TPD2E1B06 Dual-Channel High-Speed ESD Protection Device

1 Features
- Provides System Level ESD Protection for Low Voltage IO Interface
- IEC 61000-4-2 Level 4 ESD Rating
- Low IO Capacitance: 0.85 pF (Typical)
- DC Breakdown Voltage: 7 V (Minimum)
- Ultra-Low Leakage Current: 10 nA (Maximum)
- Low ESD Clamping Voltage
- Temperature Range: −40°C to 125°C
- Small Easy-to-Route DRL package

2 Applications
- Gaming Machines
- eBooks
- Portable Media Players
- Digital Cameras

3 Description
The TPD2E1B06 device is a dual-channel, ultra-low capacitance ESD protection device. It offers ±10-KV IEC contact ESD protection. Its 1-pF line capacitance makes it suitable for a wide range of applications. Typical application interfaces are USB 2.0, LVDS, and I2C. The TPD2E1B06 device has two common layout methods, and both are highlighted in Layout.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD2E1B06</td>
<td>SOT (6)</td>
<td>1.60 mm × 1.20 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Schematic

Copyright © 2016, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions ... 3
6 Specifications .. 3
 6.1 Absolute Maximum Ratings .. 3
 6.2 ESD Ratings ... 3
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics ... 4
 6.6 Typical Characteristics .. 5
7 Detailed Description .. 7
 7.1 Overview ... 7
 7.2 Functional Block Diagram ... 7
 7.3 Feature Description ... 7
 7.4 Device Functional Modes .. 7
8 Application and Implementation ... 8
 8.1 Application Information ... 8
 8.2 Typical Application .. 8
9 Power Supply Recommendations ... 10
10 Layout ... 10
 10.1 Layout Guidelines .. 10
 10.2 Layout Examples ... 10
11 Device and Documentation Support 11
 11.1 Community Resources .. 11
 11.2 Trademarks ... 11
 11.3 Electrostatic Discharge Caution 11
 11.4 Glossary .. 11
12 Mechanical, Packaging, and Orderable Information 11

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (September 2013) to Revision D Page
 • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ... 1

Changes from Revision B (September 2013) to Revision C Page
 • Added air gap ESD specification to the ABSOLUTE MAXIMUM RATINGS table. ... 3

Changes from Revision A (August 2013) to Revision B Page
 • Added TYPICAL CHARACTERISTICS section ... 5

Changes from Original (July 2013) to Revision A Page
 • Revised document from PREVIEW to PRODUCTION DATA ... 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOA1</td>
<td>1</td>
<td>I/O</td>
<td>ESD protected channel</td>
</tr>
<tr>
<td>IOA2</td>
<td>5</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>IOB1</td>
<td>2</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>IOB2</td>
<td>4</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>3, 6</td>
<td>NC</td>
<td>No connect</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>(I_{PP}) Peak pulse current ((tp = 8/20\ \mu s))(^2)</td>
<td></td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>(P_{PP}) Peak pulse power ((tp = 8/20\ \mu s))(^2)</td>
<td></td>
<td>35</td>
<td>W</td>
</tr>
<tr>
<td>(T_{stg}) Storage temperature</td>
<td>–65</td>
<td>155</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^1\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^2\) Using Routing Option 1 or 2 as shown in Figure 13 or Figure 14.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td>±10000</td>
<td>V</td>
</tr>
<tr>
<td>IEC 61000-4-2 air-gap discharge(^1)</td>
<td>±15000</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Using Routing Option 1 or 2 as shown in Figure 13 or Figure 14.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>–5.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T_A</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPD2E1B06</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA} Junction-to-ambient thermal resistance</td>
<td>349.7 °C/W</td>
</tr>
<tr>
<td>$R_{JC(top)}$ Junction-to-case (top) thermal resistance</td>
<td>120.5 °C/W</td>
</tr>
<tr>
<td>R_{JB} Junction-to-board thermal resistance</td>
<td>171.4 °C/W</td>
</tr>
<tr>
<td>ψ_{JT} Junction-to-top characterization parameter</td>
<td>10.8 °C/W</td>
</tr>
<tr>
<td>ψ_{JB} Junction-to-board characterization parameter</td>
<td>169.4 °C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics
over operating free-air temperature range. (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RWM} Reverse standoff voltage</td>
<td></td>
<td>5.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CLAMP} Clamp voltage with ESD strike</td>
<td>$I_{PP} = 1$ A, TLP, I/O to GND(1)(2)</td>
<td>11</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{PP} = 5$ A, TLP, I/O to GND(1)(2)</td>
<td>15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CLAMP} Clamp voltage with ESD strike</td>
<td>$I_{PP} = 1$ A, TLP, GND to I/O (1)(2)</td>
<td>11</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{PP} = 5$ A, TLP, GND to I/O (1)(2)</td>
<td>15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>R_{DYN} Dynamic resistance</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>C_{L1} Pin 2 and 5 capacitance</td>
<td>$I = 1$ MHz, $V_{BIAS} = 2.5$ V(2)(3)</td>
<td>0.85</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{L2} Pin 1 and 4 capacitance</td>
<td>$I = 1$ MHz, $V_{BIAS} = 2.5$ V(2)(4)</td>
<td>1.05</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>V_{BR} Break-down voltage</td>
<td>$I = 1$ mA</td>
<td>7</td>
<td>9.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{LEAK} Leakage current</td>
<td>$V_{BIAS} = +2.5$ V</td>
<td>1</td>
<td>10</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

(1) Transmission line pulse with rise time 10 ns and pulse width 100 ns.
(2) $T_A = 25$ °C
(3) Using Routing Option 1, Figure 13.
(4) Using Routing Option 2, Figure 14.
6.6 Typical Characteristics

Figure 1. I_V Curve

Figure 2. Maximum Surge Rating

Figure 3. I_LEAK vs Temperature

Figure 4. +8-kV Contact ESD Clamping

Figure 5. –8-kV Contact ESD Clamping

Figure 6. Insertion Loss
Typical Characteristics (continued)

Figure 7. Capacitance vs V_{BIAS}

Figure 8. Eye Diagram Without TPD2E1B06DRL on EVM

Figure 9. Eye Diagram With TPD2E1B06DRL on EVM
7 Detailed Description

7.1 Overview
The TPD2E1B06 is a bidirectional, low-capacitance, two-channel ESD clamping device. It has more than IEC 61000-4-2 Level 4 ESD Rating. The low IO capacitance makes the device a good fit for a wide range of data speeds. Common applications include USB 2.0, LVDS, and I2C.

7.2 Functional Block Diagram

![Functional Block Diagram](image)

7.3 Feature Description
The TPD2E1B06 device provides robust system level IEC protection. This device protects circuit from ESD strikes up to ±10-kV contact and ±15-kV air-gap specified in the IEC 61000-4-2 level 4. It also handles up to 2.5-A surge current (IEC61000-4-5 8/20 µs). The I/O capacitance of 0.85 pF supports high data rates. The device has a small dynamic resistance of 0.9 Ω, making clamping voltage low when the device is actively protecting other circuits. With low capacitance and dynamic resistance, the TPD2E1B06 is a good fit for interfaces like USB 2.0, LVDS, and I2C. The breakdown is bidirectional so that this protection device is especially good for bidirectional signals like audio lines. Low leakage allows the diode to conserve power when working below the V_{RWM}. The temperature range of $-40^\circ C$ to $125^\circ C$ makes this ESD device work at extensive temperatures in most environments.

7.4 Device Functional Modes
The TPD2E1B06 is a passive clamp that has low leakage during normal operation when the voltage across each channel is below V_{RWM} and activates when the it goes above V_{BR}. During IEC ESD events, transient voltages will be clamped. When the voltages on the protected lines fall below the trigger voltage, the device reverts back to the low-leakage passive state.
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

When a system contains a human interface connector, the system becomes vulnerable to large system-level ESD strikes that standard ICs cannot survive. TVS ESD protection diodes are typically used to suppress ESD at these connectors. There are 2 channels of back-to-back diodes in TPD2E1B06. The device is typically used to provide a path to ground for dissipating ESD events between a human interface connector and a system. As the current from ESD passes through the device, only a small voltage drop is present across the diode structure. This is the voltage presented to the protected IC. The low R_{DYN} of the triggered TVS holds this voltage, V_{CLAMP}, to a tolerable level to the protected IC.

8.2 Typical Application

8.2.1 Design Requirements

In this design example, a TPD2E1B06 is used to protect audio channels. Table 1 lists the system parameters.

Table 1. Design Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Amplifier Class</td>
<td>AB</td>
</tr>
<tr>
<td>Audio signal voltage range</td>
<td>-3 V to 3 V</td>
</tr>
<tr>
<td>Audio frequency content</td>
<td>20 Hz to 20 kHz</td>
</tr>
<tr>
<td>Required IEC 61000-4-2 ESD Protection</td>
<td>±8-kV Contact/ ±15-kV Air-Gap</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

For some parameters, the designer must ensure the following before designing:

• Voltage range on the protected line must not exceed the reverse standoff voltage of the TVS diode(s) (V_{RWM})
• Operating frequency is supported by the I/O capacitance C_{IO} of the TVS diode
• IEC 61000-4-2 protection requirement is covered by the IEC performance of the TVS diode

For this application, the audio signal voltage range is –3 V to 3 V. The V_{RWM} for the TVS is –5.5 V to 5.5 V; therefore, the bidirectional TVS will not break down during normal operation.

Next, consider the frequency content of this audio signal. In this application with the class AB amplifier, the frequency content is from 20 Hz to 20 kHz; ensure that the TVS I/O capacitance will not distort this signal by filtering it. With TPD2E1B06 typical capacitance of 0.85 pF, which leads to a typical 3-dB bandwidth of more than 3 GHz, this diode has way sufficient bandwidth to pass the audio signal without distorting it.

Finally, the human interface in this application requires above standard Level 4 IEC 61000-4-2 system-level ESD protection (±8-kV Contact and ±15-kV Air-Gap). TPD2E1B06 can survive at least ±10-kV Contact and ±15-kV Air-Gap. Therefore, the device can provide sufficient ESD protection for the interface, even though the requirements are stringent. For any TVS diode to provide the full range of ESD protection capabilities, as well as to minimize the noise and EMI disturbances the board will see during ESD events, a system designer must use proper board layout of their TVS ESD protection diodes. See Layout for instructions on properly laying out the TPD2E1B06.

8.2.3 Application Curves

![Figure 11. +8-kV Contact ESD Clamping](image1)

![Figure 12. –8-kV Contact ESD Clamping](image2)
9 Power Supply Recommendations

This TPD2E1B06 is a passive TVS diode-based ESD protection device so it does not have any power requirements. Take care not to violate the maximum voltage specifications for each pin.

10 Layout

10.1 Layout Guidelines

• The optimum placement of the TPD2E1B06 is as close to the connector as possible. EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures. The printed-circuit board (PCB) designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces, which are between the TVS and the connector.

• Route the protected traces as straight as possible.

• Avoid sharp corners on the protected traces. Electric fields tend to build up on corners, increasing EMI coupling.

• Use thick and short traces for the ground pins

10.2 Layout Examples

Figure 13. Routing Option 1

Figure 14. Routing Option 2
11 Device and Documentation Support

11.1 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.4 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD2E1B06DRLR</td>
<td>ACTIVE</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>(DUH ~ DUL)</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish**: Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Reel Dimensions

- **Diameter** (mm): 180.0
- **Width** (mm): 9.5
- **Pocket Quadrants**
 - Q1
 - Q2
 - Q3
 - Q4

TAPE Dimensions

- **K0**
- **P1**
- **Cavity**
- **A0** Dimension designed to accommodate the component width
- **B0** Dimension designed to accommodate the component length
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

Quadrant Assignments for Pin 1 Orientation in Tape

- **User Direction of Feed**
- **Sprocket Holes**

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD2E1B06DRLR</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>180.0</td>
<td>9.5</td>
<td>1.78</td>
<td>1.78</td>
<td>0.69</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD2E1B06DRLR</td>
<td>SOT-5X3</td>
<td>DRL</td>
<td>6</td>
<td>4000</td>
<td>184.0</td>
<td>184.0</td>
<td>19.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0.15 per end or side.
D. JEDEC package registration is pending.
DRL (R-PDSO-N6) PLASTIC SMALL OUTLINE

Example Board Layout

Example Stencil Design (Note E)

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
E. Maximum stencil thickness 0.127 mm (5 mils). All linear dimensions are in millimeters.
F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.