- Function and Pinout Compatible With the Fastest Bipolar Logic
- $25-\Omega$ Output Series Resistors Reduce Transmission-Line Reflection Noise
- Reduced V_{OH} (Typically $=3.3 \mathrm{~V}$) Version of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- I ${ }_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- 3-State Outputs
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
- Fully Compatible With TTL Input and Output Logic Levels
- 12-mA Output Sink Current 15-mA Output Source Current

description

The CY74FCT2373T is an 8-bit, high-speed CMOS, TTL-compatible buffered latch with 3 -state outputs that is ideal for driving high-capacitance loads, such as memory and address buffers. On-chip $25-\Omega$ termination resistors at the outputs reduce system noise caused by reflections. The CY74FCT2373T can replace the CY74FCT373T to reduce noise in an existing design.
When the latch-enable (LE) input is high, the flip-flops appear transparent to the data. Data that meets the required setup times are latched when LE transitions from high to low. Data appears on the bus when the output-enable $(\overline{\mathrm{OE}})$ input is low. When $\overline{\mathrm{OE}}$ is high, the bus output is in the high-impedance state. In this mode, data can be entered into the latches.

This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$ The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		$\begin{gathered} \text { SPEED } \\ (\mathrm{ns}) \end{gathered}$	ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QSOP - Q	Tape and reel	4.7	CY74FCT2373CTQCT	FCT2373C
	SOIC - SO	Tube	4.7	CY74FCT2373CTSOC	FCT2373C
		Tape and reel	4.7	CY74FCT2373CTSOCT	
	QSOP - Q	Tape and reel	5.2	CY74FCT2373ATQCT	FCT2373A
	QSOP - Q	Tape and reel	8	CY74FCT2373TQCT	FCT2373

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{O E}$	LE	D	O
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

$H=$ High logic level, $L=$ Low logic level, X = Don't care, $Z=$ High-impedance state, $Q_{0}=$ Previous state of flip flops (Q_{0-1})

logic diagram

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range to ground potential ... -0.5 V to 7 V
DC input voltage range .. -0.5 V to 7 V
DC output voltage range $\ldots \ldots . \ldots$.. -0.5 V to 7 V
DC output current (maximum sink current/pin) ... 120 mA
Package thermal impedance, $\theta_{J A}$ (see Note 1): Q package 68² C / W

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 2)

	MIN	NOM	MAX	UNIT
$\mathrm{V}_{\text {CC }}$ Supply voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$ High-level input voltage	2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{I}^{\text {OH }}$ High-level output current			-15	mA
IOL Low-level output current			12	mA
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$1 \mathrm{l}=-18 \mathrm{~mA}$			-0.7	-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$		2.4	3.3		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.3	0.55	V
ROUT	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$		20	28	40	Ω
$\mathrm{V}_{\text {hys }}$	All inputs				0.2		V
II	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				5	$\mu \mathrm{A}$
${ }_{1 / \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$				10	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$				-10	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-60	-120	-225	mA
loff	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$,	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$		0.1	0.2	mA
${ }^{\text {I }} \mathrm{CC}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}$, $\mathrm{f}_{1}=0$, Outputs open				0.5	2	mA
ICCD ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, One input switching at 50% duty cycle, Outputs open,$\mathrm{OE}=\mathrm{GND}, \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$				0.06	0.12	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$
$I^{\#}{ }^{\text {P }}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V},$ Outputs open, $\overline{\mathrm{OE}}=\mathrm{GND},$ $\mathrm{LE}=\mathrm{V}_{\mathrm{CC}}$	One input switching at $f_{1}=10 \mathrm{MHz}$ at 50% duty cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$		0.7	1.4	mA
			$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ or GND		1	2.4	
		Eight bits switching at $\mathrm{f}_{1}=2.5 \mathrm{MHz}$ at 50% duty cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$		1.3	2.611	
			$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ or GND		3.3	10.611	
C_{i}					6	10	pF
C_{0}					8	12	pF

\dagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.
§ Per TTL-driven input ($\mathrm{V}_{I N}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND
IT This parameter is derived for use in total power-supply calculations.
\# $I_{C} \quad=I_{C C}+\Delta I_{C C} \times D_{H} \times N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} \times N_{1}\right)$
Where:
IC = Total supply current
ICC = Power-supply current with CMOS input levels
$\Delta \mathrm{l} \mathrm{CC}=$ Power-supply current for a TTL high input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
DH = Duty cycle for TTL inputs high
$\mathrm{N}_{\mathrm{T}}=$ Number of TTL inputs at D_{H}
${ }^{\text {I CCD }}=$ Dynamic current caused by an input transition pair (HLH or LHL)
$\mathrm{f}_{0} \quad=$ Clock frequency for registered devices, otherwise zero
$\mathrm{f}_{1}=$ Input signal frequency
$\mathrm{N}_{1}=$ Number of inputs changing at f_{1}
All currents are in milliamperes and all frequencies are in megahertz.
$\|$ Values for these conditions are examples of the ICC formula.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	CY74FCT2373T		CY74FCT2373AT		CY74FCT2373CT		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tPLH	D	0	1.5	8	1.5	5.2	1.5	4.7	ns
tPHL			1.5	8	1.5	5.2	1.5	4.7	
tPLH	LE	0	2	13	2	8.5	2	5.5	ns
tPHL			2	13	2	8.5	2	5.5	
tPZH	$\overline{\mathrm{OE}}$	0	1.5	11	1.5	6.5	1.5	5.5	ns
tPZL			1.5	11	1.5	6.5	1.5	5.5	
tPHZ	$\overline{\mathrm{OE}}$	0	1.5	7	1.5	5.5	1.5	5	ns
tPLZ			1.5	7	1.5	5.5	1.5	5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
74FCT2373CTSOCTE4	ACTIVE	soic	DW	20		TBD	Call TI	Call TI	-40 to 85		Samples
74FCT2373CTSOCTG4	ACtive	soic	DW	20		TBD	Call TI	Call TI	-40 to 85		Samples
CY74FCT2373CTSOC	ACTIVE	soic	DW	20	25	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2373C	Samples
CY74FCT2573ATQCT	ACTIVE	SSOP	DBQ	20	2500	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT2573A	Samples
CY74FCT2573ATQCTG4	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT2573A	Samples
CY74FCT2573CTQCT	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT2573C	Samples
CY74FCT2573CTSOC	ACTIVE	soic	DW	20	25	$\begin{aligned} & \text { Green (RoHS } \\ & \& \text { no } \mathrm{Sb} / \mathrm{Br}) \\ & \hline \end{aligned}$	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573C	Samples
CY74FCT2573CTSOCE4	ACTIVE	soic	DW	20	25	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573C	Samples
CY74FCT2573CTSOCG4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573C	Samples
CY74FCT2573CTSOCT	ACtive	soic	DW	20	2000	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573C	Samples
CY74FCT2573TSOC	ACTIVE	soic	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573	Samples
CY74FCT2573TSOCT	ACTIVE	soic	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT2573	Samples

[^0]Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
CY74FCT2573ATQCT	SSOP	DBQ	20	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CY74FCT2573CTQCT	SSOP	DBQ	20	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CY74FCT2573CTSOCT	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CY74FCT2573TSOCT	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY74FCT2573ATQCT	SSOP	DBQ	20	2500	367.0	367.0	38.0
CY74FCT2573CTQCT	SSOP	DBQ	20	2500	367.0	367.0	38.0
CY74FCT2573CTSOCT	SOIC	DW	20	2000	367.0	367.0	45.0
CY74FCT2573TSOCT	SOIC	DW	20	2000	367.0	367.0	45.0

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DBQ (R-PDSO-G20) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AD.
DBQ (R-PDSO-G20)

PLASTIC SMALL OUTLINE PACKAGE

Example Board Layout

Stencil Openings
Based on a stencil thickness
of $.127 \mathrm{~mm}(.005$ inch $)$.

5,4

4210335-3/D 03/14

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

[^0]: ${ }^{(1)}$ The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.
 ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined

