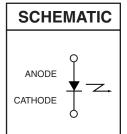


QED121/122/123

PLASTIC INFRARED LIGHT EMITTING DIODE

PACKAGE DIMENSIONS

- 1. Dimensions for all drawings are in inches (mm).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.


FEATURES

- λ = 880 nm
- Chip material = AlGaAs
- Package type: T-1 3/4 (5mm lens diameter)
- Matched Photosensor: QSD122/123/124
- Narrow Emission Angle, 18°
- High Output Power
- Package material and color: Clear, peach tinted, plastic

- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron 1/16" (1.6mm) minimum from housing.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise specified)

Parameter	Symbol	Rating	Unit	
Operating Temperature	T _{OPR}	-40 to +100	°C	
Storage Temperature	T _{STG}	-40 to +100	°C	
Soldering Temperature (Iron)(2,3,4)	T _{SOL-I}	240 for 5 sec	°C	
Soldering Temperature (Flow)(2,3)	T _{SOL-F}	260 for 10 sec	°C	
Continuous Forward Current	I _F	100	mA	
Reverse Voltage	V _R	5	V	
Power Dissipation ⁽¹⁾	P _D	200	mW	

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
Peak Emission Wavelength	$I_F = 20 \text{ mA}$	λ_{PE}	_	880	_	nm
Emission Angle	I _F = 100 mA	Ө	_	±9	_	Deg.
Forward Voltage	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	V _F	_	_	1.7	V
Reverse Current	V _R = 5 V	I _R	_	_	10	μA
Radiant Intensity QED121	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	Ι _Ε	16	_	40	mW/sr
Radiant Intensity QED122	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	Ι _Ε	32	_	100	mW/sr
Radiant Intensity QED123	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	I _E	50	_	_	mW/sr
Rise Time	I _F = 100 mA	t _r	_	800	_	ns
Fall Time		t_f	_	800	_	ns

QED121/122/123

PLASTIC INFRARED LIGHT EMITTING DIODE

TYPICAL PERFORMANCE CURVES

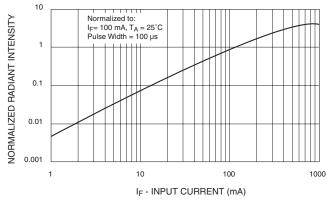


Fig. 1 Normalized Radiant Intensity vs. Input Current

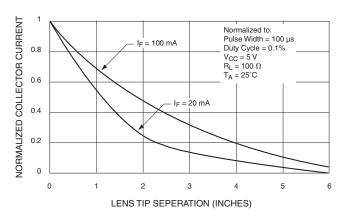


Fig. 2 Coupling Characteristics of QED12X and QSD12X

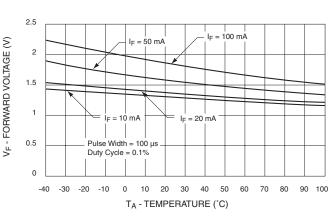


Fig. 3 Forward Voltage vs. Temperature

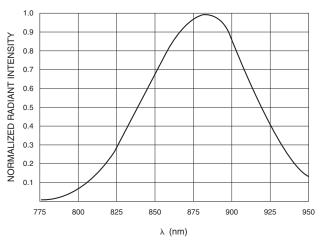
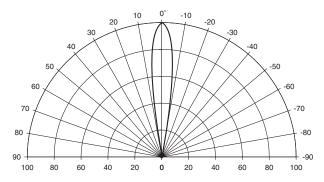



Fig. 4 Normalized Radiant Intensity vs. Wavelength

QED121/122/123 PLASTIC INFRARED LIGHT EMITTING DIODE

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.