Single-chip Type with built-in FET Switching Regulator Series

Flexible Step-down Switching Regulators with Built-in Power MOSFET

BD9006F/HFP, BD9007F/HFP, BD9009HFP

● Overview
The high-accuracy frequency flexible step-down switching regulator is a switching regulator with built-in POWER MOS FET, which withstands high pressure. The operational frequency is freely configurable with external resistance. It features a wide input voltage range (7V~35V) and a high frequency accuracy of ±5% (BD9006F/HFP,BD9009HFP, f=200~500kHz). Furthermore, an external synchronization input pin enables synchronous operation with external clock.

● Features
1) Minimal external components
2) Wide input voltage range: 7V ~ 35V
3) Frequency voltage accuracy: ±5%(BD9006F/HFP,BD9009HFP, f=200~500kHz)
 ±20%(BD9007F/HFP)
4) Built-in P-ch POWER MOS FET
5) Output voltage setting enabled with external resistor: 0.8V ~ Vin
6) Reference voltage accuracy: 0.8V±2%
7) Wide operating temperature range: -40℃~+105℃
8) Low dropout: 100% ON duty cycle
9) Standby mode supply current: 0μA (Typ.)
10) Oscillation frequency variable with external resistor: 50~500kHz
11) External synchronization enabled
12) Soft start function: soft start time fixed to 5ms (Typ.)
13) Built-in overcurrent protection circuit
14) Built-in thermal shutdown protection circuit
15) High-power HRP7 package mounted (BD9006HFP,BD9007HFP,BD9009HFP)
16) Compact SOP8 package mounted (BD9006F,BD9007F)

● Applications
All fields of industrial equipment, such as Flat TV, printer, DVD, car audio, car navigation, and communication such as ETC, AV, and OA.

● Product lineup

<table>
<thead>
<tr>
<th>Item</th>
<th>BD9006F/HFP</th>
<th>BD9007F/HFP</th>
<th>BD9009HFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current</td>
<td>2A</td>
<td>2A</td>
<td>4A</td>
</tr>
<tr>
<td>Input Range</td>
<td>7V~35V</td>
<td>7V~35V</td>
<td>7V~35V</td>
</tr>
<tr>
<td>Oscillation Frequency Range</td>
<td>50~500kHz</td>
<td>50~500kHz</td>
<td>50~500kHz</td>
</tr>
<tr>
<td>Oscillation Frequency Accuracy</td>
<td>±5%</td>
<td>±20%</td>
<td>±5%</td>
</tr>
<tr>
<td>External Synchronous Function</td>
<td>Provided</td>
<td>Provided</td>
<td>Provided</td>
</tr>
<tr>
<td>Standby Function</td>
<td>Provided</td>
<td>Provided</td>
<td>Provided</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40℃~+105℃</td>
<td>-40℃~+105℃</td>
<td>-40℃~+105℃</td>
</tr>
<tr>
<td>Package</td>
<td>SOP8/HRP7</td>
<td>SOP8/HRP7</td>
<td>HRP7</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>VIN</td>
<td>36 V</td>
<td></td>
</tr>
<tr>
<td>Output Switch Pin Voltage</td>
<td>VSW</td>
<td>VIN</td>
<td>V</td>
</tr>
<tr>
<td>Output Switch Current</td>
<td>BD9006F/HFP, BD9007F/HFP ISW</td>
<td>2 *1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>BD9009HFP</td>
<td>4 *1</td>
<td></td>
</tr>
<tr>
<td>EN/SYNC Pin Voltage</td>
<td>VEN/SYNC</td>
<td>VIN</td>
<td>V</td>
</tr>
<tr>
<td>RT, FB, INV Pin Voltage</td>
<td>VRT, VFB, VINV</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>HRP7 Pd</td>
<td>5.5 *2</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>SOP8 0.69 *3</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Topr</td>
<td>-40~+105</td>
<td>℃</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-55~+150</td>
<td>℃</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td>150</td>
<td>℃</td>
</tr>
</tbody>
</table>

*1 Should not exceed Pd value.
*2 Reduce by 44mW/℃ over 25℃, when mounted on 2-layer PCB of 70×70×1.6mm
*3 PCB incorporates thermal via. Copper foil area on the reverse side of PCB: 10.5×10.5mm
* Reduce by 5.52mW/℃ over 25℃, when mounted on 2-layer PCB of 70×70×1.6mm

Recommended Operating Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BD9006F/HFP</th>
<th>BD9007F/HFP</th>
<th>BD9009HFP</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Power Supply Voltage</td>
<td>7~35 V</td>
<td>7~35 V</td>
<td>7~35 V</td>
<td>V</td>
</tr>
<tr>
<td>Output Switch Current</td>
<td>~2 A</td>
<td>~2 A</td>
<td>~4 A</td>
<td>A</td>
</tr>
<tr>
<td>Output Voltage (min pulse width)</td>
<td>250 ns</td>
<td>250 ns</td>
<td>360 ns</td>
<td></td>
</tr>
<tr>
<td>Oscillation Frequency</td>
<td>50~500 kHz</td>
<td>50~500 kHz</td>
<td>50~500 kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>Oscillation Frequency set Resistance</td>
<td>27~360 kΩ</td>
<td>27~360 kΩ</td>
<td>27~360 kΩ</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

Possible Operating Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BD9006F/HFP</th>
<th>BD9007F/HFP</th>
<th>BD9009HFP</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Power Supply Voltage</td>
<td>5~35 V</td>
<td>5~35 V</td>
<td>5~35 V</td>
<td>V</td>
</tr>
</tbody>
</table>

Electrical Characteristics

BD9006F/HFP (Unless otherwise specified, Ta=25°C, VIN=13.2V, VEN/SYNC=5V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Spec Values</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Circuit Current</td>
<td>ISTB</td>
<td>Min. Typ. Max.</td>
<td>µA</td>
<td>VEN/SYNC=0V</td>
</tr>
<tr>
<td>Circuit Current</td>
<td>IQ</td>
<td>- 4 6.5mA</td>
<td>A</td>
<td>IC=0A,RT=51kΩ,VINV=0.7V</td>
</tr>
<tr>
<td>POWER MOS FET ON Resistance</td>
<td>RON</td>
<td>0.3 0.6Ω</td>
<td>A</td>
<td>ISW=50mA</td>
</tr>
<tr>
<td>Operating Output Current Of Overcurrent Protection</td>
<td>IO LIMIT</td>
<td>2 4 -</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Output Leak Current</td>
<td>IOLEAK</td>
<td>- 0 30µA</td>
<td>µA</td>
<td>VIN=35V, VEN/SYNC=0V</td>
</tr>
<tr>
<td>Reference Voltage 1</td>
<td>VREF1</td>
<td>0.784 0.800 0.816</td>
<td>V</td>
<td>VFB=VIN</td>
</tr>
<tr>
<td>Reference Voltage 2</td>
<td>VREF2</td>
<td>0.780 0.800 0.820</td>
<td>V</td>
<td>VMIN=10~16V,VFB=VIN</td>
</tr>
<tr>
<td>Reference Voltage Input Regulation</td>
<td>ΔVREF</td>
<td>- 0.5 -%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IB</td>
<td>- - -</td>
<td>µA</td>
<td>VIN=0.6V</td>
</tr>
<tr>
<td>Maximum FB Voltage</td>
<td>VFBH</td>
<td>2.2 2.4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Minimum FB Voltage</td>
<td>VFBL</td>
<td>- 0.5 0.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>FB Sink Current</td>
<td>IFBSINK</td>
<td>-0.47 -1.16 -2.45</td>
<td>mA</td>
<td>VFBSINK=1V,VINV=1V</td>
</tr>
<tr>
<td>FB Source Current</td>
<td>IFBSOURCE</td>
<td>1 5 15</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Soft Start Time</td>
<td>TSS</td>
<td>3 5 9</td>
<td>s</td>
<td>Ta=-40~105°C</td>
</tr>
<tr>
<td>Oscillation Frequency</td>
<td>FOSC</td>
<td>285 300 315</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Frequency Input Regulation</td>
<td>ΔFOSC</td>
<td>- 0.5 -%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Output ON Voltage</td>
<td>VENON</td>
<td>2.6 - -</td>
<td>V</td>
<td>VEN/SYNC Sweep Up,Ta=-40~105°C</td>
</tr>
<tr>
<td>Output OFF Voltage</td>
<td>VENOFF</td>
<td>- - 0.8</td>
<td>V</td>
<td>VEN/SYNC Sweep Down,Ta=-40~105°C</td>
</tr>
<tr>
<td>Sink Current</td>
<td>IEN/SYNC</td>
<td>-35 90</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>External Sync Frequency</td>
<td>FSYNC</td>
<td>495 500 505</td>
<td>kHz</td>
<td>RT=51kΩ, VEN/SYNC=500kHz,Duty 50%</td>
</tr>
</tbody>
</table>

* Not designed to be radiation resistant.
BD9006F/HFP, BD9007F/HFP, BD9009HFP

Technical Note

© 2012 ROHM Co., Ltd. All rights reserved.

www.rohm.com 3/18

BD9006F/HFP, BD9007F/HFP, BD9009HFP

©BD9006F/HFP (Unless otherwise specified, Ta=25°C, VIN=13.2V, VEN/SYNC=5V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Spec Values</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Circuit Current</td>
<td>ISTB</td>
<td>- 0 10 µA</td>
<td></td>
<td>VEN/SYNC=0V</td>
</tr>
<tr>
<td>Circuit Current</td>
<td>Iq</td>
<td>- 4 6.5 mA</td>
<td></td>
<td>Iq=0A, RT=51kΩ, VIN=0.7V</td>
</tr>
<tr>
<td>POWER MOS FET ON Resistance</td>
<td>RON</td>
<td>- 0.3 0.6 Ω</td>
<td></td>
<td>Isw=50mA</td>
</tr>
<tr>
<td>Operating Output Current Of Overcurrent Protection</td>
<td>IOLIMIT</td>
<td>2 4 - A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Leak Current</td>
<td>IOLEAK</td>
<td>- 0 30 µA</td>
<td></td>
<td>VIN=35V, VEN/SYNC=0V</td>
</tr>
</tbody>
</table>

[SW Block]

[Error Amp Block]

Reference Voltage 1 VREF1 0.784 0.800 0.816 V VFB=VINV
Reference Voltage 2 VREF2 0.780 0.800 0.820 V VIN=10~16V, VFB=VINV
Reference Voltage Input Regulation ∆VREF - 0.5 - %
Input Bias Current IB -1 - - µA VIN=0.6V
Maximum FB Voltage VFBB 2.2 2.4 - V VIN=0V
Minimum FB Voltage VFBL - 0.5 0.6 V VIN=2V
FB Sink Current IFBSINK -0.47 -1.16 -2.45 mA VFB=1V, VIN=1V
FB Source Current IFBSOURCE 1 5 15 mA VFB=1V, VIN=0.6V
Soft Start Time TSS 3 5 9 mS Ta=-40~105°C

[Oscillator Block]

Oscillation Frequency FOSC 240 300 360 kHz VIN=7V, RT=51kΩ
Frequency Input Regulation ∆FOSC - 0.5 - % VIN=7~16V

[Enable/Sync Input Block]

Output ON Voltage VENON 2.6 - - V VEN/SYNC Sweep Up, a=-40~105°C
Output OFF Voltage VENOFF - - 0.8 V VEN/SYNC Sweep, own, Ta=-40~105°C
Sink Current IEN/SYNC - 35 90 µA
External Sync Frequency FSYNC 495 500 505 kHz RT=51kΩ, EN/SYNC=500kHz, Duty 50%

Not designed to be radiation resistant.

©BD9009HFP (Unless otherwise specified, Ta=25°C, VIN=13.2V, VEN/SYNC=5V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Spec Values</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Circuit Current</td>
<td>ISTB</td>
<td>- 0 10 µA</td>
<td></td>
<td>VEN/SYNC=0V</td>
</tr>
<tr>
<td>Circuit Current</td>
<td>Iq</td>
<td>- 4 6.5 mA</td>
<td></td>
<td>Iq=0A, RT=51kΩ, VIN=0.7V</td>
</tr>
<tr>
<td>POWER MOS FET ON Resistance</td>
<td>RON</td>
<td>- 0.24 0.5 Ω</td>
<td></td>
<td>Isw=50mA</td>
</tr>
<tr>
<td>Operating Output Current Of Overcurrent Protection</td>
<td>IOLIMIT</td>
<td>4 7 - A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Leak Current</td>
<td>IOLEAK</td>
<td>- 0 30 µA</td>
<td></td>
<td>VIN=35V, VEN/SYNC=0V</td>
</tr>
</tbody>
</table>

[SW Block]

[Error Amp Block]

Reference Voltage 1 VREF1 0.784 0.800 0.816 V VFB=VINV
Reference Voltage 2 VREF2 0.780 0.800 0.820 V VIN=10~16V, VFB=VINV
Reference Voltage Input Regulation ∆VREF - 0.5 - %
Input Bias Current IB -1 - - µA VIN=0.6V
Maximum FB Voltage VFBB 2.2 2.4 - V VIN=0V
Minimum FB Voltage VFBL - 0.5 0.6 V VIN=2V
FB Sink Current IFBSINK -0.47 -1.16 -2.45 mA VFB=1V, VIN=1V
FB Source Current IFBSOURCE 1 5 15 mA VFB=1V, VIN=0.6V
Soft Start Time TSS 3 5 9 mS Ta=-40~105°C

[Oscillator Block]

Oscillation Frequency FOSC 285 300 315 kHz VIN=7V, RT=51kΩ
Frequency Input Regulation ∆FOSC - 0.5 - % VIN=7~16V

[Enable/Sync Input Block]

Output ON Voltage VENON 2.6 - - V VEN/SYNC Sweep Up, Ta=-40~105°C
Output OFF Voltage VENOFF - - 0.8 V VEN/SYNC Sweep Down, Ta=-40~105°C
Sink Current IEN/SYNC - 35 90 µA
External Sync Frequency FSYNC 495 500 505 kHz RT=51kΩ, EN/SYNC=500kHz, Duty 50%

Not designed to be radiation resistant.
Reference Data

Fig.1 Output reference voltage vs. Ambient temperature (All series)

Fig.2 Frequency vs. Ambient temperature (All series)

Fig.3 Frequency vs. Ambient temperature (All series)

Fig.4 Frequency vs. Ambient temperature (All series)

Fig.5 Frequency vs. Ambient temperature (All series)

Fig.6 Standby Current (BD9006F/HFP, BD9007F/HFP)

Fig.7 Circuit Current (BD9006F/HFP, BD9007F/HFP)

Fig.8 EN/SYNC Input Current (BD9006F/HFP, BD9007F/HFP)

Fig.9 ON Resistance VIN=7V (BD9006F/HFP, BD9007F/HFP)

Fig.10 ON Resistance VIN=13.2V (BD9006F/HFP, BD9007F/HFP)

Fig.11 ON Resistance VIN=35V (BD9006F/HFP, BD9007F/HFP)

Fig.12 Efficiency f=100kHz (BD9006F/HFP, BD9007F/HFP)
BD9006F/HFP, BD9007F/HFP, BD9009HFP

Fig.25 Efficiency f=500kHz (BD9009HFP)

Fig.26 Over-current Protection Operation Current (BD9009HFP)

Fig.27 The lowest voltage of possible operation Ta=-40°C (BD9009HFP)

Fig.28 The lowest voltage of possible operation Ta=25°C (BD9009HFP)

Fig.29 The lowest voltage of possible operation Ta=105°C (BD9009HFP)
Block Diagrams / Application circuit / PIN assignment

(BD9006F/BD9007F)

![Fig.30](image1)

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PVIN</td>
<td>Power system power supply input</td>
</tr>
<tr>
<td>2</td>
<td>SW</td>
<td>Output</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Error Amp output</td>
</tr>
<tr>
<td>4</td>
<td>INV</td>
<td>Output voltage feedback</td>
</tr>
<tr>
<td>5</td>
<td>EN/SYNC</td>
<td>Enable/Synchronizing pulse input</td>
</tr>
<tr>
<td>6</td>
<td>RT</td>
<td>Frequency setting resistor connection</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>V IN</td>
<td>Power supply input</td>
</tr>
</tbody>
</table>

*Vin and PVIN must be shorted before use

(BD9006HFP/BD9007HFP)

![Fig.31](image2)

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V IN</td>
<td>Power supply input</td>
</tr>
<tr>
<td>2</td>
<td>SW</td>
<td>Output</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Error Amp output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>INV</td>
<td>Output voltage feedback</td>
</tr>
<tr>
<td>6</td>
<td>RT</td>
<td>Frequency setting resistor connection</td>
</tr>
<tr>
<td>7</td>
<td>EN/SYNC</td>
<td>Enable/Synchronizing pulse input</td>
</tr>
<tr>
<td>FIN</td>
<td>-</td>
<td>Ground</td>
</tr>
</tbody>
</table>

(BD9009HFP)

![Fig.32](image3)

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V IN</td>
<td>Power supply input</td>
</tr>
<tr>
<td>2</td>
<td>SW</td>
<td>Output</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Error Amp output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>INV</td>
<td>Output voltage feedback</td>
</tr>
<tr>
<td>6</td>
<td>RT</td>
<td>Frequency setting resistor connection</td>
</tr>
<tr>
<td>7</td>
<td>EN/SYNC</td>
<td>Enable/Synchronizing pulse input</td>
</tr>
<tr>
<td>FIN</td>
<td>-</td>
<td>Ground</td>
</tr>
</tbody>
</table>

BBD9006F/HFP, BD9007F/HFP, BD9009HFP

© 2012 ROHM Co., Ltd. All rights reserved.
Description of operations

- **ERROR AMP**
The ERROR AMP block is an error amplifier used to input the reference voltage (0.8V Typ.) and the INV pin voltage. The output FB pin controls the switching duty and output voltage Vo. These INV and FB pins are externally mounted to facilitate phase compensation. Inserting a capacitor and resistor between these pins enables adjustment of phase margin. (Refer to recommended examples on pages 13–15.)

- **SOFT START**
The SOFT START block provides a function to prevent the overshoot of the output voltage Vo through gradually increasing the normal rotation input of the error amplifier when power supply turns ON to gradually increase the switching Duty. The soft start time is set to 5msec (Typ.).

- **SYNC**
By making the “EN/SYNC” terminal less than 0.8V, the circuit can be shut down. Furthermore, by applying pulse with higher frequency than the configured oscillation frequency to the “EN/SYNC” terminal, external sync is possible. (Sync possible with double the configured frequency-configured frequency or 500kHz)

- **OSC(Oscillator)**
This circuit generates the pulse wave to be input to the slope, and by connecting resistance to “RT”, 50~500kHz oscillating frequency can be configured. (Refer to p.13 Fig.40)

- **slope**
This block generates saw tooth waves from the clock generated by the OSC. The generated saw tooth waves are sent to PWM COMPARATOR.

- **PWM COMPARATOR**
The PWM COMPARATOR block is a comparator to make comparison between the FB pin and internal saw tooth wave and output a switching pulse.
The switching pulse duty varies with the FB value.

 - min Duty width : 250ns(BD9006F/HFP,BD9007HFP)
 - min Duty width : 360ns(BD9009HFP)

- **TSD (Thermal Shut Down)**
In order to prevent thermal destruction/thermal runaway of the IC, the TSD block will turn OFF the output when the chip temperature reaches approximately 150°C or more. When the chip temperature falls to a specified level, the output will be reset. However, since the TSD is designed to protect the IC, the chip junction temperature should be provided with the thermal shutdown detection temperature of less than approximately 150°C.

- **CURRENT LIMIT**
While the output POWER P-ch MOS FET is ON, if the voltage between drain and source (ON resistance × load current) exceeds the reference voltage internally set with the IC, this block will turn OFF the output to latch. The overcurrent protection detection values have been set as shown below:

 - BD9009/HFP ・・・ 7A (Typ.)
 - BD9006F/HFP, BD9007F/HFP ・・・ 4A (Typ.)

Furthermore, since BD9006F/HFP,BD9007F/HFP overcurrent protection is an automatically reset, after the output is turned OFF and latched, the latch will be reset with the RESET signal output by each oscillation frequency.

When BD9009HFP over current protection circuit operates, output is turned off immediately, and then this IC restart to operate after 4096/fosc sec.

However, this protection circuit is only effective in preventing destruction from sudden accident. It does not support for the continuous operation of the protection circuit (e.g. if a load, which significantly exceeds the output current capacitance, is normally connected). Furthermore, since the overcurrent protection detection value has negative temperature characteristics, consider thermal design.
● Timing Chart
(All series)

• Basic Operation

![Timing Chart Diagram](image)

• Over Current Protection Operation

![Over Current Protection Diagram](image)

- **BD9009HFP**
 - COUNTER TIMER operation: present
 - \(t_{OFF} = \frac{4096}{f_{osc}} \) [s]
 - Example: when \(f_{osc} = 300\text{kHz} \), \(t_{OFF} = 13.65\text{ms} \)

- **BD9006F/HFP, BD9007F/HFP**
 - COUNTER TIMER operation: not present

- **INTERNAL slope**

- **Over Current Detect Level**

- **Output Voltage Short**

- **Auto reset**
 - (Soft Start Operation)

- **t_{OFF}**

- **t_{OFF}**

- **t_{OFF}**

Fig.34
- External synchronizing function

In order to activate the external synchronizing function, connect the frequency setting resistor to the RT pin and then input a synchronizing signal to the EN/SYNC pin. As the synchronizing signal, input a pulse wave higher than a frequency determined with the setting resistor (RT).

However, the external sync frequency should be configured at less than double the configured frequency. (ex.) When the configured frequency is 100kHz, the external sync frequency should be less than 200kHz.

Furthermore, the pulse wave’s LOW voltage should be under 0.8V and the HIGH voltage over 2.6V (when the HIGH voltage is over 6V the EN/SYNC input current increases [see p.4 Fig.8]), the through rate of stand-up (and stand-down) under 20V/μS.

![Fig.35 External Sync Sample Circuit](image)

(Vin=13.2V, Io=1A, f=300kHz, EN/SYNC=450kHz)
Description of External Components

![Diagram](image)

Design Procedure Sample Calculations

<table>
<thead>
<tr>
<th>Design Procedure</th>
<th>Sample Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo=Output voltage, VIN (Max.)=Maximum input voltage Io(Max.)=Maximum load current, f=Oscillation frequency</td>
<td>When Vo=3.3V, VIN (Typ.)=13.2V Io(Max.)=1A and f=300kHz</td>
</tr>
<tr>
<td>1. Setting or output voltage</td>
<td>When Vo=3.3V and R2=15kΩ</td>
</tr>
<tr>
<td>Output voltage can be obtained by the formula shown below: Vo=0.8 × (1+R1/R2)</td>
<td></td>
</tr>
<tr>
<td>Use the formula to select the R1 and R2. Furthermore, set the R2 to 30kΩ or less. Select the current passing through the R1 and R2 to be small enough for the output current.</td>
<td>R1=46.875 kΩ ≈ 47kΩ</td>
</tr>
<tr>
<td>2. Selection of coil (L1)</td>
<td>When VIN=13.2V, Vo=3.3V, Io=1A and f=300kHz, L1=(13.2-3.3) × 3.3/(13.2 × 300k × 1×0.3))</td>
</tr>
<tr>
<td>The value of the coil can be obtained by the formula shown below: L1=(VIN-Vo) × Vo / (VIN × f × ∆Io)</td>
<td></td>
</tr>
<tr>
<td>∆Io: Output ripple current</td>
<td>L1=33μH</td>
</tr>
<tr>
<td>∆Io should typically be approximately 20 to 30% of Io.</td>
<td></td>
</tr>
<tr>
<td>If this coil is not set to the optimum value, normal (continuous) Oscillation may not be achieved. Furthermore, set the value of the coil with an adequate margin so that the peak current passing through the coil will not exceed the rated current of the coil.</td>
<td></td>
</tr>
<tr>
<td>3. Selection of output capacitor (Co)</td>
<td>When ILIMIT: 2A, Io(Max)=1A, Vo=3.3V</td>
</tr>
<tr>
<td>The output capacitor can be determined according to the output ripple voltage ∆Vo(p-p) required. Obtain the required ESR value by the formula shown below and then select the capacitance. ∆IL=(VIN-Vo) × Vo/(L × f × VIN) ∆Vpp=∆IL × ESR/(2 × Co × f × VIN)</td>
<td></td>
</tr>
<tr>
<td>Set the rating of the capacitor with an adequate margin to the output voltage. Also, set the maximum allowable ripple current with an adequate margin to ∆IL. Furthermore, the output rise time should be shorter than the soft start time. Select the output capacitor having a value smaller than that obtained by the formula shown below. CMAX = 3.0m × (ILIMIT-Io(Max))/Vo</td>
<td></td>
</tr>
<tr>
<td>CMAX =3.0m × (ILIMIT-Io(Max))/Vo</td>
<td></td>
</tr>
<tr>
<td>ILIMIT : 2A (BD9006FHFP, BD9007FHFP), 4A (BD9009HFP) If this capacitances is not optimum, faulty startup may result.</td>
<td></td>
</tr>
<tr>
<td>(※3.0m is soft start time(min).)</td>
<td></td>
</tr>
</tbody>
</table>

www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.

2012.03 - Rev.C
4. Selection of diode (D1)
Set diode rating with an adequate margin to the maximum load current. Also, make setting of the rated inverse voltage with an adequate margin to the maximum input voltage.

A diode with a low forward voltage and short reverse recovery time will provide high efficiency.

5. Selection of input capacitor (CIN, C28)
Two capacitors, ceramic capacitor CIN and bypass capacitor C28 should be inserted between the VIN and GND. Be sure to insert a ceramic capacitor of 2 to 10µF for the CIN. The capacitor C28 should have a low ESR and a significantly large ripple current. The ripple current IRMS can be obtained by the following formula:

\[\text{IRMS} = Io \times \sqrt{Vo \times (VIN-Vo)/VIN^2} \]

Select capacitors that can accept this ripple current. If the capacitance of CIN and C28 is not optimum, the IC may malfunction.

6. Setting of oscillating frequency
Referring Fig.40 on the following page, select R for the oscillating frequency to be used.

When f=300kHz
From p.13 Fig.40, a resistance of RT=51kΩ is selected.

7. Setting of phase compensation (R3 and C1)
The phase margin can be set through inserting a capacitor or a capacitor and resistor between the INV pin and the FB pin. Each set value varies with the output coil, capacitance, I/O voltage, and load. Therefore, set the phase compensation to the optimum value according to these conditions. (For details, refer to Application circuit on page.13~)

If this setting is not optimum, output oscillation may result.

※Please contact us if there are any questions regarding phase compensation configuration.

Directions for pattern layout of PCB

1. Arrange the wirings shown by heavy lines as short as possible in a broad pattern.
2. Locate the input ceramic capacitor CIN as close to the VIN-GND pin as possible.
3. Locate the RT as close to the GND pin as possible.
4. Locate the R1 and R2 as close to the INV pin as possible, and provide the shortest wiring from the R1 and R2 to the INV pin.
5. Locate the R1 and R2 as far away from the L1 as possible.
6. Separate POWER GND (Schottky diode, I/O capacitor’s GND) and SIGNAL GND (RT, GND), so that SW noise doesn’t have an effect on SIGNAL GND at all.
7. Design the POWER wire line as wide and short as possible.
8. Additional pattern for C2 and C3 expand compensation flexibility.
Phase Compensation setting procedure

1. Application stability conditions

The following section describes the stability conditions of the negative feedback system.

Since the DC/DC converter application is sampled according to the switching frequency, GBW (frequency at 0-dB gain) of the overall system should be set to 1/10 or less of the switching frequency. The following section summarizes the targeted characteristics of this application.

- At a 1 (0-dB) gain, the phase delay is 150˚ or less (i.e. the phase margin is 30˚ or more).
- The GBW for this occasion is 1/10 or less of the switching frequency.

Responsiveness is determined with restrictions on the GBW. To improve responsiveness, higher switching frequency should be provided.

Replace a secondary phase delay (-180˚) with a secondary phase lead by inserting two-phase leads, to ensure the stability through the phase compensation. Furthermore, the GBW (i.e., frequency at 0-dB gain) is determined according to phase compensation capacitance provided for the error amplifier. Consequently, in order to reduce the GBW, increase the capacitance value.

(1) Typical integrator (low pass filter)

(2) Open loop characteristics of integrator

Since the error amplifier is provided with (1) or (2) phase compensation, the low pass filter is applied. In the case of the DC/DC converter application, the R becomes a parallel resistance of the feedback resistance.
2. **For output capacitors having high ESR, such as electrolyte capacitor**

For output capacitors that have high ESR (i.e., several Ω), the phase compensation setting procedure becomes comparatively simple. Since the DC/DC converter application has a LC resonant circuit attached to the output, a -180° phase-delay occurs in that area. If ESR component is present, however, a +90° phase-lead occurs to shift the phase delay to -90°. Since the phase delay should be set within 150°, it is a very effective method but tends to increase the ripple component of the output voltage.

(1) LC resonant circuit

\[
fr = \frac{1}{2\pi \sqrt{LC}} \text{ [Hz]}
\]

At this resonance point, a -180° phase-delay occurs.

(2) With ESR provided

\[
fr = \frac{1}{2\pi \sqrt{LC}} \text{ [Hz]: Resonance}
\]

\[
\text{fESR} = \frac{1}{2\pi \text{R} \text{ESR}C} \text{ [Hz]: Phase lead}
\]

A -90° phase-delay occurs.

According to changes in phase characteristics, due to the ESR, only one phase lead should be inserted. For this phase lead, select either of the methods shows below:

(3) Insert Feedback Resistance in the C.

\[
\text{Phase lead } f_z = \frac{1}{2\pi CR1} \text{ [Hz]}
\]

To cancel the LC resonance, the frequency to insert the phase lead should be set close to the LC resonant frequency. The setting above have is estimated. Consequently, the setting may be adjusted on the actual system. Furthermore, since these characteristics vary with the layout of PCB loading conditions, precise calculations should be made on the actual system.

(4) Insert the R3 in integrator.

\[
\text{Phase lead } f_z = \frac{1}{2\pi CR3} \text{ [Hz]}
\]

3. **For output capacitors having low ESR, such as low impedance electrolyte capacitor or OS-CON**

In order to use capacitors with low ESR (i.e., several tens of mΩ), two phase-leads should be inserted so that a -180° phase-delay, due to LC resonance, will be compensated. The following section shows a typical phase compensation procedure.

(1) Phase compensation with secondary phase lead

\[
\text{Phase lead: } f_z1 = \frac{1}{2\pi R1C1} \text{ [Hz]}
\]

\[
\text{Phase lead: } f_z2 = \frac{1}{2\pi R3C2} \text{ [Hz]}
\]

\[
\text{LC resonant: } fr = \frac{1}{2\pi \sqrt{LC}} \text{ [Hz]}
\]

To set phase lead frequency, insert both of the phase leads close to the LC resonant frequency. According to empirical rule, setting the phase lead frequency \(f_z2 \) with \(R3 \) and \(C2 \) lower than the LC resonant frequency \(fr \), and the phase lead frequency \(f_z1 \) with the \(R1 \) and \(C1 \) higher than the LC resonant frequency \(fr \), will provide stable application conditions.
<Reference> Measurement of open loop of the DC/DC converter

To measure the open loop of the DC/DC converter, use the gain phase analyzer or FRA to measure the frequency characteristics.

<Procedure>
1. Check to ensure output causes no oscillation at the maximum load in closed loop.
2. Isolate ① and ② and insert Vm (with amplitude of approximately 100mVpp).
3. Measure (probe) the oscillation of ① to that of ②.

Furthermore, the phase margin can also be measured with the load responsiveness. Measure variations in the output voltage when instantaneously changing the load from no load to the maximum load. Even though ringing phenomenon is caused, due to low phase margin, no ringing takes place. Phase margin is provided. However, no specific phase margin can be probed.

※Please contact us if you have any questions regarding phase compensation.

● Heat Loss

For thermal design, be sure to operate the IC within the following conditions.
(Since the temperatures described hereunder are all guaranteed temperature, take margin into account.)

1. The ambient temperature Ta is to be 105℃ or less.
2. The chip junction temperature Tj is to be 150℃ or less.

The chip junction temperature Tj can be considered in the following two patterns:

To obtain Tj from the IC surface temperature Tc in actual use state,

\[Tj = Tc + \theta_j - a \times W \]

< Reference value > \(\theta_j - c : \text{HRP7 7°C/W} \)
SOP8 32.5°C/W

< Reference. value > \(\theta_j - a : \text{HRP7 89.3°C/W} \)
Single piece of IC
54.3°C/W 2-layer PCB (Copper foil area on the front side of PCB: 15×15mm²)
22.7°C/W 2-layer PCB (Copper foil area on the front side of PCB: 70×70mm²)
PCB size: 70×70×1.6mm³

Copper foil area on the front side of PCB:
SOP8 222.2°C/W Single piece of IC
181.8°C/W 1-layer PCB
PCB size: 70×70×1.6mm³

The heat loss W of the IC can be obtained by the formula shown below:

\[W = Ron \times Io^2 + \frac{Vo}{Vin} + VIN \times ICC + Tr \times VIN \times Io \times f \]

Ron: ON resistance of IC (refer to page.4,5) Io: Load current
Vo: Output voltage Vin: Input voltage ICC: Circuit current (refer to page.2,3)
Tr: Switching rise/fall time (approximately 20nsec)
f: Oscillation frequency

\[T = \frac{1}{f} \]

\[1. Ron \times Io^2 \]
\[2. 2 \times \left(\frac{1}{2} \times \frac{1}{T} \times \frac{1}{Vin} \times Io \right) \]

SW wave from CN

\[T = \frac{1}{f} \]
Cautions on use

1. Absolute maximum ratings
 If excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2. GND potential
 Ground-GND potential should maintain at the minimum ground voltage level. Furthermore, no terminals should be lower than the GND potential voltage including electric transients.

3. Thermal design
 Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4. Inter-pin shorts and mounting errors
 When attaching to the set substrate, pay special attention to the direction and proper placement of the IC. If the IC is attached incorrectly, it may be destroyed. Furthermore, when using the IC with VIN and EN/SYNC terminals shorted, and the 5-pin (SOP8 package) or 7-pin (HRP7 package) EN/SYNC terminal and 6-pin RT terminal are shorted, the IC may also be damaged when VIN>7V.

5. Operation in strong electromagnetic field
 Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

6. Inspection with set printed circuit board
 When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

7. IC pin input (Fig. 42)
 This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:
 - When GND>pin A and GND>pin B, the P-N junction operates as a parasitic diode.
 - When pin B >GND>pin A, the P-N junction operates as a parasitic transistor. Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.
8. GND wiring pattern
 It is recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB, so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause fluctuations in voltages in the small-signal GND. Prevent fluctuations in the GND wiring pattern of external parts.

9. Temperature protection (thermal shut down) circuit
 This IC has a built-in temperature protection circuit to prevent the thermal destruction of the IC. As described above, be sure to use this IC within the power dissipation range. Should a condition exceeding the power dissipation range continue, the chip temperature Tj will rise to activate the temperature protection circuit, thus turning OFF the output power element. Then, when the tip temperature Tj falls, the circuit will be automatically reset. Furthermore, if the temperature protection circuit is activated under the condition exceeding the absolute maximum ratings, do not attempt to use the temperature protection circuit for set design.

10. On the application shown below, if there is a mode in which VIN and each pin potential are inverted, for example, if the VIN is short-circuited to the Ground with external diode charged, internal circuits may be damaged. To avoid damage, it is recommended to insert a backflow prevention diode in the series with VIN or a bypass diode between each pin and VIN.

11. This IC is designed that over current protection circuit operates at start up and normal operation. Therefore at start up when this IC's total load current (sum of load current and charge current to output capacitor) is exceeded 2A(BD9006F/HFP, BD9007F/HFP Minimum load current ability), 4A(BD9009HFP Minimum load current ability), over current protection circuit operates, and this IC's start up times are excessive time. If this case is occurred, output capacitor is recommended to change small value.

12. When this IC starts up with output-GND short, SW output current is exceeded 2A(BD9006F/HFP, BD9007F/HFP), 4A(BD9009HFP), and this IC may be destroyed. When VIN input voltage is under 7V with output-GND short, over current protection may don't operates. Please don't use this IC in these cases.
Thermal reduction characteristics

- **HRP7 SOP8**
 - Single piece of IC
 - PCB Size: 70×70×1.6mm³ (PCB incorporates thermal via)
 - Copper foil area on the front side of PCB: 10.5×10.5mm²
- **SOP8**
 - Single piece of IC
 - When mounted on ROHM standard PCB
 - (Glass epoxy PCB of 70mm×70mm×1.6mm)

Fig.44 Fig.45

Ordering Name Selection

- **Rohm Model Name**: B D 9 0 0 6 H F P
- **Item Number**: 9006=36V/2A
 - 9007=36V/2A
 - 9009=36V/4A
- **Package Type**: F=SOP8
 - HFP=HRP7
- **Taping Style Name**: E2=Reel type embossed taping(SOP8)
 - TR=Reel type embossed taping(HRP7)
ご注意

ローム製品取扱い上の注意事項

1. 本製品は一般的な電子機器（AV機器、OA機器、通信機器、家電製品、アミューズメント機器等）への使用を意図して設計・製造されております。従いまして、極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険又は損害、財産への危険又は損害が生じないように、お客様の責任において次の例に示すような不具合を発生させないように、お客様の責任において次の事項にご注意を賜りますので、ご使用の際にはご参照ください。

2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、かかる誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計等を講じてシステムとしての安全性を確保することをお勧めいたします。

3. 本製品は、一般的な電子機器に標準的な用途で使用されることを意図して設計・製造されております。従いまして、下記に例示するような特殊環境での使用を意図して設計・製造されております。従いまして、下記のような特殊環境での本製品のご使用に際し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。

4. 本製品は耐放射線設計はなされておりません。

5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。

6. バルス等の過渡的な負荷（短時間での大きな負荷）が加わる場合は、お客様製品に本製品を実装した状態で必ずその評価及び確認の実施をお願い致します。また、定常時での負荷状態において定格電力以上の負荷を印加されますと、本製品の性能又は信頼性に損なわれるおそれがあるため必ず定格電力以下でご使用ください。

7. 許容損失（Pd）は周囲温度（Ta）に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、必ず温度測定を行い、ディレーティングカーブ範囲内であることをご確認ください。

8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。

9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

1. ハロゲン系（塩素系、臭素系等）の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能又は信頼性への影響が考えられますので、事前にお客様にご確認ください。

2. はんだ付けはリフローはんだを原則とさせて頂きます。なお、リフロー方法でのご使用については別途ロームまでお問い合わせください。詳細な実装及び基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。
応用回路、外付け回路等に関する注意事項
1. 本製品の外付け回路定数を変更してご使用になる際は、静特性のみならず、過渡特性も含め外付け部品及び本製品のパララミクス等を考慮して十分なマージンをみて決定してください。

2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、実際に使用する機器での動作を保証するものではありません。従いまして、お客様の機器の設計において、回路やその定数及びこれに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行ってください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に関する注意事項
本製品は静電気に敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施の上、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電気対策を実施ください。（人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温度管理、はんだごての面あての先のアース等）

保管・運搬上の注意事項
1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性能の性能に影響を与えるおそれがありますのでこのような環境及び条件での保管は避けてください。
 ①潮風、CO2、H2S、NH3、NO2等の腐食性ガスの多い場所での保管
 ②推奨温度、湿度以外での保管
 ③直射日光や結露する場所での保管
 ④強い静電気が発生している場所での保管

2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認した上でご使用頂くことを推奨します。

3. 本製品の運搬、保管の際は、荷包を正しい向き（荷包に表示されている天面方向）で取り扱ってください。天面方向が遮さず箱面を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する危険があります。

4. 防湿荷包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行った上でご使用ください。

製品ラベルに関する注意事項
本製品に貼付されている製品ラベルにQRコードが印字されていますが、QRコードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項
本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項
本製品は外国為替及び外国貿易法に定める規制貨物等に該当するおそれがありますので輸出する場合には、ロームにお問い合わせください。

知的財産権に関する注意事項
1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。従いまして、上記第三者の知的財産権侵害の責任、及び本製品の使用により発生するその他の責任に関し、ロームは一切その責任を負いません。

2. ロームは、本製品又は本資料に記載された情報について、ローム若しくは第三者が所有又は管理している知的財産権その他の権利の実施又は利用を利用し、明示的にも暗示的ともに、お客様に許諾するものではありません。

その他の注意事項
1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。

2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。

3. 本製品又は本資料に記載された技術情報、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。

4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社若しくは第三者の商標又は登録商標です。
一般的な注意事項

1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。

2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。

3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。