion</td>
<td>inductor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC-AC transformer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC-DC power supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC-DC converter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC-AC inverter</td>
<td></td>
</tr>
<tr>
<td>regulation</td>
<td>voltage regulator</td>
<td></td>
</tr>
<tr>
<td>electromagnetism</td>
<td>linear output</td>
<td>electromagnet</td>
</tr>
<tr>
<td></td>
<td>solenoid</td>
<td></td>
</tr>
<tr>
<td>rotational output</td>
<td>DC motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>servo motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stepper motor</td>
<td></td>
</tr>
<tr>
<td>discrete semiconductor</td>
<td>single junction</td>
<td>diode</td>
</tr>
<tr>
<td></td>
<td>unijunction transistor</td>
<td></td>
</tr>
<tr>
<td>multi-junction</td>
<td>bipolar transistor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>field-effect transistor</td>
<td></td>
</tr>
<tr>
<td>light source, indicator or display</td>
<td>reflective single source</td>
<td>LCD</td>
</tr>
<tr>
<td></td>
<td>incandescent lamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neon bulb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fluorescent light</td>
<td></td>
</tr>
<tr>
<td></td>
<td>laser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED area lighting</td>
<td></td>
</tr>
<tr>
<td>multi-source or panel</td>
<td>LED display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vacuum-fluorescent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>electroluminescence</td>
<td></td>
</tr>
<tr>
<td>sound source</td>
<td>audio alert</td>
<td>transducer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>audio indicator</td>
</tr>
<tr>
<td></td>
<td>reproducer</td>
<td>headphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speaker</td>
</tr>
</tbody>
</table>

Figure P-1. The subject-oriented organization of categories and entries in Volume 1.

Figure P-2. The subject-oriented organization of categories and entries in Volume 2.
Organization

Reference versus Tutorial
As its title suggests, this is a reference book, not a tutorial. A tutorial begins with elementary concepts and builds sequentially toward concepts that are more advanced. A reference book assumes that you may dip into the text at any point, learn what you need to know, and then put the book aside. If you choose to read it straight through from beginning to end, you will find some repetition, as each entry is intended to be self-sufficient, requiring minimal reference to other entries.

My books Make: Electronics and Make: More Electronics follow a tutorial approach. They don’t go into as much depth as this Encyclopedia, because a tutorial inevitably allocates a lot of space to step-by-step explanations and instructions.

Theory and Practice
This book is oriented toward practicality rather than theory. I assume that the reader mostly wants to know how to use electronic components, rather than why they work the way they do. Consequently, I have not included proofs of formulae or definitions rooted in electrical theory. Units are defined only to the extent necessary to avoid confusion.

Many books on electronics theory already exist, if theory is of interest to you.

Entries
This encyclopedia is divided into entries, each entry being devoted to one broad type of component. Two rules determine whether a component has an entry all to itself, or is subsumed into another entry:

Rule 1
A component merits its own entry if it is (a) widely used, or (b) not so widely used but has a unique identity and maybe some historical status. The bipolar transistor entry is an example of a widely used component, whereas the unijunction transistor entry is an example of a not so widely used component with a unique identity.

Rule 2
A component does not merit its own entry if it is (a) seldom used, or (b) very similar in function to another component that is more widely used. For example, a rheostat is subsumed into the potentiometer section, while silicon diode, Zener diode, and germanium diode are combined together in the diode entry.

Inevitably, these guidelines required judgment calls which in some cases may seem arbitrary. My ultimate decision was based on where I would expect to find a component if I was looking for it myself.

Subject Paths
Entries are not organized alphabetically. They are grouped by subject, in much the same way that books in the nonfiction section of some libraries are organized by the Dewey Decimal System. This is convenient if you don’t know exactly what you are looking for, or if you don’t know all the options that may be available to perform a task that you have in mind.

Each primary category is divided into subcategories, and the subcategories are divided into component types. This hierarchy is shown in Figure P-2. It is also apparent when you look at the top of the first page of each entry, where you will find the path that leads to it. The diac entry, for instance, is headed with this path:

discrete semiconductor > thyristor > diac

Any classification scheme will run into exceptions. You can buy a chip containing a resistor array, for instance. Technically, this is an analog integrated circuit, but a decision was made to put it in the resistor section of Volume 1, because it can be directly substituted for a group of resistors.
Some components have hybrid functions. A multiplexer, for instance, may pass analog signals and may have “analog” in its name. However, it is digitally controlled and is mostly used in conjunction with other digital integrated circuits. This seemed to justify placing it in the digital category.

Inclusions and Exclusions

There is also the question of what is, and is not, a component. Is wire a component? Not for the purposes of this encyclopedia. How about a DC-DC converter? Because converters are now sold in small packages by component suppliers, they are included in Volume 1 as components.

Many similar decisions had to be made on a case-by-case basis. Some readers will disagree with the outcome, but reconciling all the disagreements would have been impossible. The best I could do was to create a book which is organized in the way that would suit me best if I were using it myself.

Typographical Conventions

Within each entry, **bold type** is used for the first occurrence of the name of a component that has its own entry elsewhere. Other important electronics terms or component names may be presented in *italics*.

The names of components, and the categories to which they belong, are all set in lowercase type, except where a term is normally capitalized because it is an acronym or a trademark. The term *Trimpot*, for instance, is trademarked by Bourns, but *trimmer* is not. *LED* is an acronym, but *cap* (abbreviation for capacitor) is not.

The European convention for representing fractional component values eliminates decimal points. Thus, values such as 3.3K and 4.7K are expressed as 3K3 and 4K7. This style has not been adopted to a significant degree in the United States, and is not used in this encyclopedia.

In mathematical formulae, I have used the style that is common in programming languages. The * (asterisk) is used as a multiplication symbol, while the / (forward slash) is used as a division symbol. Where some terms are in parentheses, they must be dealt with first. Where parentheses are inside parentheses, the innermost ones must be dealt with first. So, in this example:

\[A = \frac{30}{7 + (4 \times 2)} \]

You would begin by multiplying 4 times 2, to get 8; then add 7, to get 15; then divide that into 30, to get the value for A, which is 2.

Visual Conventions

Figure P-3 shows the conventions that are used in the schematics in this book. A black dot always indicates a connection, except that to minimize ambiguity, the configuration at top right is avoided, and the configuration at top center is used instead. Conductors that cross each other without a black dot do not make a connection. The styles at bottom right are sometimes seen elsewhere, but are not used here.

All the schematics are formatted with pale blue backgrounds. This enables components such as switches, transistors, and LEDs to be highlighted in white, drawing attention to them and clarifying the boundary of the component. The white areas have no other meaning.

Photographic Backgrounds

All photographs of components include a background grid that is divided into squares measuring 0.1". Although the grid is virtual, it is equivalent in scale to physical graph paper placed immediately behind the component. If the component is photographed at an angle, the grid may be reproduced at a similar angle, creating perspective on the squares.

Background colors in photographs were chosen for contrast with the colors of the components, or for visual variety. They have no other significance.
Component Availability

Because there is no way of knowing if a component may have a long production run, this encyclopedia is cautious about listing specific part numbers. To find a specific part that has a narrow function, searching the websites maintained by suppliers will be necessary. The following suppliers were checked frequently during the preparation of the book:

- Mouser Electronics
- Jameco Electronics

When seeking obsolete parts, or those that are nearing the end of their commercial life, eBay can be very useful.

Issues and Errata

If you believe you have found an error in this book, you will find guidance on how to report it here: http://bit.ly/eec_v2_errata.

Before posting your own erratum, please check those that have been submitted previously, to see if someone else already reported it.

I value and encourage reader feedback. However, before you post feedback publicly to a site such as Amazon, I have a request. Please be aware of the power that you have as a reader, and use it fairly. A single negative review can create a bigger effect than you may realize. It can certainly outweigh half-a-dozen positive reviews. If you feel you have not received a prompt or adequate response from the O’Reilly errata site mentioned here, you can email me personally at:

make.electronics@gmail.com

I check that address irregularly—sometimes only once in a couple of weeks. But I do answer all messages.

Safari® Books Online

Safari® Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Make:
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Make: unites, inspires, informs, and entertains a growing community of resourceful people who undertake amazing projects in their backyards, basements, and garages. Make: celebrates your right to tweak, hack, and bend any technology to your will. The Make: audience continues to be a growing culture and community that believes in bettering ourselves, our environment, our educational system—our entire world. This is much more than an audience, it’s a worldwide movement that Make: is leading—we call it the Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at: http://bit.ly/encyclopedia_of_electronic_components_v2.

Acknowledgments

Any reference work draws inspiration from many sources. Datasheets and tutorials maintained by component manufacturers were considered the most trustworthy sources of information online. In addition, component retailers, college texts, crowd-sourced reference works, and hobbyist sites were used. The following books provided useful information:

I also made extensive use of information on vendor sites, especially:

- Mouser Electronics
- Jameco Electronics
- All Electronics
- sparkfun
- Electronic Goldmine
- Adafruit
- Parallax, Inc.

In addition, some individuals provided special assistance. My editor, Brian Jepson, was immensely helpful in the development of this book. Philipp Marek and Steve Conklin reviewed the text for errors. My publisher demonstrated faith in my work. Kevin Kelly unwittingly influenced me with his legendary interest in “access to tools.” It was Mark Frauenfelder who originally brought me back to the pleasures of building things, and Gareth Branwyn who revived my interest in electronics.

Lastly, I should mention my school friends from decades ago: Patrick Fagg, Hugh Levinson, Graham Rogers, William Edmondson, and John Witty, who helped me to feel that it was OK to be a nerd building my own audio equipment, long before the word “nerd” actually existed.

—Charles Platt, 2014
The acronym **SCR** is derived from *silicon-controlled rectifier*, which is a gate-triggered type of *thyristor*. A thyristor is defined here as a semiconductor having four or more alternating layers of p-type and n-type silicon. Because it predated integrated circuits, and in its basic form consists of a single multilayer semiconductor, a thyristor is considered to be a discrete component in this encyclopedia. When a thyristor is combined with other components in one package (as in a **solid-state relay**), it is considered to be an integrated circuit.

Other types of thyristor are the **diac** and **triac**, each of which has its own entry.

Thyristor variants that are not so widely used, such as the **gate turn-off thyristor (GTO)** and **silicon-controlled switch (SCS)**, do not have entries here.

OTHER RELATED COMPONENTS

- **diac** (see Chapter 2)
- **triac** (see Chapter 3)

What It Does

In the 1920s, the **thyratron** was a gas-filled tube that functioned as a switch and a rectifier. In 1956, General Electric introduced a solid-state version of it under the name **thyristor**. In both cases, the names were derived from the thyroid gland in the human body, which controls the rate of consumption of energy. The thyratron and, subsequently, the thyristor enabled control of large flows of current.

The **SCR** (silicon-controlled rectifier) is a type of thyristor, although the two terms are often used as if they are synonymous. Text that refers loosely to a thyristor may actually be discussing an SCR, and vice versa. In this encyclopedia, the **SCR, diac, and triac** are all considered to be variant types of thyristor.

An SCR is a solid-state switch that in many instances can pass high currents at high voltages. Like a **bipolar transistor**, it is triggered by voltage applied to a gate. Unlike the transistor, it allows the flow of current to continue even when the gate voltage diminishes to zero.

How It Works

This component is designed to pass current in one direction only. It can be forced to conduct in the opposite direction if the reversed potential exceeds its **breakdown voltage**, but this mistreatment is likely to cause damage.

By comparison, the diac and triac are designed to be bidirectional.

The SCR has three leads, identified as anode, cathode, and gate. Two functionally identical versions of the schematic symbol are shown in **Figure 1-1**. Early versions sometimes included a circle drawn around them, but this style has become obsolete. Care must be taken to distinguish...
between the SCR symbol and the symbol that represents a **programmable unijunction transistor (PUT)**, shown in Figure 1-2.

Figure 1-1. Two functionally identical schematic symbols for an SCR (silicon-controlled rectifier). The symbol on the left is more common.

Figure 1-2. The symbol shown here is for a programmable unijunction transistor (PUT). Care must be taken to distinguish it from the symbol for an SCR.

Switching Behavior

When the SCR is in its passive or nonconductive state, it will block current in either direction between anode and cathode, although a very small amount of **leakage** typically occurs. When the SCR is activated by a positive voltage at the gate, current can now flow from anode to cathode, although it is still blocked from cathode to anode. When the flow reaches a level known as the **latching current**, the flow will continue even after the triggering voltage drops to zero. This behavior causes it to be known as a **regenerative** device.

If the current between anode and cathode starts to diminish while the gate voltage remains zero, the current flow will continue below the latching level until it falls below the value known as the **holding current**. The flow now ceases. Thus, the only way to end a flow of current that has been initiated through an SCR is by reducing the flow or attempting to reverse it.

Note that the self-sustaining flow is a function of current rather than voltage.

Unlike a transistor, an SCR is either “on” or “off” and does not function as a **current amplifier**. Like a diode, it is designed to conduct current in one direction; hence the term **rectifier** in its full name. When it has been triggered, the impedance between its anode and cathode is sufficiently low that heat dissipation can be managed even at high power levels.

The ability of SCRs to pass relatively large amounts of current makes them suitable for controlling the power supplied to motors and resistive heating elements. The fast switching response also enables an SCR to interrupt and abbreviate each positive phase of an AC waveform, to reduce the average power supplied. This is known as **phase control**.

SCRs are also used to provide **overvoltage protection**.

SCR packages reflect their design for a wide range of voltages and currents. Figure 1-3 shows an SCR designed for on-state current of 4A RMS (i.e., measured as the root mean square of the alternating current). Among its applications are small-engine ignition and crowbar overvoltage protection, so named because it shorts a power supply directly to ground, much like a crowbar being dropped across the terminals of a car battery (but hopefully with a less dramatic outcome). See Figure 1-15.

In Figure 1-4, the SCR can handle up to 800V repetitive peak off-state voltage and 55A RMS. Possible applications include AC rectification, crowbar protection, welding, and battery charging. The component in Figure 1-5 is rated for 25A and 50V repetitive peak off-state voltage. To assess the component sizes, bear in mind that the graph line spacing is 0.1".
When voltage is applied to the “gate,” the lower transistor starts to sink current from the upper transistor. This switches it on. The two transistors now continue to conduct even if power to the “gate” is disconnected, because they have created a positive feedback loop.

The function of an SCR can be imagined as being similar to that of a PNP transistor paired with an NPN transistor, as shown in Figure 1-6. In this simplified schematic, so long as zero voltage is applied to the “gate” wire, the lower (NPN) transistor remains nonconductive. Consequently, the upper (PNP) transistor cannot sink current, and this transistor also remains nonconductive.

Figure 1-3. SCR rated for 400V repetitive off-state voltage, no greater than 4A RMS.

Figure 1-4. SCR rated for 800V repetitive off-state voltage, no greater than 55A RMS.

Figure 1-5. Stud-packaged SCR rated for 50V repetitive off-state voltage, no greater than 25A RMS.

Figure 1-6. An SCR behaves similarly to an NPN and a PNP transistor coupled together.

Figure 1-7 shows the same two transistors in simplified form as sandwiches of p-type and n-type silicon layers (on the left), and their combination in an SCR (on the right). Although the actual configuration of silicon segments is not as simple or as linear as this diagram suggests, the SCR can be described correctly as a PNPN device.
An SCR is comparable with an electromagnetic latching relay, except that it works much faster and more reliably.

Figure 1-7. The two transistors from the previous figure are shown here in simplified form as two stacks of p-type and n-type silicon layers. These layers are combined in an SCR, on the right.

Breakdown and Breakover Voltage

The curves in Figure 1-8 illustrate the behavior of a hypothetical SCR, and can be compared with the curves shown for a diac in Figure 2-5 and a triac in Figure 3-10. Beginning with zero voltage applied between anode and cathode, and zero current flowing (i.e., at the center origin of the graph), if we apply a voltage at the anode that is increasingly negative relative to the cathode (i.e., we attempt to force the SCR to allow negative current flow), we see a small amount of leakage, indicated by the darker blue area (which is not drawn to scale). Finally the breakdown voltage is reached, at which point the negative potential overcomes the SCR and its impedance drops rapidly, allowing a surge of current to flow, probably damaging it.

Alternatively, starting once again from the center, if we apply a voltage at the anode that is increasingly positive relative to the cathode, two consequences are possible. The dashed curve assumes that there is zero voltage at the gate, and shows that some leakage occurs until the applied potential at the anode reaches the breakover voltage, at which point the SCR allows a large current flow, which continues even when the voltage decreases.

In practice, the SCR is intended to respond to a positive gate voltage. Under these circumstances, its behavior is shown by the solid curve in the top-right quadrant in Figure 1-8. The SCR begins to conduct current without having to reach the breakover voltage at the anode.

- When used as it is intended, the SCR should not reach breakdown or breakover voltage levels.

SCR Concept Demo

In Figure 1-9, pushbutton S1 applies voltage to the gate of the SCR, which puts the SCR in self-sustaining conductive mode. When S1 is released, the meter will show that current continues to pass between the anode and the cathode. The X0403DF SCR suggested for this circuit has a holding current of 5mA, which a 5VDC supply should be able to provide with the 1K resistor in
the circuit. If necessary, this resistor can be reduced to 680Ω.

Now if pushbutton S2 is pressed, the flow is interrupted. When S2 is released, the flow will not resume. Alternatively, if pushbutton S3 is pressed while the SCR is conducting current, the flow is diverted around the SCR, and when the pushbutton is released, the flow through the SCR will not resume. Thus, the SCR can be shut down either by a normally closed pushbutton in series with it (which will interrupt the current), or a normally open pushbutton in parallel with it (which will divert the current).

![Figure 1-9. In this test circuit, S1 triggers the SCR, while S2 or S3 will stop it. See text for additional details.](image)

The test circuit is shown installed on a breadboard in Figure 1-10. In this photograph, the red and blue wires supply a minimum of 5VDC. The two red buttons are tactile switches, the one at top left being S1 in the schematic while the one at bottom right is S3. The large switch with a rectangular button is S2; this is normally closed, and opens when pressed. The X0403DF SCR is just below it and to the right. The square blue trimmer is set to the midpoint of its range.

AC Current Applications

If the SCR is used with alternating current, it stops conducting during each negative cycle, and is retrigged in each positive cycle. This suggests one of its primary applications, as a controllable rectifier that can switch rapidly enough to limit the amount of current that passes through it during each cycle.

![Figure 1-10. A breadboarded version of the SCR test circuit. The two red buttons correspond with S1 and S3 in the schematic, while the large rectangular button at top right opens S2. See text for details.](image)

Variants

SCRs are available in surface-mount, through-hole, and stud packages, to handle increasing currents and voltages. Some special-purpose SCRs can control currents of hundreds of amps, while high-power SCRs are used to switch thousands of amps at more than 10,000V in power distribution systems. They are too specialized for inclusion in this encyclopedia.

Typical power ratings for SCRs in general use are summarized in the next section.

Values

Any SCR will impose a forward voltage drop, which typically ranges from around 1V to 2V, depending on the component.

Because SCRs are often used to modify AC waveforms, the current that the component can pass is usually expressed as the root mean square (RMS) of its peak value.