Reliable detection in repeatability 10 μm 0.394 mil

Overwhelmingly stable
Fitted with a precise CMOS image sensor and an original algorithm

Thanks to a precise CMOS image sensor, it is now possible to perform highly precise measurements in the order of 1/100 mm 0.0003 in. The existing adjustable range reflective sensors cannot achieve such accuracy.

Example: HG-C1030(-P)
APPLICATIONS

Detecting warpage of a circuit board

Checking for overlapped lead frames

Judging front or back of cover of electric parts

Checking for presence of packing

Checking for presence of O ring

Detecting a seam (overlap) of functional sheet

Compact and light-weight

The HG-C series is the smallest CMOS laser sensor in industry*. W20 × H44 × D25 mm W0.787 × H1.732 × D0.984 in, 35 g approx. (without cable)

* As of May 2015, in-company survey.

A new optical system with a built-in mirror

In general, more accurate and stable measurements can be obtained by increasing the optical path length between the light-receiving part and the light-receiving element (CMOS), but this also increases the sensor depth and the sensor body gets bigger. The HG-C series sensors incorporating a new optical system with a built-in mirror provides smaller sensor depth as well as higher measurement accuracy equivalent to displacement sensors.

Controlling the dispenser head height

Controlling the mounter head height

Controlling the parallel link robot height

Installable on a food packaging line where water splashes (IP67)

Remove water droplets on detection surface to achieve correct measurement.
An aluminum die-cast enclosure protects from strain and heat

A light-weight but strong die-cast aluminum enclosure has been adopted. A compact, solid body enclosure reduces the impact of strain and heat on the measurement accuracy.

Long distance measurement

Measurement center 400 mm 15.748 in type HG-C1400(-P) and 200 mm 7.874 in type HG-C1200(-P) are available.

- Detecting on-vehicle seats
- Judging front or back of cover of cast parts
- Measurement of a remaining functional sheet
- Detecting parts through a viewing port
Equipped with 0 to +5 V analog output and 4 to 20 mA analog current output

The sensor not only indicates measured values in mm but also produces analog outputs. Various calculations and storage (logging) can be performed when output is taken into a PLC + analog unit.

The value can be measured with a distance measurement sensor.

- Linearity: ±0.1% F.S.*
- Temperature characteristics: 0.03% F.S./℃

HG-C1030(-P) / HG-C1050(-P) / HG-C1100(-P)

Measuring the hoop slack
Measuring the insertion depth of an actuator
Measuring the thickness of a panel
Measuring the thickness of a part

*Linearity characteristics [Typical example: HG-C1030(-P)]

- FP0R-C10 control unit (with RS232C port)
- AFP0RC10CRS
- A/D converter unit with input channels (terminal block type)
- AFP0RAD8

Programmable controller FP0R

PLC

Measuring distance L (mm)

-0.197 -0.098 0.098 0.197

-5 -2.5 0 2.5 5

Error (% F.S.)

Measurement center distance

Connected to PLCs
Useful functions

Teaching & window comparator mode

With an object below the sensor, press the TEACH key to set the valid range for distances via threshold values. There are 3 methods for setting the valid range: 1-point, 2-point, and 3-point teaching.

1-point teaching

Perform 1-point teaching and the threshold range is set for the distance from the reference surface of the sensing object.

This is used for sensing within the threshold range.

2-point teaching

Press TEACH once for the lower (first point) and once for the upper limit (second point).

3-point teaching

This is the method to set the threshold range by conducting the teaching at 3 points (sensing object A, B and C). After teaching, the reference points are automatically sorted in ascending order (reference point 1, 2 and 3). The thresholds are set at the midpoints between reference point 1 and 2, and 2 and 3, respectively.

Timer setting function

The time mode options are “OFF-delay timer,” “ON-delay timer,” “One-shot timer” and “no timer.” The counting time is fixed to 5 ms.

OFF-delay timer

Function: Extends output signals by 5 ms.

Usage: Appropriate in case a connected device is slow to respond and ON time is required to extend.

ON-delay timer

Function: Overrides output signals for 5 ms after detection.

Usage: Convenient way to override temporary signals and control with a time lag.

One-shot timer

Function: Sends output signals for only 5 ms after detection.

Usage: Useful when the signal duration needs to be constant to meet inputs from a connected device. This mode is also used to extend temporary signals by a desired length of time.
CMOS Type Micro Laser Distance Sensor HG-C SERIES

Zero set function

This function compulsorily sets the measured value to "zero." The zero point can be set at a desired value. It is useful when measuring steps or tolerance with reference to the height of a sensing object.

Keep pressing both keys for 3 seconds.
* The zero set indicator (yellow) will turn ON while the zero set is valid.
* When the zero set function is executed while the peak hold function or the bottom hold function is valid, the held measurement value is reset.
* When the display setting is set to offset, the zero set function cannot be set.

Display setting function

How to indicate measured values of the moving sensed object can be chosen from three options, "Normal," "Invert" and "Offset."

Example: HG-C1050(-P)

<table>
<thead>
<tr>
<th>Display setting</th>
<th>Outside the measuring range</th>
<th>Measuring near point</th>
<th>Measurement center</th>
<th>Measuring far point</th>
<th>Outside the measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Std.</td>
<td>-1500</td>
<td>000</td>
<td>+1500</td>
<td>-1500</td>
</tr>
<tr>
<td>Invert</td>
<td>Invert</td>
<td>-1500</td>
<td>000</td>
<td>1500</td>
<td>-1500</td>
</tr>
<tr>
<td>Offset</td>
<td>Off.</td>
<td>3000</td>
<td>1500</td>
<td>000</td>
<td>-1500</td>
</tr>
</tbody>
</table>

Relation between the setting display and the analog output

In case of analog voltage output:
- 5.2 V: Solid line - Normal
- 5.0 V: Solid line - Invert
- 2.5 V: Dashed line - Normal
- 0 V: Dashed line - Invert

In case of analog current output:
- 20 mA: Solid line - Normal
- 12 mA: Solid line - Invert
- 4 mA: Dashed line - Normal
- 0 mA: Dashed line - Invert

Peak and bottom hold functions

The peak hold function holds the maximum measured value which is output and displayed.

The bottom hold function holds the minimum measured value which is output and displayed.
* The peak hold function and the bottom hold function cannot be set at the same time.
* When the zero set function is executed while the peak hold function or the bottom hold function is valid, the held measurement value is reset.

External input setting function

One of four functions, "zero setting function," "teaching function," "emission stopping function" and "trigger function" can be assigned to an external input line.

Assign any one.
- Zero set
- Teaching
- Emission stop
- Trigger

Threshold value fine adjustment function

Fine adjustment of threshold values can be performed while measurement is proceeding on the display, and even after teaching.

Key lock function

This function protects setting conditions from unintentional changes.

* For other functions and procedures for setting the functions, see "PRO Mode Setting" from p.196-.
ORDER GUIDE

<table>
<thead>
<tr>
<th>Type</th>
<th>Appearance</th>
<th>Measurement center distance and measurement range</th>
<th>Repeatability</th>
<th>Beam diameter (Note)</th>
<th>Model No.</th>
<th>NPN output</th>
<th>PNP output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement center 30mm 1.181 in type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement center 50mm 1.969 in type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement center 100mm 3.937 in type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement center 200mm 7.874 in type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement center 400mm 15.748 in type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This is the size in the measurement center distance. These values were defined by using 1/e² (13.5% approx.) of the center light intensity. Due to leak light outside the specified area, the reflectance around the detecting point may be higher than at the point and this may affect the measurement value.

OPTIONS

<table>
<thead>
<tr>
<th>Designation</th>
<th>Model No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple mounting bracket (Note)</td>
<td>MS-HG-01</td>
<td>Foot angled mounting bracket</td>
</tr>
</tbody>
</table>

Note: Due to the simple mounting bracket, the sensing characteristics may not be held depending on the installation condition, in case of the purposes for acquiring the displacement data and a fine detecting.
SPECIFICATIONS

Item	NPN output	PNP output								
Model No.	HG-C1030	HG-C1030-P	HG-C1100	HG-C1100-P	HG-C1200	HG-C1200-P	HG-C1400	HG-C1400-P	HG-C1050	HG-C1050-P

CE marking directive compliance
- EMC Directive, RoHS Directive

Measurement center distance
- 30 mm 1.181 in
- 50 mm 1.969 in
- 100 mm 3.937 in
- 200 mm 7.874 in
- 400 mm 15.748 in

Measurement range
- ±5 mm 0.197 in
- ±15 mm 0.591 in
- ±35 mm 1.328 in
- ±80 mm 3.150 in
- ±200 mm 7.874 in

Repeatability
- 10 μm 0.394 mil
- 30 μm 1.181 mil
- 70 μm 2.766 mil
- 200 μm 7.874 mil

Linearity
- ±0.1 % F.S.
- ±0.2 % F.S.

Temperature characteristic
- 0.03 % F.S./°C

Light source
- Red semiconductor laser Class 2 (IEC / JIS / GB / FDA (Note 2))
 - Max. output: 1 mW
 - Emission peak wavelength: 655 nm

Beam diameter (Note 3)
- ø50 μm
- ø120 μm
- ø300 μm

Measurement center distance
- 30 mm 1.181 in
- 50 mm 1.969 in
- 100 mm 3.937 in
- 200 mm 7.874 in
- 400 mm 15.748 in

Cable extension
- Extension up to total 10 m 32.808 ft is possible with 0.3 mm², or more, cable.

Specification Notes:
1. Supply voltage: 24 V DC, ambient temperature: +20 °C / -40 °C, response time: 10 ms, and analog output value of measurement center distance are used for unspecified measurement conditions. The subject is white ceramics.
2. This product complies with 21 CFR 1040.10 and 1040.11 Laser Notice No. 50, dated June 24, 2007, issued by CDRH (Center for Devices and Radiological Health) under the FDA (Food and Drug Administration).
3. This is the size in the measurement center distance. These values were defined by using 1/ε² (13.5 % approx.) of the center light intensity. Due to leak light outside the specified area, the reflectance around the detecting point may be higher at the point and this may affect the measurement value.

Control output
- NPN open-collector transistor
 - Maximum sink current: 50 mA
 - Applied voltage: 30 V DC or less (Between control output to 0V)
 - Residual voltage: 1.5 V or less (at 50 mA sink current)
 - Leakage current: 0.1 mA or less

Output operation
- Switchable between either Light-ON or Dark-ON
- Output impedance: 100 Ω

Input conditions
- NPN non-contact input
 - Valid: 0 to +1.2 V DC
 - Input impedance: 10 kΩ approx.

Pollution degree
- 2

Ambient altitude
- 2,000 m 6561.680 ft or less

Power consumption
- 40 mA or less (at 24 V DC supply voltage), 65 mA or less (at 12 V DC supply voltage)

Analog output
- Analog voltage output
 - Output range: 0 to +5 V (at alarm: +5.2 V)
 - Output impedance: 100 Ω

Response time
- Switchable between 1.5 ms / 5 ms / 10 ms

Output impedance
- 100 Ω

External input
- PNP open-collector transistor
 - Maximum source current: 50 mA
 - Applied voltage: 30 V DC or less (Between control output to +V)
 - Residual voltage: 1.5 V or less (at 50 mA source current)
 - Leakage current: 0.1 mA or less

Tracking resistance
- 10 to 55 Hz (period: 1 min.)

Shock resistance
- 500 m/s² acceleration (50 G approx.) in X, Y and Z directions three times each

Cable
- 3-core composite cable, 2 m 6.5617 ft long

Weight
- Net weight: 35 g approx. (without cable), 85 g approx. (including cable)

Material
- Enclosure: Aluminum die-cast, Front cover: Acrylic

Notes:
1. Supply voltage: 24 V DC, ambient temperature: +20 °C / -40 °C, response time: 10 ms, and analog output value of measurement center distance are used for unspecified measurement conditions. The subject is white ceramics.
2. This product complies with 21 CFR 1040.10 and 1040.11 Laser Notice No. 50, dated June 24, 2007, issued by CDRH (Center for Devices and Radiological Health) under the FDA (Food and Drug Administration).
3. This is the size in the measurement center distance. These values were defined by using 1/ε² (13.5 % approx.) of the center light intensity. Due to leak light outside the specified area, the reflectance around the detecting point may be higher at the point and this may affect the measurement value.
I/O CIRCUIT DIAGRAMS

NPN output type

- **Color code**
 - (Brown) +V
 - (Black) Control output
 - (Blue) 0 V
 - (Pink) External input

- **Sensor circuit**
 - Internal circuit
 - User's circuit

- **AGND**
 - (Shield) Analog ground (AGND)

- **Color code**
 - 50 mA max.

- **External input**
 - 12 to 24 V DC ±10%

- **Non-voltage contact or NPN open-collector transistor**
 - or
 - External input
 - Valid: +4 V to +12 V DC

- **SENSING CHARACTERISTICS (TYPICAL)**

Linearity

- **Sensing object**
 - (white ceramic)

- **HG-C1030 (-P)**

- **HG-C1050 (-P)**

- **HG-C1100 (-P)**

- **HG-C1200 (-P)**

- **HG-C1400 (-P)**

- **Color code**
 - (Brown) +V

- **Sensor circuit**
 - Internal circuit
 - User's circuit

- **AGND**
 - (Shield) Analog ground (AGND)

- **Color code**
 - 50 mA max.

- **External input**
 - 12 to 24 V DC ±10%

- **Non-voltage contact or PNP open-collector transistor**
 - or
 - External input
 - Valid: 0 to +0.6 V DC or open
 - Valid: +4 V to +12 V DC
PRECAUTIONS FOR PROPER USE

Refer to p.1552~ for general precautions and p.1593~ for information about laser beam.

- This catalog is only provided to help choose a product and the user’s guide attached to the product must be read before use.

- Never use this product as a sensing device for personnel protection.

- In case of using sensing devices for personnel protection, use products which meet laws and standards, such as OSHA, ANSI or IEC etc., for personnel protection applicable in each region or country.

- Do not operate products using methods other than the ones described in the instruction manual included with each product. Control or adjustment through procedures other than the ones specified may cause hazardous laser radiation exposure.

- This product is classified as a Class 2 Laser Product under IEC / JIS / GB standards and FDA* regulations. Do not look at the laser beam directly or through an optical system such as a lens.

- The warning label (English) is attached to the product. Handle the product according to the instruction given on the warning label. (The warning labels in Japanese and Chinese are packed with the sensor.)

* This product complies with 21 CFR 1040.10 and 1040.11 Laser Notice No. 50, dated June 24, 2007, issued by CDRH (Center for Devices and Radiological Health) under the FDA (Food and Drug Administration).

Part description

![Part description diagram](image)

PRO mode setting

<table>
<thead>
<tr>
<th>Part description</th>
<th>Item</th>
<th>Default setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO indicator (Yellow)</td>
<td>Response time setting</td>
<td>H~S5a</td>
<td>Set the response time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“HS5a”: High precision 10ms, “S5d”: Standard 5ms, “FR5d”: High speed 1.5ms</td>
</tr>
<tr>
<td></td>
<td>Output operation setting</td>
<td>L~on</td>
<td>Select the control output operation mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Lon”: Light-ON, “don”: Dark-ON</td>
</tr>
<tr>
<td></td>
<td>Sensing output setting</td>
<td>0~5f</td>
<td>Set the sensing output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0~5f”: Normal sensing mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0~1f”: 1-point teaching (Window comparator mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0~2f”: 2-point teaching (Window comparator mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0~3f”: 3-point teaching (Window comparator mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“d~0f”: Rising differential mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“d~1f”: Trailing differential mode</td>
</tr>
<tr>
<td></td>
<td>Analog output setting</td>
<td>wOut</td>
<td>Set the output operation of analog output setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“wOut”: Analog voltage output (0 to +5 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“wOut”: Analog current output (4 to 20 mA)</td>
</tr>
<tr>
<td></td>
<td>Hysteresis setting</td>
<td></td>
<td>Set the hysteresis width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HG-C1030: 0.001 to 5.00 mm 0.00004 to 0.197 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HG-C1050: 0.01 to 15.00 mm 0.00039 to 0.591 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HG-C1100: 0.02 to 35.00 mm 0.00079 to 1.378 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HG-C1200: 0.1 to 80.0 mm 0.00394 to 3.150 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HG-C1400: 0.2 to 200.0 mm 0.00787 to 7.874 in</td>
</tr>
<tr>
<td></td>
<td>External input setting</td>
<td>0SEt</td>
<td>Set the external input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0SEt”: Zero set function, “SEt”: Teaching function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0SEt”: Light emitting stop function, “SEt”: Trigger function</td>
</tr>
<tr>
<td></td>
<td>Timer setting</td>
<td>non</td>
<td>Set the timer operation. The timer time is fixed at 5ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“non”: No timer, “Ofdd”: OFF-delay timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Onnn”: ON-delay timer, “Ofd”: One-shot timer</td>
</tr>
<tr>
<td></td>
<td>Display setting</td>
<td>Std</td>
<td>The display of the measured value can be changed.</td>
</tr>
<tr>
<td></td>
<td>Hold setting</td>
<td>off</td>
<td>Set the control output and the analogue output operation when a measurement error occurs (insufficient light intensity, saturation of light intensity, out of measurement range).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Ofd”: Hold OFF, “Onnn”: Hold ON</td>
</tr>
<tr>
<td></td>
<td>ECO setting</td>
<td>off</td>
<td>The digital display can be set to go OFF when key operation is not performed for 30 seconds. Current consumption can be reduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Off”: ECO OFF, “Onnn”: ECO ON</td>
</tr>
<tr>
<td></td>
<td>Reset setting</td>
<td>no</td>
<td>Return to the default setting (factory setting).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“no”: Reset NG, “YES”: Reset OK</td>
</tr>
</tbody>
</table>
CMOS Type Micro Laser Distance Sensor HG-C SERIES

PRECAUTIONS FOR PROPER USE

Refer to p.1552~ for general precautions and p.1593~ for information about laser beam.

Procedure

Measurement display
- DOWN: Press for 3 seconds

Response time setting
- Standard
- High precision

Output operation setting
- Normal sensing mode
- 1-point teaching mode
- 2-point teaching mode
- 3-point teaching mode

Sensing output setting
- Light-ON
- Dark-ON
- Rising differential mode
- Trailing differential mode

Analog output setting
- Analog voltage output
- Analog current output

Hysteresis setting
- UP key: Increases hysteresis width
- DOWN key: Decreases hysteresis width

External input setting
- Zero set function
- Teaching function
- Light-emitting stop function
- Trigger function

Timer setting
- No timer
- OFF-delay
- ON-delay
- One-shot

Display setting
- Normal
- Invert
- Offset

Hold setting
- Hold OFF
- Hold ON

ECO Setting
- ECO OFF
- ECO ON

Reset setting
- Reset setting

Response time setting
- UP / DOWN

<Arrow description in figures>
- Press the TEACH key
- Press UP key or DOWN key
- Press DOWN key
PRECAUTIONS FOR PROPER USE

Refer to p.1552~ for general precautions and p.1593~ for information about laser beam.

Mounting

- **When mounting this product**, use M3 screws. The tightening torque should be 0.5 N·m. Please prepare M3 screws separately.

 ![Mounting hole dimensions](image)

- **When mounting the simple mounting bracket (optional)** on this product, the tightening torque should be 0.5 N·m or less.

 ![Simple mounting bracket MS-HG-01 (Optional)](image)

 ![Plate (Accessory for MS-HG-01)](image)

 Note: Due to the simple mounting bracket, the sensing characteristics may not be held depending on the installation condition, in case of the purposes for acquiring the displacement data and a fine detecting.

Mounting direction

- **Direction to a movable body**
 - When performing measurements of moving objects with excessively different materials and colors, mount the product per the following directions to minimize measurement errors.

 ![Correct](image)
 ![Incorrect](image)

- **Measurement of rotating objects**
 - When measuring rotating objects, mount the product as follows. Measurement can be performed with minimized effect on the object caused by up / down deflection, position deviation and etc.

 ![Correct](image)
 ![Incorrect](image)

- **When there is a step**
 - When there is a step in the moving object, mount the product as follows. Measurement can be performed with minimized effect from the edges of the steps.

 ![Correct](image)
 ![Incorrect](image)

- **Measuring of narrow locations and recesses**
 - When measuring in narrow locations or inside holes, mount the product so that optical path from the light-emitting part to light-receiving part is not interrupted.

 ![Correct](image)
 ![Incorrect](image)

- **When mounting the product on a wall**
 - Mount the product as follows, so that the multiple light reflections on the wall do not emit to the light-receiving part. When the reflection factor on a wall is high, it is effective to use a dull black color.

 ![Correct](image)
 ![Incorrect](image)

Others

- This product has been developed / produced for industrial use only.
- Make sure that the power supply is OFF before starting the wiring. If the wiring is performed incorrectly, it will cause a failure.
- Do not run the wires together with high-voltage lines or power lines, or put them in the same raceway. This can cause malfunction due to induction.
- Verify that the supply voltage variation is within the rating. If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the device is connected to an actual ground.
- If noise generating devices (switching regulators, inverter motors, etc.) are used around the sensor mounting area, make sure to connect the frame ground (F.G.) terminal of the device.
- Do not use this product during the transient state when the power supply is turned ON.
- Extension up to total 10 m 32.808 ft is possible with 0.3 mm², or more, cable.
- Make sure that stress by forcible bend or pulling is not applied to the sensor cable joint.
- Take care that the sensor is not directly exposed to fluorescent lamp from a rapid-starter lamp or a high frequency lighting device, as it may affect the sensing performance.
- This product is suitable for indoor use only.
- Keep water, oil, fingerprints and etc. which reflect light, or dust, particles or etc. which interrupts the light, away from the emitting/receiving surfaces of this product. If contaminants adhere to the surface, wipe off with a dust-free soft cloth, or lens cleaning paper.
- Do not use the sensor in locations where there is excessive vapor, dust or etc. or in an atmosphere where corrosive gases, etc. is generated.
- Take care that the product does not come in contact with oil, grease, organic solvents such as thinner, etc., strong acid or alkaline.
- Make sure to turn OFF the power supply, before cleaning the light emitting/receiving windows of the sensor head.
- There is a certain deviation in the directionality of this product. Install the product using a mounting bracket or similar fitting to allow the adjustment of optical axis.
- The internal memory (nonvolatile) of this product has a service life. Settings cannot be configured more than 100,000 times.
PRECAUTIONS FOR PROPER USE

Refer to p.1552~ for general precautions and p.1593~ for information about laser beam.

Error indication

- In case of errors, attempt the following measures.

<table>
<thead>
<tr>
<th>Error indication</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td><Hold OFF></td>
<td>Insufficient amount of reflected light. The sensing object is out of the sensing range.</td>
<td>Confirm that the sensing distance is within the specification range. Adjust the installation angle of the sensor.</td>
</tr>
<tr>
<td><Hold ON></td>
<td>Measured value blinks</td>
<td></td>
</tr>
<tr>
<td>ε-0 :</td>
<td>Flash memory is damaged or is past its life expectancy.</td>
<td>Please contact our office.</td>
</tr>
<tr>
<td>ε-1 :</td>
<td>Load of the sensing output is short-circuited causing an over-current to flow.</td>
<td>Turn OFF the power and check the load.</td>
</tr>
<tr>
<td>ε-2 :</td>
<td>The semiconductor laser is damaged or is past its life expectancy.</td>
<td>Please contact our office.</td>
</tr>
</tbody>
</table>
| ε-3 : | • When zero set is set, the measurement is not performed normally.
 • Since the display setting is set to “Offset”, the zero set function can not be used. | • Confirm that the sensing distance is within the specification range.
 • Set the display to any setting except “Offset.” |
| ε-4 : | During teaching, the measurement is not performed normally. | Confirm that the sensing distance is within the specification range. |
| ε-90 | System error | Please contact our office. |
| ε-91 | | |
| ε-92 | | |
| ε-93 | | |

DIMENSIONS (Unit: mm in)

The CAD data can be downloaded from our website.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Measurement center distance (L)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG-C1030(-P)</td>
<td>30 1.181</td>
<td>30°</td>
</tr>
<tr>
<td>HG-C1050(-P)</td>
<td>50 1.969</td>
<td>22.5°</td>
</tr>
<tr>
<td>HG-C1100(-P)</td>
<td>100 3.937</td>
<td>12.5°</td>
</tr>
<tr>
<td>HG-C1200(-P)</td>
<td>200 7.874</td>
<td>6.3°</td>
</tr>
<tr>
<td>HG-C1400(-P)</td>
<td>400 15.748</td>
<td>3.2°</td>
</tr>
</tbody>
</table>
DIMENSIONS (Unit: mm in)

MS-HG-01

The CAD data can be downloaded from our website.

Material: Stainless steel (SUS304)
Two M3 (length 25 mm 0.984 in) screws with washers (cold rolled carbon steel (SPCC)) are attached.