

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA2270T Low-Voltage, Dual-SPDT (0.4 Ω) Analog Switch with Negative Swing Audio Capability

Features

- 0.4Ω Typical On Resistance (Ron) for +3.0 V Supply
- 0.25Ω Maximum Ron Flatness for +3.0 V Supply
- -3 db Bandwidth: > 50 MHz
- Low-I ${ }_{\text {Cct }}$ Current Over Expanded Control Input Range
- Packaged in 10-Lead UMLP
- Power-Off Protection on Common Ports
- Broad Vcc Operating Range: 1.65 to 4.3 V
- Noise Immunity Termination Resistors
- Low Electrostatic Discharge (ESD)
- Human Body Model (JEDEC: JESD22-A114)
- Power to GND 16 kV
- I/O to GND 11 kV
- All other pins 8 kV
- Charged Device Model (JEDEC: JESD22-A101)

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

IMPORTANT NOTE:

For additional information, please contact analogswitch@fairchildsemi.com.

Description

The FSA2270T is a high-performance, dual Single-Pole Double-Throw (SPDT) analog switch with negative swing audio capability. The FSA2270T features ultra-low Ron of 0.4Ω (typical) at $3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$. The FSA2270T operates over a wide V_{cc} range of 1.65 V to 4.3 V , is fabricated with sub-micron CMOS technology to achieve fast switching speeds, and is designed for break-before-make operation. The select input is TTL-level compatible.

The FSA2270T features very low quiescent current even when the control voltage is lower than the V_{cc} supply. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose I/Os with minimal battery consumption.
The FSA2270T includes termination resistors that improve noise immunity during overshoot excursions, off-isolation coupling, or "pop-minimization."

Figure 1. Analog Symbol

Ordering Information

Part Number	Top Mark	Package Description
FSA2270TUMX	HK	10 -Lead, Quad Ultrathin Molded Leadless Package (UMLP), $1.4 \times 1.8 \mathrm{~mm}$, 0.4 mm Pitch

Pin Configuration

Figure 2. $10-\mathrm{Pin}$ UMLP (Top Through View)

Pin Descriptions

Pin\#	Name	
1	$\mathrm{~V}_{\mathrm{cc}}$	Description
3,9	$1 \mathrm{~A}, 2 \mathrm{~A}$	Dapply Voltage Points
4,8	S1, S2	Switch Select Pins
5,7	$1 \mathrm{~B} 0,2 \mathrm{B0}$	Data Ports
6	GND	Ground
2,10	$1 B 1,2 \mathrm{~B} 1$	Data Ports

Truth Table

Control Input, Sn	Function
LOW Logic Level	nB0 connected to nA; nB1 terminated to GND
HIGH Logic Level	nB1 connected to nA; nB0 terminated to GND

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. Functional operation above the recommended operating conditions is not implied. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. Absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
$V_{c c}$	Supply Voltage		-0.5	5.5	V
$V_{\text {sw }}$	Switch I/O Voltage ${ }^{(1)}$	1B0, 1B1, 2B0, 2B1	$\mathrm{V}_{\mathrm{cc}}-4.3$	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$	S1, S2	-0.5	$\mathrm{V}_{\mathrm{Cc}}+0.3$	
IK	Input Clamp Diode Current			-50	mA
Isw	Switch I/O Current (Continuous)			350	mA
Iswpeak	Peak Switch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)			500	mA
TSTG	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature Soldering, 10 Seconds			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	Power to GND		16	kV
		I/O to GND		11	kV
		All Other Pins		8	kV
	Charged Device Model, JEDEC: JESD22-C101			2	kV

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply Voltage	1.65	4.30	V
$\mathrm{~V}_{\mathrm{S} 1, \mathrm{~s} 2}$	Control Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	$\mathrm{V}_{\mathrm{CC}}-4.3$	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Units
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IH }}$	Input Voltage High		3.60 to 4.30				1.7		
			2.70 to 3.60				1.5		V
			2.30 to 2.70				1.4		
			1.65 to 1.95				0.9		
VIL	Input Voltage Low		3.60 to 4.30					0.7	V
			2.70 to 3.60					0.5	V
			2.30 to 2.70					0.4	
			1.65 to 1.95					0.4	
$\mathrm{IIN}^{\text {N }}$	Control Input Leakage (S1, S2)	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$	1.65 to 4.30				-0.5	0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port nA	$\begin{aligned} & \mathrm{nA}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.5 \mathrm{~V} \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}, 0.5 \mathrm{~V} \text {, or } \\ & \text { Floating } \\ & \text { Figure } 5 \end{aligned}$	1.95 to 4.30				-1	1	$\mu \mathrm{A}$
loff	Power-Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, 2A), $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$ $\mathrm{nB0}, \mathrm{nB1}=0 \mathrm{~V}$ or Floating	0				-45	45	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(2,5)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{oN}}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0.7 \mathrm{~V}, 3.6 \mathrm{~V}, 4.3 \mathrm{~V} \end{aligned}$ Figure 3	4.30		0.30				Ω
		$\begin{aligned} & \mathrm{lon}=100 \mathrm{~mA}, \mathrm{nBO} \text { or } \\ & \mathrm{nB1}=0.7 \mathrm{~V}, 3.6 \mathrm{~V}, 4.3 \mathrm{~V} \\ & \text { Figure } 3 \end{aligned}$	3.00		0.40			0.80	
		$\begin{aligned} & \mathrm{lon}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \end{aligned}$ Figure 3	2.30		0.52				
		$\mathrm{l}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{nBO}$ or $\mathrm{nB} 1=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.65 \mathrm{~V}$ Figure 3	1.65		1.00				
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching Between Channels ${ }^{(3)}$	$\begin{aligned} & \mathrm{l}_{\mathrm{oN}}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0.7 \mathrm{~V} \end{aligned}$	4.30		0.04			0.13	Ω
			3.00		0.06			0.13	
			2.30		0.12				
			1.65		1.00				
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & \mathrm{l}_{\mathrm{lout}}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}} \end{aligned}$	4.30					0.25	Ω
			3.00					0.25	
			2.30		0.5				
			1.65		0.6				
$\mathrm{R}_{\text {TERM }}$	Internal Termination Resistors ${ }^{(5)}$				10				k Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cC }}$, $\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	4.30	-100		100	-500	500	nA
$\mathrm{I}_{\text {cct }}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input	Input at 2.6 V	4.30		3.0			10.0	$\mu \mathrm{A}$
		Input at 1.8 V			7.0			15.0	

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
3. $\Delta R_{\mathrm{ON}}=$ Ronmax - Ronmin measured at identical V_{cc}, temperature, and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of on resistance (Ron) over the specified range of conditions.
5. Guaranteed by characterization, not production tested.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Units	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30			60	15	65	ns	Figure 6 Figure 7
			2.70 to 3.60			65	15	70		
			2.30 to 2.70			80	15	85		
			1.65 to 1.95		100					
toff	Turn-Off Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30			55	5	60	ns	Figure 6 Figure 7
			2.70 to 3.60			60	5	65		
			2.30 to 2.70			65	5	70		
			1.65 to 1.95		65					
$\mathrm{t}_{\text {Bbм }}$	Break-BeforeMake Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30		3		1		ns	Figure 8
			2.70 to 3.60		5		2			
			2.30 to 2.70		10		2			
			1.65 to 1.95		15		2			
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$	1.65 to 4.30		25				pC	Figure 12
OIRR	Off Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	1.65 to 4.30		-70				dB	Figure 10
Xtalk	Crosstalk	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	1.65 to 4.30		-70				dB	Figure 11
BW	$-3 \mathrm{db}$ Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	1.65 to 4.30		>50				MHz	Figure 9
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{~V}_{\mathrm{BIAS}}=0 \mathrm{~V} \end{aligned}$	1.65 to 4.30		. 06				\%	Figure 15

Capacitance

Symbol	Parameter	Conditions	V cc (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Units	Figure
				Min.	Typ.	Max.		
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0		2.5		pF	Figure 13
Coff	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		30		pF	Figure 13
Con	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		120		pF	Figure 14

Test Diagrams

Figure 3. On Resistance

Each switch port is tested separately.

Figure 4. Off Leakage

Figure 6. Test Circuit Load

Figure 7. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

Figure 8. Break-Before-Make Interval Timing

C_{L} includes test fixture and stray capacitance.
Figure 9. Bandwidth

Figure 10. Channel Off Isolation

Test Diagrams (Continued)

Figure 11. Adjacent Channel Crosstalk

Figure 12. Charge Injection Test

Figure 13. Channel Off Capacitance

Figure 14. Channel On Capacitance

Figure 15. Total Harmonic Distortion

Physical Dimensions

Figure 16. 10-Lead, Quad Ultrathin Molded Leadless Package (UMLP)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packagingl.

Table 1. Nominal Values

JEDEC Symbol	Description	Nominal Values (mm)
A	Overall Height	0.5
A1	Package Standoff	0.026
A3	Lead Thickness	0.152
b	Lead Width	0.2
L	Lead Length	0.4
e	Lead Pitch	0.4
D	Body Length (Y)	1.8
E	Body Width (X)	1.4

DISCLAIMER

FAIRCHID SEMICONDUCTOR RESERVES THERIGHT TOMAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY, FUNCTION, OR DESIGN. FAIRCHILD DOESNOT ASSUME ANY LIABILTY ARISING OUT OF THE APPLICATION ORUSE OF ANY PRODUCT OR CIRCUITDESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRGHTS, NOR THERIGHTS OF OTHERS. THESE SPECIFICATIONS DONOTEXPAND THE TERMSOF FARCHID'S VORLDMDE TERMS AND CONDITONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHID'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APFROVAL OF FAIRCHID SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whw.fairchildsemi.com under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semioonductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address ary warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to cormbat this global problem and encourage our customers to do theirpart in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference infomation only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

