NUS3065MU

Low Profile Overvoltage Protection IC with Integrated MOSFET

This device represents a new level of safety and integration by combining the NCP345 overvoltage protection circuit (OVP) with a 30 V P -channel power MOSFET. It is specifically designed to protect sensitive electronic circuitry from overvoltage transients and power supply faults. During such hazardous events, the IC quickly disconnects the input supply from the load, thus protecting the load before any damage can occur.

The OVP IC is optimized for applications that use an external AC-DC adapter or a car accessory charger to power a portable product or recharge its internal batteries. It has a nominal overvoltage threshold of 6.85 V which makes them ideal for single cell $\mathrm{Li}-\mathrm{Ion}$ as well as $3 / 4$ cell NiCD/NiMH applications.

Features

- OvervoltageTurn-Off Time of Less Than $1.0 \mu \mathrm{~s}$
- Accurate Voltage Threshold of 6.85 V , Nominal
- Undervoltage Lockout Protection; 2.8 V, Nominal
- High Accuracy Undervoltage Threshold of 2.0\%
- -30 V Integrated P-Channel Power MOSFET
- Low $\mathrm{R}_{\mathrm{DS}(\text { on })}=66 \mathrm{~m} \Omega$ @ -4.5 V
- Low Profile 0.55 mm height, 2.5 X 3.0 mm LLGA Package Suitable for Portable Applications
- Maximum Solder Reflow Temperature @ $260^{\circ} \mathrm{C}$
- This device is manufactured with a $\mathrm{Pb}-$ Free external lead finish only.
- This is a $\mathrm{Pb}-$ Free Device

Benefits

- Provide Battery Protection
- Integrated Solution Offers Cost and Space Savings
- Integrated Solution Improves System Reliability

Applications

- Portable Computers and PDAs
- Cell Phones and Handheld Products
- Digital Cameras

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAM

PIN CONNECTIONS

(Bottom View)

ORDERING INFORMATION

Device	Package	Shipping †
NUS3065MUTAG	TLLGA8 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Simplified Schematic

PIN FUNCTION DESCRIPTIONS

Pin \#	Symbol	Pin Description
1	IN	This pin senses an external voltage point. If the voltage on this input rises above the overvoltage threshold $\left(\mathrm{V}_{\mathrm{TH}}\right)$, the OUT pin will be driven to within 1.0 V of V_{CC}, thus disconnecting the P -Channel Power MOSFET. The nominal threshold level is 6.85 V and this threshold level can be increased with the addition of an external resistor between IN and V_{CC}.
2	GND	Circuit Ground
3	CNTRL	This logic signal is used to control the state of OUT and turn-on/off the P-Channel Power MOSFET. A logic High results in the OUT signal being driven to within 1.0 V of V_{CC} which disconnects the FET. If this pin is not used, the input should be connected to ground.
4	DRAIN	Drain pin of the P-Channel Power MOSFET
5	SRC	Source pin of the P-Channel Power MOSFET
6	GATE	Gate pin of the P-Channel Power MOSFET
7	OUT	This signal drives the gate of a P-Channel Power MOSFET. It is controlled by the voltage level on IN or the logic state of the CNTRL input. When an overvoltage event is detected, the OUT pin is driven to within 1.0 V of $\mathrm{V}_{\text {CC }}$ in less than 1.0 _sec provided that gate and stray capacitance is less than 12 nF .
8	V_{CC}	Positive Voltage supply. If V_{CC} falls below 2.8 V (nom), the OUT pin will be driven to within 1.0 V of V_{CC}, thus disconnecting the P -channel FET.

OVERVOLTAGE PROTECTION CIRCUIT TRUTH TABLE

IN	CNTRL	OUT
$<\mathrm{V}_{\text {th }}$	L	GND
$<\mathrm{V}_{\text {th }}$	H	V_{CC}
$>\mathrm{V}_{\text {th }}$	L	V_{CC}
$>\mathrm{V}_{\text {th }}$	H	V_{CC}

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Rating	Pin	Symbol	Min	Max	Unit
OUT Voltage to GND	7	V_{O}	-0.3	30	V
Input and CNTRL Pin Voltage to GND	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$V_{\text {input }}$ $V_{\text {CNTRL }}$	$\begin{aligned} & \hline-0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 30 \\ & 13 \end{aligned}$	V
Vcc Maximum Range	8	$\mathrm{V}_{\mathrm{CC} \text { (max) }}$	-0.3	30	V
Maximum Power Dissipation (Note 1)	-	P_{D}	-	1.0	W
Thermal Resistance Junction-to-Air (Note 1) $\begin{array}{r}\text { OVP IC } \\ \\ \text { P-Channel FET }\end{array}$	-	$\mathrm{R}_{\text {өJA }}$	-	$\begin{aligned} & 342 \\ & 124 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	-	T_{J}	-	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	-	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CNTRL }}$ Operating Voltage	3	-	0	5.0	V
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65	150	${ }^{\circ} \mathrm{C}$
ESD Performance (HBM) (Note 2)	1, 2, 3, 7, 8	-	2.5	-	kV
Drain-to-Source Voltage		$\mathrm{V}_{\text {DSS }}$		-30	V
Gate-to-Source Voltage		V_{GS}	-20	20	V
Continuous Drain Current, Steady State, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)		ID		-1.0	A
Drain Current, Peak (Note 1) $\mathrm{P}_{\mathrm{W}}=500 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$		IDPK		-4.0	A

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 inch sq pad size (Cu area $=1.127$ in sq [1 oz] including traces).
2. Human body model (HBM): MIL STD 883C Method 3015-7, ($R=1500 \Omega, C=100 \mathrm{pF}, \mathrm{F}=3$ pulses delay 1 s$)$.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=6.0 \mathrm{~V}\right.$, unless otherwise specified)

Characteristic	Symbol	Pin	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$ Operating Voltage Range	$\mathrm{V}_{\text {CC(opt) }}$	8	3.0	4.8	25	V
Supply Current ($\mathrm{I}_{\text {cc }}+$ IInput; $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ Steady State)	-	1,8	-	0.75	1.0	mA
Input Threshold ($\mathrm{V}_{\text {Input }}$ connected to V_{Cc}; $\mathrm{V}_{\text {Input }}$ increasing)	$\mathrm{V}_{\text {Th }}$	1	6.65	6.85	7.08	V
Input Hysteresis ($\mathrm{V}_{\text {Input }}$ connected to V_{CC}; $\mathrm{V}_{\text {Input }}$ decreasing)	$\mathrm{V}_{\text {Hyst }}$	1	50	100	200	mV
Input Impedance (Input = $\mathrm{V}_{\text {Th }}$)	$\mathrm{R}_{\text {in }}$	1	70	150	-	$\mathrm{k} \Omega$
CNTRL Voltage High	$V_{\text {ih }}$	3	1.5	-	-	V
CNTRL Voltage Low	V_{il}	3	-	-	0.5	V
CNTRL Current High ($\mathrm{V}_{\text {ih }}=5.0 \mathrm{~V}$)	$\mathrm{l}_{\text {ih }}$	3	-	95	200	$\mu \mathrm{A}$
CNTRL Current Low ($\mathrm{V}_{\mathrm{il}}=0.5 \mathrm{~V}$)	l_{il}	3	-	10	20	$\mu \mathrm{A}$
Undervoltage Lockout (V_{CC} decreasing)	$\mathrm{V}_{\text {Lock }}$	3	2.5	2.8	3.0	V
Output Sink Current ($\left.\mathrm{V}_{\text {CC }}<\mathrm{V}_{\text {Th }}, \mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}\right)$	$\mathrm{I}_{\text {Sink }}$	7	10	33	50	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Voltage High }\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=8.0 \mathrm{~V} \text {; } I_{\text {Source }}=10 \mathrm{~mA}\right) \\ & \text { Output Voltage High }\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=8.0 \mathrm{~V} \text {; } I_{\text {Source }}=0.25 \mathrm{~mA}\right) \\ & \text { Output Voltage High }\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=8.0 \mathrm{~V} \text {; } I_{\text {Source }}=0 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {oh }}$	7	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1.0 \\ \mathrm{~V}_{\mathrm{CC}}-0.25 \\ \mathrm{~V}_{\mathrm{CC}}-0.1 \end{gathered}$	-	-	V
Output Voltage Low (Input $<6.5 \mathrm{~V}$; $\mathrm{I}_{\text {Sink }}=0 \mathrm{~mA}$; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{CNTRL}=0 \mathrm{~V}$)	Vol	7	-	-	0.1	V
Turn ON Delay - Input (Note 3) ($\mathrm{V}_{\text {Input }}$ connected to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\text {Input }}$ step down signal from 8.0 to 6.0 V ; measured to 50% point of OUT)*	Ton In	7	-	-	10	us
Turn OFF Delay - Input ($\mathrm{V}_{\text {Input }}$ connected to $\mathrm{V}_{\mathrm{Cc}} ; \mathrm{V}_{\text {Input }}$ step up signal from 6.0 to 8.0 V ; $\mathrm{C}_{\mathrm{L}}=12 \mathrm{nF}$ Output $>\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$)	TofF IN	7	-	0.5	1.0	us
Turn ON Delay - CNTRL (CNTRL step down signal from 2.0 to 0.5 V ; measured to 50% point of OUT) (Note 3)	TON CT	7	-	-	10	$\mu \mathrm{S}$
Turn OFF Delay - CNTRL (CNTRL step up signal from 0.5 to 2.0 V; $\mathrm{C}_{\mathrm{L}}=12 \mathrm{nF}$ Output $>\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$)	TofF CT	7	-	1.0	2.0	$\mu \mathrm{S}$

3. Guaranteed by design.

P-CHANNEL MOSFET ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Min	Typ	Max	Units
Drain to Source On Resistance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=600 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		$\begin{aligned} & 66 \\ & 66 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mathrm{m} \Omega$
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-24 \mathrm{~V}\right)$	IDSS			-1.0	$\mu \mathrm{A}$
Turn On Delay (Note 4) $\left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=6.0 \Omega, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}\right)$	ton		11		ns
Turn Off Delay (Note 4) $\left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=6.0 \Omega, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}\right)$	$\mathrm{t}_{\text {off }}$		28		ns
Input Capacitance (Note 3) $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$		750		pF
Gate to Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	$I_{\text {GSS }}$		± 10		nA
Drain to Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	30			V
Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {(GS)th }}$	-3.0		-1.0	V

4. Switching characteristics are independent of operating junction temperature.

TYPICAL PERFORMANCE CURVES
($T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified)
OVERVOLTAGE PROTECTION IC

Figure 2. Typical $\mathrm{V}_{\text {th }}$ Threshold Variation vs. Temperature

Figure 3. Typical Supply Current vs. Temperature

$$
I_{c c}+I_{i n}, V_{c c}=6 V
$$

Figure 4. Typical Maximum Drain Peak Current vs Pulse Width (Non-repetitive Single Pulse, $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

NUS3065MU

TYPICAL PERFORMANCE CURVES
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)
30 V, P-CHANNEL MOSFET

Figure 5. On-Region Characteristics

Figure 7. Drain-to-Source Leakage Current vs. Voltage

Figure 6. On-Resistance vs. Gate-to-Source Voltage

Figure 8. Diode Forward Voltage vs. Current

TYPICAL APPLICATION CIRCUITS \& OPERATION WAVEFORMS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Figure 9. Test Circuit for $\mathrm{T}_{\mathrm{ON} \text { IN }}$ and $\mathrm{T}_{\text {OFF IN }}$

Figure 10. ToN in Waveforms

Figure 11. Toff in Waveforms

Figure 12. Test Circuit for T_{ON} CT and $\mathrm{T}_{\text {OFF }}$ CT

NUS3065MU

Figure 13. $\mathrm{T}_{\mathrm{ON}} \mathrm{CT}$ Waveforms

Figure 14. Toff ct Waveforms

PACKAGE DIMENSIONS

LLGA8 3x2.5, 0.65P
CASE 517AH
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSION b APPLIES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.15 AND
AND IS MEASURED BETWEEN
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
A	0.50	0.60	
A1	0.00	0.05	
b	0.35	0.45	
b2	0.45	0.55	
D	3.00 BSC		
D2	1.25		
E	1.35		
E2	2.50		
	BSC	1.65	
e	0.65 BSC		
G	0.05		
REF			
K	0.15		
REF			
L	0.35	0.45	

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

