TOUCH SENSOR
TYPE: B6TS-04LT
USER MANUAL
Introduction

Thank you very much for purchasing the touch sensor.
The touch sensor is a product that has been developed based on Omron’s advanced technology and rich experience. This user manual describes the information necessary for use of the sensor, such as its functions, capabilities and proper usage. When using the touch sensor, please keep the following in mind:

- Only specialists with knowledge of electricity must handle the touch sensor.
- Please read and understand the contents of this manual thoroughly to use the touch sensor appropriately.
- Keep this manual handy to refer to at any time you need it.

Points to note when using the touch sensor

- Although Omron makes constant efforts to improve the quality and reliability of its semiconductor products, products such as this touch sensor may malfunction or break. Before using the touch sensor, please contact Omron’s business development personnel, if necessary, to confirm product specifications, while also paying attention to using the sensor with a sufficient margin allowed for its ratings and capabilities, and taking safety measures such as installing safety circuits to minimize hazards in the unlikely event that a failure of the sensor might occur.
- Basically, this product is not designed and manufactured for use in equipments or systems operated under potentially hazardous conditions. If you intend to use the touch sensor with any of the following systems, facilities or equipment, be sure to consult Omron sales personnel or an agent or dealership first:

 (A) Atomic power control equipment, incineration facilities, railroads, aircraft, vehicle equipment, medical appliances, amusement machines, safety devices, and facilities that must comply with the regulations of administrative agencies and their respective industries.

 (B) Systems, machines and devices that are potentially hazardous to humans and property.

 (C) Other usages that require a high degree of safety.

The technical information contained in this manual is prepared only to describe typical performances and application examples of the product. Application of the products based on the information does not infer the grant of any Omron or third party intellectual property, right or license.

1. Preventing malfunction caused by contact with an electric conductor other than a human finger with the touch electrode
 Because this product measures the electrostatic capacitance of the detector (electrode), the product may operate if something other than a human finger is brought into contact with the electrode. Therefore, a fail-safe design is required for use of the product so that it does not cause any functional or safety problem even on such occasions. Substances, etc., that may cause a malfunction if they are present near to or on the detector are:

 - Water, metal, animals, other conductive materials

2. Preventing operational error
 Because this product detects human touch, it may operate if the detector (electrode) is touched only lightly or if somebody remains nearby. When incorporating this product into a device, check the detection range thoroughly, and employ measures to prevent the device from malfunctioning caused by operational error. Especially, if the device is used where children may come into contact with it, provide some safety measure such as a child safety lock.

3. Preventing the entry of water or corrosive gases
 If water or a corrosive gas enters the operating part of the sensor (electrode), in the event of a short circuit or corrosion of the electrode, the product may malfunction or its detection sensitivity may be lowered. If the product is supposed to be used in an environment where this may occur, employ some structure to prevent the entry of water or gas, and check to be sure in actual operation that the device is protected securely against such an event.

4. Preventing malfunction caused by noise
 The product may malfunction if subjected to excessive noise. Check to be sure that no safety problems are caused by excessive noise.

5. Preventing direct touching of the electrode
 Do not employ any structure that exposes the surface of the touch electrode to the air and allows somebody to touch the metal part of the touch electrode directly. Otherwise, the safety of the product may be impaired, accumulated electrostatic charges may damage the product, or the electrode may corrode. Adopt a structure that covers the surface of the touch electrode with nonconductive material and does not allow anybody to touch the metal part of the electrode directly.
 The recommended thickness for the nonconductive material is:

 Resin material (dielectric constant of 2 to 3): no more than 2mm
Proper usage

1. Method of transportation and storage
 1) Do not drop or apply any shock to the touch sensor because it is a precision device. If the sensor is thrown or dropped, it may break.
 2) When carrying or storing the touch sensor, keep its packaging properly oriented. If the packaging is placed upside down or tilted, the sensor may be subjected to some undue force and may break.
 3) Store the touch sensor under the following conditions to prevent the package from absorbing moisture: Otherwise, the sensor may break when the package is mounted.
 <Storage conditions>
 A. Before opening the moisture-proof pack (aluminum laminate pack):
 [Temperature, humidity] 5-40°C, 20-80% RH
 [Term of validity] One year
 When the sensor is used after a long period of storage, make sure that no damage, dirt, or rust is present on the pack.
 B. After opening the moisture-proof pack (aluminum laminate pack):
 Until the package is mounted, the following conditions are recommended for storage of the package:
 [Temperature, humidity] No higher than 30°C, No more than 70% RH
 [Term of validity] One week
 C. Temporary storage after opening the moisture-proof pack:
 When storing an unused sensor package temporarily, restore the package together with some desiccating agent into a moisture-proof bag as early as possible (within about 10 minutes), fold the opening of the bag in two, seal the bag tightly with adhesive tape or the like, and keep the bag under the following recommended conditions:
 [Temperature, humidity] 5-40°C, 20-80% RH
 [Term of validity] One month
 4) Do not use or store the touch sensor where it will be subject to corrosive gases such as hydrosulfuric gas or salt air, or exposed to oil or direct sunlight.
 5) Where either of the following conditions [1] or [2] is applicable, baking the sensor package in the following manner is recommended in order to remove moisture: The tray used in the moisture-proof pack can be stored in a high-temperature chamber because it is heat-resistant. However, place the tray on a flat base such as a level block, and then cool it down on the base to prevent deformation after baking.
 [2] The color of the 30% RH detection part of the indicator changes to lavender or pink.
 <Baking method>
 [Temperature] 125°C
 [Time] 20-24 hours
 [Number of times baking] Up to three
 (Cumulative time limit: 72 hours)

2. Measures against electrostatic charges during handling
 Keep the relevant electric equipment, work-bench and worker at the same potential.
 Lay a conductive mat with a surface resistance of 10 kΩ - 10 MΩ on the work-bench, and ground the mat.
 The worker must make sure that there is no electric leakage from the electric equipment and ground himself/herself through a resistor of about 1 MΩ for safety.
 All safety regulations must be observed.
 Any electric leakage from the electric equipment is undesirable from the viewpoint of worker safety.
 Check to be sure that there is no electric leakage from the tester, curve tracer, oscilloscope, or the like, and then ground the equipment. Any electric leakage can break the MOS IC.
 The same precautions apply to soldering irons.
3. Recommended soldering conditions

Temperature conditions for mounting the IC chip

When mounting the IC chip at a high temperature using reflow soldering, the melting temperature of the solder depends on the mounting board and paste adhesive materials. Referring to the mounting temperature profile shown in Fig. 1, choose the optimum soldering temperature within the profile.

1] Reflow method (infrared light reflow and air reflow)

[Number of times] Up to three times
(Complete the last reflow under storage condition B in Section 1.)
[Temperature] The surface temperature profile of the device is shown in Fig. 1.

Fig.1 Reflow method temperature profile

2] Wave soldering method (known as flow soldering or dip soldering)

[Number of times] Once
[Temperature] The temperature profile is shown in Fig. 2.
(The optimum preheating temperature must be set according to the type of flux.)

Fig.2 Wave soldering method temperature profile

3] Soldering iron (manual soldering)
Solder using a soldering iron for semiconductor devices under the following conditions:

[Iron tip temperature] No higher than 370°C
[Soldering time] No longer than 5 sec/pin
4. **Recommended wash conditions**
 When using rosin flux wash, check the following items:
 1) Amount of contamination containing residual ions (or no ions)
 2) Administrative directions and regulations
 3) Melting resistance of parts

5. **Handling after mounting parts on PWB**
 When dividing a PWB on which ICs are mounted, do not apply any excessive force to the ICs. Otherwise, the internal IC chips may be broken.

6. **Applied voltages and currents**
 1) Do not apply to any pin any voltage or current that exceeds the maximum absolute rating.
 2) Use the device within the recommended specifications to enhance the quality of the device.
 3) Do not apply any forward bias to any of the pins. Otherwise, excessive forward current may cause thermal breakdown of the IC.
 4) Do not connect any output pin directly to power. If any output pin is directly connected to low-impedance power, the internal wiring may melt down or break thermally due to excessive current.
CONTENTS

1. Overview

2. Pin connections

3. Operation modes

4. Measurement

5. Serial communication

6. Commands

7. Teaching

8. Electrical characteristics

9. Appearance and dimensions
1. **Overview**
 This chip is a sensor IC to detect micro capacitances and can be used in touch sensors. Internally, the chip employs the CMOS process and is contained in a 20-pin SSOP plastic package. The IC has 4 independent measurement pins, each of which can measure capacitance independently. On/off output or serial communication output can be selected as the output form. The IC is provided with an EEPROM that can store operation mode and other parameters.

2. **Pin connections**

 2.1 **Pin arrangement diagram**

 ![Pin arrangement diagram](image)

 Note 1: Pins TEST1, and TEST2 are used for testing during manufacture of the IC. When using these pins, connect them to VDD through a pull-up resistor.

 2.2 **Pin functions**

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Designation</th>
<th>Input/Output</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT2 SCK</td>
<td>I/O</td>
<td>Output pin for measured result [On/off output mode] channel 2 output (active low) [Serial communication mode] serial communication clock input</td>
</tr>
<tr>
<td>2</td>
<td>OUT3 SD</td>
<td>I/O</td>
<td>Output pin for measured result [On/off output mode] channel 3 output (active low) [Serial communication mode] serial communication data (duplex)</td>
</tr>
<tr>
<td>3</td>
<td>RESET</td>
<td>I</td>
<td>Reset signal input. Inputting low to this pin resets the chip. Connect this pin to VDD through a pull-up resistor of about 5kΩ. When VDD starts up, the power-on reset function operates and the chip is initialized. When the power-on reset function is used, no other reset signal is needed when power is turned on.</td>
</tr>
<tr>
<td>4</td>
<td>TEST1</td>
<td>I</td>
<td>(Connect to VDD through a pull-down resistor.)</td>
</tr>
<tr>
<td>5</td>
<td>VSS</td>
<td>I</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>MEAS</td>
<td>I</td>
<td>Initiation of measurement. Capacitance measurement is initiated by inputting high to this pin. While low is input to this pin, the chip is held in standby status.</td>
</tr>
<tr>
<td>7,16</td>
<td>VDD</td>
<td>I</td>
<td>Supply input (3.0 - 5.5V)</td>
</tr>
<tr>
<td>8</td>
<td>TEST2</td>
<td>I</td>
<td>(Connect to VDD through a pull-down resistor.)</td>
</tr>
<tr>
<td>9</td>
<td>SETUP</td>
<td>I</td>
<td>Setup mode. Low input to this pin moves the chip into setup mode.</td>
</tr>
<tr>
<td>10, 12, 14, 17</td>
<td>CH3B CH2B CH1B CH0B</td>
<td>I/O</td>
<td>Measurement pins B (channel 3 - 0) Connect these pins to the touch electrode through resistors.</td>
</tr>
<tr>
<td>11, 13, 15, 18</td>
<td>CH3A CH2A CH1A CH0A</td>
<td>I/O</td>
<td>Measurement pins A (channel 3 - 0) Connect these pins to the touch electrode through resistors.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Designation</td>
<td>Input/Output</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 19 | OUT0 CHG | O | Output pin to indicate operation.
[Normal measurement mode] outputs measured results.
[On/off output mode] channel 0 output (active low)
[Serial communication mode] output of measurement finish.
Two output modes are available in serial communication mode:
1. High-signal outputs every time a measurement finishes.
2. High-signal outputs when the condition changes in any one of the channels (touch ✖️ no touch, no touch ✖️ touch).
[Setup mode] When the setup mode is entered, CHG pin changes to high. However, when an EEPROM write command is received and data is being written into EEPROM, this pin is low. |
| 20 | OUT1 SCS | I/O | Output pin for measured result
[On/off output mode] channel 1 output (active low)
[Serial communication mode] serial communication chip select input |

2.3 An example circuit

![An example circuit diagram]

Note 1: Connect Rr, Cr, Rc, and Cc to each touch electrode, as shown in the above figure.
Refer to the design tool (B6TWWorkbench) for their actual values.
Rr0–3: Protective resistors
Cr0–3: Capacitors for comparison
Rc0–3: Resistors for charge control
Cc0–3: Charge capacitors
Note 2: Connect a bypass capacitor of about 0.1 µF between Vdd and Vss using as short wires as possible.
3. **Operating modes**

This chip has three operating modes. Each mode is selected by inputs to the MEAS pin and /SETUP pin.

1. Normal measurement mode ---- Mode to detect touch/no-touch. In this mode, one of the following modes can be selected according to the output signal form.
 1.1 On/off output mode ---- Out0-3 signals are used. Touch/no-touch detection results are output from the respective channels with low/high signal.
 1.2 Serial communication mode --- Measured results are transmitted in serial with a three-wire SPI function using SCK, SD and SCS signals.

2. Setup mode ---- Chip operation is set for serial communication in this mode.

3. Teaching mode ---- Teaching refers to the automatic setting of threshold values for touch and no-touch while somebody touches the sensor.

<table>
<thead>
<tr>
<th>/SETUP pin</th>
<th>MEAS pin</th>
<th>Operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Normal measurement mode</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Normal measurement mode (standby status without executing measurement)</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>Teaching mode</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Setup mode</td>
</tr>
</tbody>
</table>

MEAS pin = High or MODE command bit15 = 1

![Diagram of operating modes](image)

4. **Measurement**

The chip measures the discharge of the charge stored in the charge capacitor. When a finger is placed close to the touch electrode, the electrostatic capacitance of the electrode increases and the discharge period for the charge becomes shorter. The chip has a built-in counter to measure the discharge period, and whether or not the sensor has been touched is judged according to whether the length of the discharge period exceeds a specified value or not. Hereafter, the length of the discharge period is referred to as the measured value.

With this chip, the measured value when the sensor is not touched (reference value), the amount of variation of the measured value which allows a judgment that the sensor is touched (amount judged on), and the amount of variation of the measured value when returning from on status (hysteresis) can be set for each channel respectively. The relationships between the measured value and the above values are as follows:
Even in the touched state, the measured value changes according to variation in the environment (output drift). The chip is provided with an automatic drift-correction function, which can cancel mild changes of the measured value due to variation in the environment (drift correction function). It is possible to select whether or not to execute drift correction in setup mode.

5. Serial communication

It is possible to read out measured values and set the operation mode by sending/receiving data to/from this chip through serial communication.

Serial communication is performed by a three-wire type SPI-compliant method using SCS (chip select), SCK (transfer clock) and SD (data (bi-directional)). The SPI communication method works as follows:
(Refer to “Electrical specifications” for specific communication timing, etc.)

- Operation in SPI slave mode
 Supply /SCS (chip select) and SCK (transfer clock) from outside.
- SCK (transfer clock) is set to high during idling. The data is latched at the rising edge of the clock.
- The data is MSB first.

This chip sends/receives data using 4 bytes, consisting of commands, dummy data, and data.
 Command: 1 byte (MSB 1 bit is used for the read/write flag.)
 Dummy data: 1 byte (ignored)
 Data: 2 bytes

Read (data flow: B6T → host)

Write (data flow: host → B6T)

If data communication is performed during normal measurement mode, the measurement operation stops while the data is communicated. After communication finishes, measurement restarts.
6. Commands

The commands and data used in serial communication are listed below:
The data comprises read only data (read) and read/write data (read/write). If serial communication is made to write
read only data, the operation will be invalid.
Some of the data are not accessible in some operation modes. If inaccessible data are read out, the read data is
indefinite. If inaccessible data are written, the data is ignored.

<table>
<thead>
<tr>
<th>Command code (Designation)</th>
<th>Main function</th>
<th>Read/write restriction</th>
<th>Access restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal measurement mode (in serial communication mode)</td>
</tr>
<tr>
<td>0x00(ID)–0x19(CHYS3)</td>
<td>Measured data</td>
<td>Read only</td>
<td>Accessible</td>
</tr>
<tr>
<td>0x39(CHEN)–0x53(RHYS3)</td>
<td>Parameter setting</td>
<td>Read/write</td>
<td>Inaccessible</td>
</tr>
</tbody>
</table>

When writable data are written in this chip, the built-in register corresponding to each command is rewritten. Then, if
the normal measurement mode is entered, the chip can be operated with the written parameters (mode, etc.). In this
case, because only the built-in register is rewritten, the value in each register returns to its original value (value stored
in EEPROM) when power is turned off and on again.

To store the built-in register value in EEPROM, an EEPROM write command must be received. When an EEPROM
write command is received, the content of the register is stored in EEPROM.

6.1 List of commands

<table>
<thead>
<tr>
<th>Command code</th>
<th>Designation</th>
<th>Description</th>
<th>Access limit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>ID</td>
<td>Chip ID</td>
<td>R</td>
<td>○</td>
</tr>
<tr>
<td>0x01</td>
<td>BDATA</td>
<td>Detected result of each channel</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x02</td>
<td>DCH0</td>
<td>Ch0 measured value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x03</td>
<td>DCH1</td>
<td>Ch1 measured value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x04</td>
<td>DCH2</td>
<td>Ch2 measured value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x05</td>
<td>DCH3</td>
<td>Ch3 measured value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x06:0x0D</td>
<td></td>
<td>(System reservation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0E</td>
<td>CREF0</td>
<td>Current Ch0 reference value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x0F</td>
<td>CTHR0</td>
<td>Current Ch0 variation judged as on</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x10</td>
<td>CHYS0</td>
<td>Current Ch0 hysteresis value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x11</td>
<td>CREF1</td>
<td>Current Ch1 reference value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x12</td>
<td>CTHR1</td>
<td>Current Ch1 variation judged as on</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>0x13</td>
<td>CHYS1</td>
<td>Current Ch1 hysteresis value</td>
<td>R</td>
<td>○ ○</td>
</tr>
<tr>
<td>Command code</td>
<td>Designation</td>
<td>Description</td>
<td>Access limit</td>
<td>Remark</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>0x14</td>
<td>CREF2</td>
<td>Current Ch2 reference value</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x15</td>
<td>CTHR2</td>
<td>Current Ch2 variation judged as on</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x16</td>
<td>CHYS2</td>
<td>Current Ch2 hysteresis value</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x17</td>
<td>CREF3</td>
<td>Current Ch3 reference value</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x18</td>
<td>CTHR3</td>
<td>Current Ch3 variation judged as on</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x19</td>
<td>CHYS3</td>
<td>Current Ch3 hysteresis value</td>
<td>R ○ ○</td>
<td>Result of drift correction is reflected.</td>
</tr>
<tr>
<td>0x1A - 0x38</td>
<td></td>
<td>(System reservation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x39</td>
<td>CHEN</td>
<td>Channel measurement enable</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3A</td>
<td>TCAL</td>
<td>Teaching count number</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3B</td>
<td>TOG</td>
<td>Toggle action</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3C</td>
<td>ACD</td>
<td>Cumulative judgment count</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3D</td>
<td>SLP</td>
<td>Sleep time</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3E</td>
<td>MODE</td>
<td>Operation mode</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x3F</td>
<td>ROMSTR</td>
<td>EEPROM write</td>
<td>R/W ○</td>
<td>Writing into ROM with dummy write</td>
</tr>
<tr>
<td>0x40</td>
<td>REF0</td>
<td>Ch0 reference value</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x41</td>
<td>THR0</td>
<td>Ch0 variation judged as on</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x42</td>
<td>HYS0</td>
<td>Ch0 hysteresis</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x43</td>
<td>RTHR0</td>
<td>Ch0 on-judgment ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x44</td>
<td>RHYS0</td>
<td>Ch0 hysteresis ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x45</td>
<td>REF1</td>
<td>Ch1 reference value</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x46</td>
<td>THR1</td>
<td>Ch1 variation judged as on</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x47</td>
<td>HYS1</td>
<td>Ch1 hysteresis</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x48</td>
<td>RTHR1</td>
<td>Ch1 on-judgment ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x49</td>
<td>RHYS1</td>
<td>Ch1 hysteresis ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x4A</td>
<td>REF2</td>
<td>Ch2 reference value</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x4B</td>
<td>THR2</td>
<td>Ch2 variation judged as on</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x4C</td>
<td>HYS2</td>
<td>Ch2 hysteresis</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x4D</td>
<td>RTHR2</td>
<td>Ch2 on-judgment ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x4E</td>
<td>RHYS2</td>
<td>Ch2 hysteresis ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x4F</td>
<td>REF3</td>
<td>Ch3 reference value</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x50</td>
<td>THR3</td>
<td>Ch3 variation judged as on</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x51</td>
<td>HYS3</td>
<td>Ch3 hysteresis</td>
<td>R/W ○</td>
<td></td>
</tr>
<tr>
<td>0x52</td>
<td>RTHR3</td>
<td>Ch3 on-judgment ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x53</td>
<td>RHYS3</td>
<td>Ch3 hysteresis ratio</td>
<td>R/W ○</td>
<td>Used in teaching</td>
</tr>
<tr>
<td>0x54 - 0x7F</td>
<td></td>
<td>(System reservation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Description of commands

6.2.1 ID: Chip ID (read only)
Used as ID of the chip. The data is fixed to 0x0141.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2 BDATA: Detection result of touch/no-touch for each channel (read only)
Measured value for each channel is indicated by 1/0.
1: Off (no-touch), 0: On (touch)

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>1</td>
<td>Ch3</td>
<td>Ch2</td>
<td>Ch1</td>
<td>Ch0</td>
</tr>
</tbody>
</table>

6.2.3 DCHx: Measured value for each channel (read only)
Measured value for each channel is indicated by an unsigned 16-bit integer.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02..0x05</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

Channel 0 (DCH0) – Command code 0x02
Channel 1 (DCH1) – Command code 0x03
Channel 2 (DCH2) – Command code 0x04
Channel 3 (DCH3) – Command code 0x05

6.2.4 CREFx: Current reference value for each channel (read only)
Current reference value for each channel is indicated by an unsigned 16-bit integer.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0E..0x17</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

Channel 0 (CREF0) – Command code 0x0E
Channel 1 (CREF1) – Command code 0x11
Channel 2 (CREF2) – Command code 0x14
Channel 3 (CREF3) – Command code 0x17

6.2.5 CTHRx: Current variation for each channel judged as on (read only)
Current variation for each channel judged as on is indicated by an unsigned 16-bit integer.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0F..0x18</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

Channel 0 (CTHR0) – Command code 0x0F
Channel 1 (CTHR1) – Command code 0x12
Channel 2 (CTHR2) – Command code 0x15
Channel 3 (CTHR3) – Command code 0x18
6.2.6 CHYSx: Current hysteresis for each channel (read only)
Current hysteresis for each channel is indicated by an unsigned 16-bit integer.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10...0x19</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

Channel 0 (CHYS0) - Command code 0x10
Channel 1 (CHYS1) - Command code 0x13
Channel 2 (CHYS2) - Command code 0x16
Channel 3 (CHYS3) - Command code 0x19

6.2.7 CHEN: Measurement enable for each channel (read/write enabled only in setup mode)
Whether or not measurement is executed in each channel is set with 1/0.
1: measurement executed, 0: not executed
Only lower-order 4 bits are valid. If the other bits are written, they are ignored.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x39</td>
<td>1</td>
<td>Ch3</td>
</tr>
</tbody>
</table>

6.2.8 TCAL: Teaching measurement count (read/write enabled only in setup mode)
Sets the measurement count when teaching.
Teaching measurement is executed 32 times the value of TCAL. The teaching operation must be performed during this period (each electrode must be touched three times or more).
Reference value (REFx), quantity of variation judged as on (THRx), and hysteresis (HYSx) are changed by teaching.
When TCAL is set to “0”, only the reference value (THRx) is changed in teaching.
Only lower-order 8 bits are valid. If the other bits are written, they are ignored.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x3A</td>
<td>1</td>
<td>D7</td>
</tr>
</tbody>
</table>

6.2.9 TOG: Toggle action (read/write enabled only in setup mode)
Sets whether or not to make each channel perform toggle action. This setting takes effect on the signals output from OUT0-3 and BDATA command data.
1: Toggle mode off (momentary action: turned on only with a touch)
0: Toggle mode on (alternate action: turned on with a touch and off with the next touch)
Only lower-order 4 bits are valid. If the other bits are written, they are ignored.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x3B</td>
<td>1</td>
<td>Ch3</td>
</tr>
</tbody>
</table>

6.2.10 ACD: Cumulative judgment count (read/write enabled only in setup mode)
Only after consecutive measurement ACD value + one times, a touch (or no-touch) is judged and this output is varied. This output takes effect on the signals output from OUT0-3 and BDATA command data.
For example, with ACD = 2, only after three consecutive measurements are judged as a touch (or no-touch), does this output signal turn on (or off).
Only lower-order 8 bits are valid. If the other bits are written, they are ignored.

<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x3C</td>
<td>1</td>
<td>D7</td>
</tr>
</tbody>
</table>
6.2.11 SLP: Sleep time (read/write enabled only in setup mode)
Sets the standby time between one measurement and the next measurement (sleep time).
Sleep continues for SOP value×10mS (typ)
When SLP is set to “0”, measurements are made consecutively without sleep time.
Only lower-order 8 bits are valid. If the other bits are written, they are ignored.

Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x3D 1 1 1 1 1 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0

6.2.12 MODE: Operation mode (read/write enabled only in setup mode)
Sets various modes.
Only the bits described are valid.
If the other bits are written, they are ignored.

Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x3E TS TER 1 1 1 1 1 1 1 1 1 1 1 DC CHG CON
TS: Teaching start
Teaching mode is entered when “1” is written in this bit.
(During read out this bit is always “0”)
TER: Teaching error flag
Set/reset according to result of teaching.
Set to “1” when teaching finishes normally.
If a teaching error occurs, this bit is set to “0”.
This flag is not cleared automatically. To clear this flag, write “1” to this bit.
DC: Drift correction
Sets whether or not to execute drift correction.
1: Drift correction executed, 2: Not executed
CHG: CHG pin function
The signal is specified from the CHG pin in normal measurement mode (serial communication mode).
With this pin set to “1”, when on/off changes in any channel (when any channel is touched (comes on) or changes from touch to no-touch (goes off)), the signal is high.
When this pin is set to “0”, the signal is high every time a measurement finishes.
CON: Output setting
Sets output mode in normal measurement mode.
When set to “1”, on/off output mode is entered.
When set to “0”, serial communication mode is entered.

6.2.13 ROMSTR: EEPROM write (only write is enabled in setup mode)
When this command is issued by setting the data to 0x5354, all the parameter data are written in the EEPROM built in this chip.
When the data is other than 0x5354, this command is ignored.
Until this command is issued, received write data are stored in volatile memory.
While data is being written in EEPROM, the CHG pin is low.
Also, during the write, inputs to the /SETUP and MEAS pins are ignored. Accordingly, it is not possible to change the operation mode.

Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x3F 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0

6.2.14 REFx: Reference value for each channel (read/write enabled only in setup mode)
The reference value for each channel can be set with an unsigned 16-bit integer.
Users can alter this setting (in setup mode), or rewrite it by teaching. It cannot be changed by drift correction or the like.

Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x40..0x4F D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
6.2.15 THRx: Quantity of variation judged as on for each channel (read/write enabled only in setup mode)

Quantity of variation judged as on for each channel can be set with an unsigned 16-bit integer. Users can alter this setting (in setup mode) or rewrite it by teaching. It cannot be changed by drift correction or the like.

```
Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x41..0x50 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
```

Channel 0 (THR0) – Command code 0x41
Channel 1 (THR1) – Command code 0x46
Channel 2 (THR2) – Command code 0x4B
Channel 3 (THR3) – Command code 0x50

6.2.16 HYSx: Hysteresis for each channel (read/write enabled only in setup mode)

Hysteresis for each channel can be set with an unsigned 16-bit integer. Users can alter this setting (in setup mode) or rewrite it by teaching. It cannot be changed by drift correction or the like.

```
Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x42..0x51 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
```

Channel 0 (HYS0) – Command code 0x42
Channel 1 (HYS1) – Command code 0x47
Channel 2 (HYS2) – Command code 0x4C
Channel 3 (HYS3) – Command code 0x51

6.2.17 RTHRx: On-judgment ratio for each channel (read/write enabled only in setup mode)

Used in teaching.

Sets the ratio of the quantity of variation judged as on (THRx) to the measured value observed in teaching with an unsigned 4-bit integer. (Refer to “7. Teaching” for details)

Only the lower-order 4 bits are valid. If the other bits are written to, they are ignored.

If the measured value changes by \(\Delta A \) due to a touch during teaching, the quantity of variation judged as on that is newly set in teaching (THRx) is calculated as:

\[
\text{Quantity of variation judged as on (THRx)} = \Delta A \times \left(\frac{\text{(on-judgment ratio (RTHRx)) + 1}}{16}\right)
\]

For example, if RTHRx = 10, the quantity of variation judged as on (THRx) is:

\[
\text{THRx} = \Delta A \times \left(\frac{10 + 1}{16}\right) = \Delta A \times 0.69 \text{ (about 70% of } \Delta A\text{)}
\]

```
Command code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x43..0x52 1 1 1 1 1 1 1 1 1 1 1 1 D3 D2 D1 D0
```

Channel 0 (RTHR0) – Command code 0x43
Channel 1 (RTHR1) – Command code 0x48
Channel 2 (RTHR2) – Command code 0x4D
Channel 3 (RTHR3) – Command code 0x52

6.2.17 RHYSx: Hysteresis ratio for each channel (read/write enabled only in setup mode)

Used in teaching.

Sets the ratio of hysteresis (HYSx) to the measured value observed in teaching with an unsigned 4-bit integer. (Refer to “7. Teaching” for details.)

Only the lower-order 4 bits are valid. If the other bits are written to, they are ignored.
If the measured value changes by ΔA due to a touch during teaching, the new hysteresis that is set in teaching ($HYSx$) is calculated as:

$$Hysteresis (HYSx) = \frac{\Delta A \times (\text{Hysteresis ratio (RHYSx)})}{16}$$

For example, if $RHYSx = 2$, hysteresis ($HYSx$) is:

$$HYSx = \frac{\Delta A \times 2}{16} = \Delta A \times 0.125 \text{ (about 12.5\% of } \Delta A)$$

Command codes

- Channel 0 ($RHYS0$) - Command code 0x43
- Channel 1 ($RHYS1$) - Command code 0x49
- Channel 2 ($RHYS2$) - Command code 0x4E
- Channel 3 ($RHYS3$) - Command code 0x53

7. Teaching

7.1 Outline of teaching

Such parameters as the quantity of variation judged as on can be set automatically through actual touches on the electrode. This operation is called “Teaching”.

When teaching, the reference value ($REFx$), quantity of variation judged as on ($THRx$) and hysteresis ($HYSx$) are updated appropriately, and stored in the EEPROM built into the chip. Before performing a teaching operation, some preparation is required. The processing flow is as follows:

During teaching, serial communication is not available. However, checking the CHG pin allows status to be checked. Once teaching mode is entered, any input other than /RESET is invalid until the measurement finishes and the chip comes out of teaching mode. Be aware that serial communication cannot be performed concurrently.

```
<table>
<thead>
<tr>
<th>Command code</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x44..0x53</td>
<td>1</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
<td></td>
</tr>
</tbody>
</table>
```

Channel 0 ($RHYS0$) - Command code 0x43
Channel 1 ($RHYS1$) - Command code 0x49
Channel 2 ($RHYS2$) - Command code 0x4E
Channel 3 ($RHYS3$) - Command code 0x53

Parameter setting (preparation)
- Quantity of variation judged as on ($THRx$) [approximate value]
- Hysteresis ($HYSx$)
- Teaching measurement count ($TCAL$)
- On-judgment ratio ($RTHRx$)
- Hysteresis ratio ($RHYSx$)

/MEAS pin = high, /SETUP pin = low or MODE command 15 bits = 1

Initiate teaching

- **CHG pin to high**
- Measurement 8 times → $REFx$ correction
- **CHG pin to low**
- Touch measurement (max. $TCAL \sim 32$ times)
- **CHG pin to high**
- Calculate $REFx$ and $HYSx$ and store in ROM
- **CHG pin to low**
- **Teaching ends**

State of CHG pin (indicating teaching status)

High

- During this period touch each electrode at least three times

High

Low

Low

7.2 Preparation for teaching

To perform teaching, this chip must be brought into setup mode and some parameters must be set. The parameters (commands) associated with teaching are as follows:

7.2.1 Teaching measurement count (Refer to “6.2.8 TCAL: Teaching measurement count”)
During teaching, measurement is executed x number of times where x is the value of this parameter × 32. (Hereafter, this is referred to as the teaching measurement count)
It takes 30–100 msec for one teaching measurement (depending on external circuit constants), and if this parameter is set to 10, the touches must be executed within 10-30 seconds.
Unless each electrode is touched three times within the number of teaching measurements after starting teaching, the teaching is regarded as faulty, and none of the parameters are updated. However, when this parameter is set to “0”, only the reference value (REFx) is updated. In this case, no touching is required, and the teaching is not regarded as faulty even if no touches are executed.

7.2.2 Quantity of variation judged as on (Refer to “6.2.15 THRx: Quantity of variation judged as on”.)
This parameter contains the quantity of variation of the measured value that will allow judgment of a touch (approximate value).
To distinguish between variation of the measured value caused by a noise or the like and variation caused by touching during teaching, this parameter must be set to an approximate value.
If variation of half of this set value occurs during teaching, the electrode is judged touched. Therefore, an approximate value for variation likely to have been caused by touch may be entered.

7.2.3 Hysteresis (Refer to “6.2.16 HYSx: Hysteresis of each channel”)
This parameter sets the hysteresis value in teaching (approximate value).

7.2.4 On-judgment ratio (Refer to “6.2.17 RTHRx: On-judgment ratio for each channel”) & Hysteresis ratio (Refer to “6.2.17 RHYSx: Hysteresis ratio for each channel”)
These parameters set the ratios of the quantity of variation judged as on (THRx) and hysteresis (HYSx) to the variation of the measured value caused by touch.
During teaching, each electrode must be touched three times or more. Then, the minimum value of the quantity of variation caused by touch is calculated for each electrode of the chip. (Minimum value of quantity of variation)
The new quantity of variation judged as on and the new hysteresis are calculated using the minimum value of quantity of variation ΔA as:

\[
\text{Quantity of variation judged as on (THRx)} = \Delta A \times (\text{On-judgment ratio (RTHRx)} + 1)/16
\]
\[
\text{Hysteresis (HYSx)} = \Delta A \times (\text{Hysteresis ratio (RHYSx)})/16
\]

7.3 Performing teaching

There are two ways to enter teaching mode:
(1) /SETUP pin = low, and MEAS pin = high
(2) Write “0” into bit15 (TS) using the MODE command in setup mode.
When entering teaching mode by method (1), set the /SETUP pin to high or the MEAS pin to low before teaching finishes. If /SETUP pin = high and the MEAS pin = low, teaching will commence again.
When entering teaching mode, the CHG pin changes to high, indicating entry to teaching mode.

Just after teaching has started, the chip calibrates the reference value (REFx) (the measured value with no-touch). The measurement is performed eight times for each electrode, and the average of the eight measured values is taken as REFx. After the calibration finishes, the CHG pin output changes to low. Do not touch the touch electrode until the CHG pin changes to low.
After REFx has been calibrated, the chip starts the teaching measurement count ((TCAL) = 32 times). During this period, touch each electrode three times or more. The order for touching each of the electrodes is not defined. After the specified number of teaching measurements have finished, the CHG pin changes to high. However, if the number of touches (the number of times the chip recognizes a touch) reaches 32, the chip finishes measuring and changes the CHG pin to high, even if the teaching measurement count has not been reached.

When touching the electrodes, do not touch two or more electrodes at the same time. If you do, teaching cannot be performed correctly. If more than one electrode is touched simultaneously in error, touch each of the electrodes touched simultaneously again. Touch all of the electrodes three times or more within the teaching measurement time.

After the touch measurements have finished, the chip updates the quantity of variation judged as on (THRx), and hysteresis (HYSx) according to the calculation formula described in “7.2.4 On-judgment ratio and hysteresis ratio” (updates the values stored in the built-in ROM). After the values are updated, the CHG pin changes to low and teaching finishes.

7.4 Checking the result of teaching

When teaching finishes correctly, bit14 (TER bit) of the data, which can be read with the MODE command, changes to “1”. If teaching is not completed normally because the specified number of touches are not executed within the teaching measurement time or for some other reason, the TER bit changes to “0” and the quantity of variation judged as on (THRx) and hysteresis (HYSx) are not updated. (In this event, only the reference value (REFx) is updated.)

To reset the TER bit, set it to “1” using the MODE command, or perform teaching again (and finish the teaching operation normally).

8. Electrical characteristics

8.1 Absolute maximum ratings

<table>
<thead>
<tr>
<th>Designation Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage</td>
<td>-0.3 – 6.5 V</td>
<td>V</td>
</tr>
<tr>
<td>VI</td>
<td>Input voltage</td>
<td>-0.3 – VDD +0.3 V</td>
<td>V</td>
</tr>
<tr>
<td>VO</td>
<td>Output voltage</td>
<td>-0.3 – VDD +0.3 V</td>
<td>V</td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation</td>
<td>T(amb)=25°C</td>
<td>300 mW</td>
</tr>
<tr>
<td>T(oper)</td>
<td>Ambient operating temperature</td>
<td>-20 – 85 °C</td>
<td></td>
</tr>
<tr>
<td>T(shut)</td>
<td>Storage temperature</td>
<td>-65 – 150 °C</td>
<td></td>
</tr>
</tbody>
</table>

8.2 Recommended operating conditions

<table>
<thead>
<tr>
<th>Designation Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage</td>
<td>3.0 – 5.5 V</td>
<td>V</td>
</tr>
<tr>
<td>VIH</td>
<td>High input voltage</td>
<td>0.8VDD – VDD V</td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td>Low input voltage</td>
<td>0 – 0.2VDD V</td>
<td>V</td>
</tr>
<tr>
<td>IOH</td>
<td>High output current</td>
<td>5 mA</td>
<td>mA</td>
</tr>
<tr>
<td>IOL</td>
<td>Low output current</td>
<td>-5 mA</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, Vdd = 3.0-5.5V, Topr = -20-85°C

8.3 Electrical characteristics (1) [Vdd=5V]

<table>
<thead>
<tr>
<th>Designation Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>High output voltage</td>
<td>I(oh)=-5mA</td>
<td>VDD -2.0 VDD V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I(oh)=-200µA</td>
<td>VDD -0.3 VDD V</td>
</tr>
<tr>
<td>VOL</td>
<td>Low output voltage</td>
<td>I(ol)=5mA</td>
<td>2.0 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I(ol)=200µA</td>
<td>0.45 V</td>
</tr>
<tr>
<td>IHH</td>
<td>High input current</td>
<td>V=5V</td>
<td>5 µA</td>
</tr>
<tr>
<td>IIL</td>
<td>Low input current</td>
<td>V=0V</td>
<td>-5 µA</td>
</tr>
<tr>
<td>ICC</td>
<td>Supply current</td>
<td>Normal measurement</td>
<td>5 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>During sleep</td>
<td>0.4 mA</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, Vdd = 4.2-5.5V, Topr = -20-85°C
8.4 Electrical characteristics (2) \[V_{dd}=3V\]

<table>
<thead>
<tr>
<th>Designation</th>
<th>Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High output voltage</td>
<td>$I_{OH}=-1mA$</td>
<td>$V_{dd} -0.5$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Low output voltage</td>
<td>$I_{OL}=1mA$</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>High input current</td>
<td>$V_{I}=3V$</td>
<td>4</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Low input current</td>
<td>$V_{I}=0V$</td>
<td>-4</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Supply current</td>
<td></td>
<td>4.8</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>During sleep</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, $V_{dd}=3.0-3.3V$, $T_{opr}=-20-85°C$.

8.5 Electrical characteristics (3)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of times of EEPROM write</td>
<td>$T_{opr}=0-60°C$</td>
<td>10000</td>
<td>Times</td>
</tr>
<tr>
<td>-</td>
<td>EEPROM write time</td>
<td>$V_{dd}=5V$, $T_{opr}=25°C$ (Note 2)</td>
<td>0.3</td>
<td>S</td>
</tr>
<tr>
<td>-</td>
<td>EEPROM data retention period</td>
<td>$T_{opr}=55°C$</td>
<td>20</td>
<td>Years</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, $V_{dd}=3.0-5.5V$, $T_{opr}=-20-85°C$

Note 2: The period following receipt of the EEPROM write command in setup mode until the data write finishes.

8.6 Necessary timing conditions

<table>
<thead>
<tr>
<th>Designation</th>
<th>Item</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{S(CLK)}$</td>
<td>Serial communication clock cycle time</td>
<td>15</td>
<td></td>
<td>μS</td>
</tr>
<tr>
<td>$t_{S(CHK)}$</td>
<td>Serial communication clock high pulse width</td>
<td>0.4</td>
<td>0.6 $t_{S(CLK)}$</td>
<td></td>
</tr>
<tr>
<td>$t_{S(CLK1)}$</td>
<td>Serial communication clock low pulse width</td>
<td>0.4</td>
<td>0.6 $t_{S(CLK1)}$</td>
<td></td>
</tr>
<tr>
<td>$t_{S(CLK2)}$</td>
<td>Serial communication clock rise time</td>
<td>1</td>
<td>μS</td>
<td></td>
</tr>
<tr>
<td>$t_{S(CLK3)}$</td>
<td>Serial communication clock fall time</td>
<td>1</td>
<td>μS</td>
<td></td>
</tr>
<tr>
<td>$T_{S(SETUP)}$</td>
<td>Serial communication chip select setup time</td>
<td>320</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$T_{S(HS)}$</td>
<td>Serial communication chip select hold time</td>
<td>320</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$I_{O(SO)}$</td>
<td>Serial communication output delay time</td>
<td>280</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$T_{S(SCS)}$</td>
<td>Serial communication chip select delay time</td>
<td>320</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$I_{O(SI)}$</td>
<td>Serial communication input setup time</td>
<td>100</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$I_{O(S)}$</td>
<td>Serial communication input hold time</td>
<td>280</td>
<td></td>
<td>nS</td>
</tr>
<tr>
<td>$I_{O(BD)}$</td>
<td>Serial communication byte to byte interval</td>
<td>90</td>
<td></td>
<td>μS</td>
</tr>
<tr>
<td>$T_{S(CD)}$</td>
<td>Serial communication command reception interval</td>
<td>130</td>
<td></td>
<td>μS</td>
</tr>
<tr>
<td>$T_{S(CHG)}$</td>
<td>CHG pulse width</td>
<td>(Note 2)</td>
<td>50</td>
<td>μS</td>
</tr>
<tr>
<td>$T_{S(SetUP)}$</td>
<td>Mode shift delay time</td>
<td>(Note 3)</td>
<td>95</td>
<td>μS</td>
</tr>
<tr>
<td>$T_{S(RESET)}$</td>
<td>Reset pulse width</td>
<td></td>
<td>500</td>
<td>μS</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, $V_{dd}=3.0-5.5V$, $T_{opr}=25°C$.
Note 2: This is the time period when the condition that CHG pulse width is at its minimum in the serial communication mode of normal measurement mode is set.

(CHG pin function is set to output at the end of every measurement [CHG bit = 0 with MODE command]) and the sleep time is set to zero [SLP command value = 0].

Note 3: The delay time for the mode shift between normal measurement mode and setup mode.
8.7 Measurement characteristics (typical example)

- **Temperature characteristics**
 - (Cc = 0.1 µF, Cr=18pF, Rc=2.7kΩ, Cx=3.3pF, Vdd=5V)

- **Supply voltage characteristics**
 - (Cc = 0.1 µF, Cr=18pF, Rc=2.7kΩ, Cx=3.3pF, Topr=20°C)

- **Measurement time**
 - (For all 4 channels, Cc = 0.1 µF, Cr=18pF, Vdd=5V, Topr=20°C)
9. Appearance and dimensions

Warranty Details

1. Warranty period
 The warranty period for an Omron product is one year from purchase or delivery to a customer-specified place.

2. Scope of warranty
 If any Omron product fails under Omron liability within the above warranty period, Omron shall supply a replacement or repair the product free of charge at the place of purchase. However, if the reason for the product failure falls into any of the following categories, the warranty will not apply:
 a) The product has been used or handled under conditions or in an environment not listed in the product’s specifications, catalog, or operation manual (hereinafter referred to as the “catalog and the like”).
 b) The failure has been caused by a non-Omron product.
 c) The product has been modified or repaired by somebody or corporation other than Omron.
 d) The product has been used for other than its intended use.
 e) The failure could not have been predicted based on the level of science or technology at the time of shipment.
 f) The failure has been caused by a natural or other disaster, an accident or the like that is not Omron’s liability.
 This warranty applies only to the Omron product itself, and any damage induced by a failed Omron product is excluded from this warranty.

3. Scope of service
 The price of an Omron product does not include service expenses such as the cost of sending out technicians. If you wish to request non-inclusive services, please consult Omron sales personnel.

4. Scope of application
 The above apply only to business and usage in Japan.
 Please consult Omron sales personnel about business and usage in other countries.

Recommended pad dimensions