

STP40N20 STW40N20

N-CHANNEL 200V - 0.038Ω - 40A TO-220/TO-247 LOW GATE CHARGE STripFET™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D	Pw
STP40N20	200 V	< 0.045 Ω		160 W
STW40N20	200 V	< 0.045 Ω		160 W

- TYPICAL $R_{DS}(on) = 0.038 \Omega$
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY
- EXCELLENT FIGURE OF MERIT (R_{DS}*Q_d)
- 100% AVALANCHE TESTED

DESCRIPTION

This MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency isolated DC-DC converters.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- UPS

Figure 1: Package

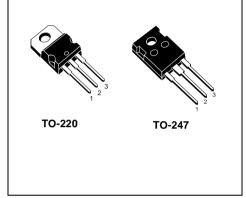


Figure 2: Internal Schematic Diagram

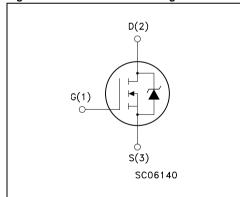


Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP40N20	P40N20	TO-220	TUBE
STW40N20	STW40N20 W40N20		TUBE

Rev. 2

February 2005 1/11

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	200	V
V_{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	40	A
I _D	Drain Current (continuous) at T _C = 100°C	25	A
I _{DM} (•)	Drain Current (pulsed)	160	A
P _{TOT}	Total Dissipation at T _C = 25°C	160	W
	Derating Factor	1.28	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	12	V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150	°C

Table 4: Thermal Data

		TO-220	TO-247	
Rthj-case	Thermal Resistance Junction-case Max	0.	78	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	50	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300		°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	40	Α
Eas	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	230	mJ

^(•) Pulse width limited by safe operating area (1) I_{SD} ≤ 40A, di/dt ≤ 200 A/µs, V_{DD} ≤ V_{(BR)DSS}, T_j ≤ T_{JMAX}.

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On/Off

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1$ mA, $V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
Igss	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 20 A		0.038	0.045	Ω

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D =20 A		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$		2500 510 78		pF pF pF
t _{d(on)} t _r t _{d(off)} t _r	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	V_{DD} = 100 V, I_D = 20 A, R_G = 4.7 Ω V_{GS} = 10 V (Resistive Load see, Figure 17)		20 44 74 22		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 160V, I_D = 40 A,$ $V_{GS} = 10V$		75 13.2 35.5		nC nC nC

Table 8: Source Drain Diode

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				40 160	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 20 A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 20 A, di/dt = 100A/µs V_{DD} = 100V, T_j = 25°C (see test circuit, Figure 18)		192 922 9.6		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 20 A, di/dt = 100A/µs V_{DD} = 100V, T_j = 150°C (see test circuit, Figure 18)		242 1440 11.9		ns nC A

⁽¹⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.(2) Pulse width limited by safe operating area.

Figure 3: Safe Operating Area For TO-220

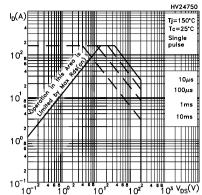


Figure 4: Safe Operating Area For TO-247

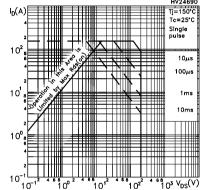


Figure 5: Output Characteristics

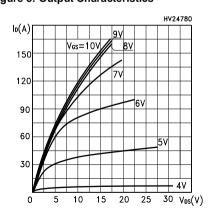


Figure 6: Thermal Impedance For TO-220

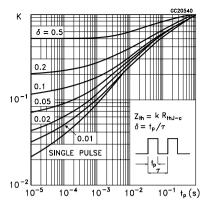


Figure 7: Thermal Impedance For TO-247

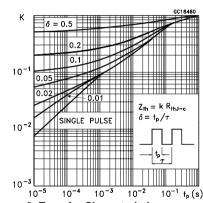
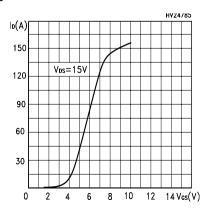



Figure 8: Transfer Characteristics

577.

Figure 9: Transconductance

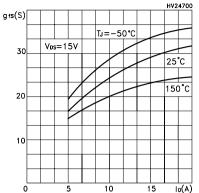


Figure 10: Gate Charge vs Gate-source Voltage

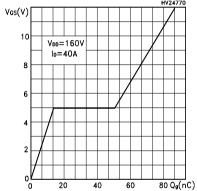


Figure 11: Normalized Gate Threshold Voltage vs Temperature

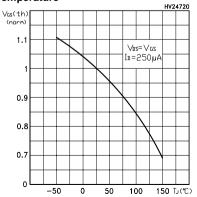


Figure 12: Static Drain-source On Resistance

Figure 13: Capacitance Variations

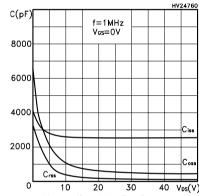


Figure 14: Normalized On Resistance vs Temperature

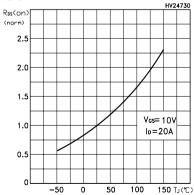


Figure 15: Source-Drain Forward Characteristics

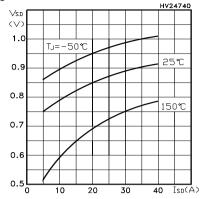


Figure 16: Unclamped Inductive Load Test Circuit

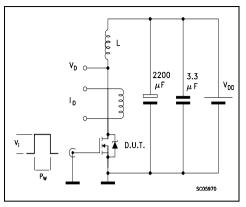


Figure 17: Switching Times Test Circuit For Resistive Load

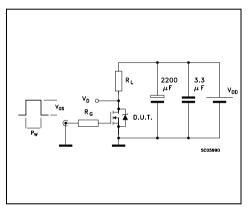


Figure 18: Test Circuit For Inductive Load Switching and Diode Recovery Times

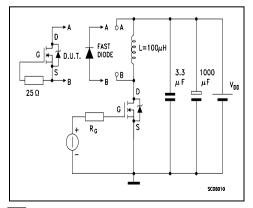


Figure 19: Unclamped Inductive Wafeform

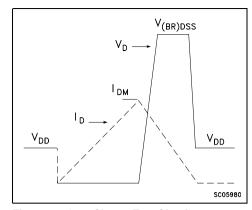
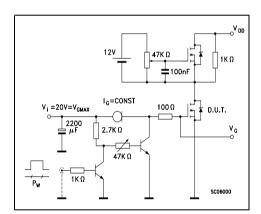
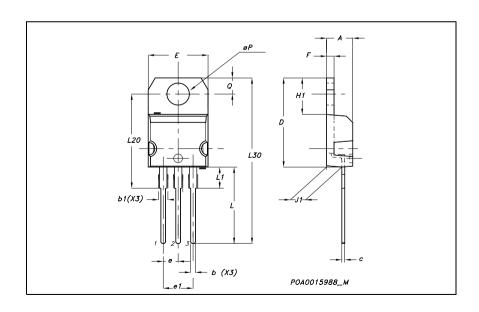
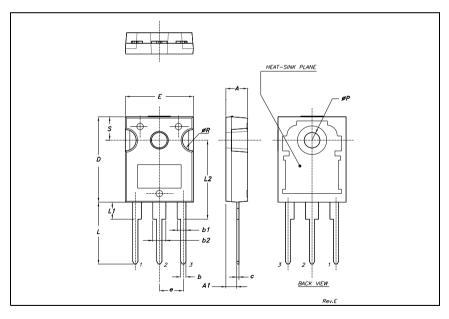




Figure 20: Gate Charge Test Circuit


TO-220	ME	CHA	NIC	AL	DATA
--------	----	-----	-----	----	------

DIM.		mm.		inch		
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-247 MECHANICAL DATA

DIM.	mm.			inch			
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.85		5.15	0.19		0.20	
A1	2.20		2.60	0.086		0.102	
b	1.0		1.40	0.039		0.055	
b1	2.0		2.40	0.079		0.094	
b2	3.0		3.40	0.118		0.134	
С	0.40		0.80	0.015		0.03	
D	19.85		20.15	0.781		0.793	
E	15.45		15.75	0.608		0.620	
е		5.45			0.214		
L	14.20		14.80	0.560		0.582	
L1	3.70		4.30	0.14		0.17	
L2		18.50			0.728		
øΡ	3.55		3.65	0.140		0.143	
øR	4.50		5.50	0.177		0.216	
S		5.50			0.216		

Table 9: Revision History

Date	Revision	Description of Changes
27-Sep-2004	1	First Release.
03-Feb-2005	2	Complete Version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

