PQ1CG2032FZ/PQ1CG2032RZ

TO-220 Type Chopper Regulators

■ Features
- Maximum switching current: 3.5A
- Built-in ON/OFF control function
- Built-in soft start function to suppress overshoot of output voltage in power on sequence or ON/OFF control sequence
- Built-in oscillation circuit (Oscillation frequency: TYP. 70kHz)
- Built-in overheat, overcurrent protection function
- TO-220 package
- Variable output voltage (Output variable range: Vref to 35V/-Vref to -30V)
 [Possible to select step-down output/inversing output according to external connection circuit]
- PQ1CG2032FZ: Zigzag forming
- PQ1CG2032RZ: Self-stand forming

■ Applications
- Switching power supplies
- Facsimiles, printers and other OA equipment
- Battery chargers
- Personal computers and amusement equipment

■ Outline Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V IN</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Error input voltage</td>
<td>V ADJ</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Input-output voltage</td>
<td>V LO</td>
<td>41</td>
<td>V</td>
</tr>
<tr>
<td>Output – COM voltage</td>
<td>V OUT</td>
<td>−1</td>
<td>V</td>
</tr>
<tr>
<td>ON/OFF control voltage</td>
<td>V C</td>
<td>−0.3 to +40</td>
<td>V</td>
</tr>
<tr>
<td>Switching current</td>
<td>I SW</td>
<td>3.5</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P D1</td>
<td>1.4</td>
<td>W</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>T SAD</td>
<td>260 (10s)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notice: In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet: Internet address for Electronic Components Group http://sharp-world.com/ecg/

■ Absolute Maximum Ratings (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 Input voltage</td>
<td>V IN</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Error input voltage</td>
<td>V ADJ</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Input-output voltage</td>
<td>V LO</td>
<td>41</td>
<td>V</td>
</tr>
<tr>
<td>Output – COM voltage</td>
<td>V OUT</td>
<td>−1</td>
<td>V</td>
</tr>
<tr>
<td>ON/OFF control voltage</td>
<td>V C</td>
<td>−0.3 to +40</td>
<td>V</td>
</tr>
<tr>
<td>Switching current</td>
<td>I SW</td>
<td>3.5</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P D1</td>
<td>1.4</td>
<td>W</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>T SAD</td>
<td>260 (10s)</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1 Voltage between V IN terminal and COM terminal
*2 Voltage between V OUT terminal and COM terminal
*3 Voltage between ON/OFF control and COM terminal
*4 P D1: With infinite heat sink
*5 Overheat protection may operate at T J=125°C to 150°C

Please refer to the chapter “Handling Precautions”.
Electrical Characteristics

(Unless otherwise specified, condition shall be $V_{IN}=12V$, $I_O=0.2A$, $V_O=5V$, ON-OFF terminals is open, $T_a=25^\circ C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output saturation voltage</td>
<td>V_{SAT}</td>
<td>$I_{SW}=3A$</td>
<td>−</td>
<td>1.4</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>Reference voltage</td>
<td>V_{ref}</td>
<td>−</td>
<td>1.235</td>
<td>1.26</td>
<td>1.285</td>
<td>V</td>
</tr>
<tr>
<td>Reference voltage temperature fluctuation</td>
<td>ΔV_{ref}</td>
<td>$T_j=0$ to $125^\circ C$</td>
<td>−</td>
<td>±0.5</td>
<td>−</td>
<td>%</td>
</tr>
<tr>
<td>Load regulation</td>
<td>$</td>
<td>R_{egL}</td>
<td>$</td>
<td>$I_O=0.5$ to $3A$</td>
<td>−</td>
<td>0.2</td>
</tr>
<tr>
<td>Line regulation</td>
<td>$</td>
<td>R_{egI}</td>
<td>$</td>
<td>$V_{IN}=8$ to $35V$</td>
<td>−</td>
<td>0.5</td>
</tr>
<tr>
<td>Efficiency</td>
<td>η</td>
<td>$I_O=3A$</td>
<td>−</td>
<td>80</td>
<td>−</td>
<td>%</td>
</tr>
<tr>
<td>Oscillation frequency</td>
<td>f_0</td>
<td>−</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>kHz</td>
</tr>
<tr>
<td>Oscillation frequency temperature fluctuation</td>
<td>Δf_0</td>
<td>$T_j=0$ to $125^\circ C$</td>
<td>−</td>
<td>±2</td>
<td>−</td>
<td>%</td>
</tr>
<tr>
<td>Overcurrent detecting level</td>
<td>I_{CHG}</td>
<td>−</td>
<td>3.6</td>
<td>4.2</td>
<td>5.8</td>
<td>A</td>
</tr>
<tr>
<td>Charge current</td>
<td>I_{CHG}</td>
<td>②,③terminals is open,⑤terminal</td>
<td>−</td>
<td>−10</td>
<td>−</td>
<td>μA</td>
</tr>
<tr>
<td>Input threshold voltage</td>
<td>V_{THL}</td>
<td>Duty ratio=0,④terminal=0V,⑤terminal</td>
<td>−</td>
<td>1.3</td>
<td>−</td>
<td>V</td>
</tr>
<tr>
<td>ON threshold voltage</td>
<td>V_{THON}</td>
<td>④terminal=0V,⑤terminal</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>V</td>
</tr>
<tr>
<td>Stand-by current</td>
<td>I_{SD}</td>
<td>$V_{IN}=40V$,⑤terminal=0V</td>
<td>−</td>
<td>140</td>
<td>400</td>
<td>μA</td>
</tr>
<tr>
<td>Output OFF-state dissipation current</td>
<td>I_{QS}</td>
<td>$V_{IN}=40V$,⑤terminal=0.9V</td>
<td>−</td>
<td>8</td>
<td>16</td>
<td>mA</td>
</tr>
</tbody>
</table>

Fig.1 Test Circuit

Fig.2 Power Dissipation vs. Ambient Temperature

Fig.3 Overcurrent Protection Characteristics (Typical Value)

Note: Oblique line portion: Overheat protection may operate in this area
Fig. 4 Efficiency vs. Input Voltage

Fig. 5 Output Saturation Voltage vs. Switching Current

Fig. 6 Stand-by Current vs. Input Voltage

Fig. 7 Reference Voltage Fluctuation vs. Junction Temperature

Fig. 8 Load Regulation vs. Output Current

Fig. 9 Line Regulation vs. Input Voltage
Fig. 10 Oscillation Frequency Fluctuation vs. Junction Temperature

- Oscillation frequency fluctuation (%)
- Junction temperature T_j (°C)
- $V_{IN}=12V$, $V_O=5V$

Fig. 11 Overcurrent Detecting Level Fluctuation vs. Junction Temperature

- Overcurrent detecting level fluctuation (%)
- Junction temperature T_j (°C)
- $V_{IN}=12V$, $V_O=5V$

Fig. 12 Threshold Voltage vs. Junction Temperature

- Threshold voltage $V_{TH(ON)}$, $V_{TH(L)}$, $V_{TH(H)}$ (V)
- Junction temperature T_j (°C)
- $V_{IN}=12V$

Fig. 13 Operating Dissipation Current vs. Input Voltage

- Operating dissipation current I_Q' (mA)
- Input voltage V_{IN} (V)
- $T_j=25°C$, $V_O=5V$

Fig. 14 Block Diagram

- Voltage regulator
- ON/OFF circuit
- PWM COMP.
- OADJ
- COM
- V_{IN}
- V_{OUT}
- V_{ref}
Fig. 15 Step Down Type Circuit Diagram

Fig. 16 Polarity Inversion Type Circuit Diagram
NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

 (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

 (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - Traffic signals
 - Gas leakage sensor breakers
 - Alarm equipment
 - Various safety devices, etc.

 (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - Space applications
 - Telecommunication equipment [trunk lines]
 - Nuclear power control equipment
 - Medical and other life support equipment (e.g., scuba).

- Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.