POWER MANAGEMENT IC FOR DIGITAL STILL CAMERA

FEATURES

- Highly Efficient, 8-Channel Power Management IC
- Fully Integrated Power MOSFETs (Except CH-7)
- Minimal External Components
- Input Voltage Range: 1.5 to 5 V
- Short-Circuit Protection (SCP) (Except for CH-6 and CH-8)
- Overvoltage Protection (OVP)
(CH-2, CH-3, CH-6, and CH-7)
- Overcurrent Protection (OCP) (CH-6)
- Thermal Shutdown (TSD)
- High-Accuracy Output Voltage with Trimming
- $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ BGA Package

APPLICATIONS

- Digital Still Cameras

DESCRIPTION

The TPS65520 is a highly efficient, 8-channel power management IC for digital still cameras (DSCs) integrating power MOSFETs. The device operates from an input voltage range of 1.5 V to 5 V .
The optimized circuit configuration maintains stable regulation characteristics while minimizing the number of external components required for phase compensation and other purposes.
The TPS65520 controls each output channel by communicating with the Sub-CPU through a serial interface.

NAME ${ }^{(1)}$	CIRCUIT CONFIGURATION	OUTPUT VOLTAGE [V]	ADJUSTABLE PARAMETER	POWER MOSFET	RECTIFICATION	PURPOSE
CH-1	H-bridge step-up/down	$2.65 \sim 3.2$	Output voltage	Built-in	Synchronous	CPU, DSP I/F
CH-2	Step-down	$1.1 \sim 1.8$	Output voltage	Built-in	Synchronous	CPU, DSP core
CH-3	Step-up	$4.5 \sim 5.2$	Output voltage, duty cycle	Built-in	Synchronous	Motor, audio
CH-4	Step-up	$15.0 \sim 16,5$	Output voltage, duty cycle	Built-in	Asynchronous, with external rectification diode	LCD, CCD
CH-5	Inversion	$-9.0 \sim-7.5$	Output voltage, duty cycle	Built-in	Asynchronous, with external rectification diode	LCD, CCD
CH-6	Step-up with constant current control	$5.6 \sim 21.0$	Output voltage, duty cycle	Built-in	Asynchronous, with external rectification diode	Back light LED
CH-7	Step-down	$2.5 \sim 3.2$	Output voltage, duty cycle	External	Synchronous	Reserved/switchable
	Step-up	$4.4 \sim 5.1$	Built-in	Synchronous	IC internal power supply	
CH-8	Step-up/pass-through with skip	$3.6 \sim$ VCC				Sub-CPU I/F
LDO-1		2.9				Sub-CPU core
LDO-2		2.9				USB
LDO-3		3.1				LCD
LDO-4		3.1				
LDO-5		$8.5 \sim 13.5$	Output voltage			Charge backup battery

(1) $\mathrm{CH}-\mathrm{N}$ represents switching regulators. LDO-N represents series regulators.

[^0]
ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			UNIT
		ROMWR	-0.3 V to 24 V
		MODE7, DIN, CLK, LD, PWR_ON, LDO4_ON, TEST, TLD	-0.3 V to 7 V
V_{1}	Input voltage range ${ }^{(2)}$	VCH2, VCH7, VCC8	-0.3 V to 6.5 V
		VCC1, VCC2, VCC5, VCC7, VCC_GD	-0.3 V to 6 V
		VCH5	-10.0 V to 0.3 V
		VCH4, OUT4, VLDO5, VCH6, ICH6, OUT6	-0.3 V to 24 V
		BOOT11, BOOT12, BOOT2	-0.3 V to 11 V
		VOS71, DOUT, XRESET, READY	-0.3 V to 7 V
	Output voltage range ${ }^{(2)}$	ROSC	-0.3 V to 6.5 V
		OUT5	-10.0 V to 5.1 V
		OUT3	-0.3 V to $6 \mathrm{~V}^{(3)}$
		Others	-0.3 V to 6 V
		VCC1 = OUT11, GND1 = OUT11, OUT12 = VCH1, OUT12 = GND1, OUT3 = VCH3, OUT3 = GND3	-4.5 A to 4.5 A
	Peak current of Power Path	OUT8 $=$ VCH8, OUT8 $=$ GND8	-3.0 A to 3 A
		$\begin{aligned} & \text { VCC2 }=\text { OUT2, GND2 }=\text { OUT2, OUT4 }=\text { VCH4, } \\ & \text { OUT4 }=\text { GND4, VCC5 }=\text { OUT5, OUT6 }=\text { VCH6, } \\ & \text { OUT6 }=\text { GND6 } \end{aligned}$	-1.5 A to 1.5 A
	Voltage difference between two of any GND	s (name starts with GND)	-0.5 V to 0.5 V
	ESD rating, HBM (Human Body Model)	JEDEC JESD22-A114	1.5 kV
	ESD rating, CDM (Charged Device Model)	JEDEC JESD22-C101	500 V
	Continuous total power dissipation		See Dissipation Rating Table
	Operating virtual junction temperature range		$-20^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	Operating ambient temperature range		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal.
(2) All voltage values are with respect to network ground terminal.
(3) For the pulse smaller than 5 ns , Maximum rating is 8.6 V .

DISSIPATION RATINGS

PACKAGE ${ }^{(1)}$	POWER RATING $\mathbf{T}_{\mathbf{A}}<\mathbf{2 5}{ }^{\circ} \mathbf{C}$	DERATING FACTOR ABOVE $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$	POWER RATING $\mathbf{T}_{\mathbf{A}}=\mathbf{7 0} \mathbf{C}$
nFBGA $113^{(2)}$	2.99 W	$23.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1.95 W

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.
(2) This data is based on using still air JEDEC environment with 2S2P JEDEC board.

TPS65520
INSTRUMENTS
www.ti.com

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
	Supply voltage	VCC_GD	4.5	5.5	V
$\mathrm{VCC}^{(1)}$	Supply votage	VCC1, VCC2, VCC5, VCC7, VCC8	1.5	5.5	
		TLD, VCH2,VCH7	0	5.5	
V	Input voltage	MODE7, DIN, CLK, LD, PWR_ON, LDO4_ON, TEST	0	3.3	V
		VCH5	-9.5	0.0	
		ROMWR	0	0.3	
$\mathrm{V}_{\mathrm{IH} 1}{ }^{(2)}$	High-level input voltage	ILDO1 $=0 \mathrm{~mA}$	2.4	2.9	V
$\mathrm{V}_{\mathrm{LL} 1}{ }^{(2)}$	Low-level logic input voltage	ILDO1 $=0 \mathrm{~mA}$	0	0.5	V
$\mathrm{V}_{\mathrm{H} 2}$	TLD high-level logic input voltage	Ratio to VCC1A voltage	80\%	100 $\%$	
$\mathrm{V}_{\mathrm{IL} 2}$	TLD low- level logic input voltage		0\%	20\%	
	Voltage difference between two of	D pins (name starts with GND)	-0.3	0.3	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature,		-20	85	${ }^{\circ} \mathrm{C}$
	Acceptable number of EEPROM w			20	Times

(1) These values are defined in stable state. During the start-up, supply voltage sources are OK to be lower than these values.
(2) Logic input pins are PWR_ON, USB ON, DIN, CLK, LD, TEST, and MODE7, except TLD.
(3) This defines the number of customer's writing after TI's shipment.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC} 7=4.9 \mathrm{~V}, \mathrm{VCC} 8=3.6 \mathrm{~V}, \mathrm{VCH} 8=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$, VCH _GD $=4.9 \mathrm{~V}, \mathrm{LDO} 4 _\mathrm{ON}=\mathrm{L}$, and all register bits are default value (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENT					
ICC1					
ICC CTRL Supply current for controller	PWR_ON = H, No load current at all outputs (see Table 1)			2.2	mA
IVCC GD Supply current for gate-drive				5	mA
ICC2A					
IVCH8 Supply current for LDO, control	PWR_ON = L (see Table 2)			40	$\mu \mathrm{A}$
IVCC8 Supply current for CH -8				1	$\mu \mathrm{A}$
SUB-CPU CONTROL					
VRDY1 READY threshold, rising edge	Sweep VCH8	3.322	3.4	3.478	V
VRDY2 READY threshold, falling edge		3.234	3.3	3.366	
VRST1 XRESET threshold, rising edge	Sweep VLDO2	2.115	2.184	2.253	V
VRST2 XRESET threshold, falling edge		1.844	1.884	1.924	
IREADY Sink current of READY	VREADY $=0.5 \mathrm{~V}$	250	500		$\mu \mathrm{A}$
$\mathrm{I}_{\text {lkg }} \quad$ Leakage current of READY	VREADY $=5.25 \mathrm{~V}, \mathrm{VCH8}=5.25 \mathrm{~V}$			0.1	$\mu \mathrm{A}$
IRST Sink current of XRESET	VXRESET $=0.5 \mathrm{~V}, \mathrm{VLDO2}=2 \mathrm{~V}$	150	300		$\mu \mathrm{A}$
IRSTL Leakage current of XRESET	$\mathrm{VXRESET}=5.25 \mathrm{~V}, \mathrm{VCH8}=5.25 \mathrm{~V}$			0.1	$\mu \mathrm{A}$
REFERENCE AND PROTECTION					
$V_{\text {REF }} \quad B G$ reference voltage, sensed at CBG	$\mathrm{I}_{\text {REF }}=0 \mathrm{~mA}$	0.842	0.85	0.858	V
$\Delta V I o B G \quad$Load regulation of $B G$ reference voltage buffer	$\mathrm{I}_{\text {REF }}=0.1 \mu \mathrm{~A} \sim 1 \mathrm{~mA}$	-5		5	mV
fosc Oscillator frequency	ROSC $=150 \mathrm{k} \Omega$	475	500	525	kHz
Temperature threshold to shutdown ${ }^{(1)}$		140	155	170	${ }^{\circ} \mathrm{C}$

[^1]
ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC} 7=4.9 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{VCH}=3.6 \mathrm{~V}, \mathrm{VCH}=4.9 \mathrm{~V}$,
VCH _GD $=4.9 \mathrm{~V}$, LDO4_ON = L, and all register bits are default value (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SOFT-START						
Iss	Source current of SS_SYNC	VSS_SYNC $=0.5 \mathrm{~V}$	0.7	1	1.3	$\mu \mathrm{A}$
	Source current of SS2	VSS2 $=0.5 \mathrm{~V}$	0.7	1	1.3	$\mu \mathrm{A}$
	Source current of SS3	VSS3 $=0.5 \mathrm{~V}$	0.7	1	1.3	$\mu \mathrm{A}$
	Source current of SS5	VSS5 $=0.5 \mathrm{~V}$	0.7	1	1.3	$\mu \mathrm{A}$
	Source current of SS6	VSS6 $=0.5 \mathrm{~V}$	0.7	1	1.3	$\mu \mathrm{A}$
	Source current of SSLDO5	VSSLDO5 $=0.5 \mathrm{~V}$	0.35		0.65	$\mu \mathrm{A}$
VSS3OK	SS3OK threshold voltage		1.2	1.6	2	V
LOGIC INPUT/OUTPUT						
$\mathrm{V}_{\mathrm{OH}}{ }^{(2)}$	High-level logic output voltage	ILDO1 $=0 \mathrm{~mA}, \mathrm{IDOUT}=-0.5 \mathrm{~mA}$	2.5			V
$\mathrm{V}_{\mathrm{LL}}{ }^{(2)}$	Low-level logic output voltage				0.4	
START-UP CIRCUIT						
VWU	Wake-up voltage	Monitoring VCC8			1.6	V
CH-1						
VCH1	Error amp center voltage	Vout1 $=0000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.744	2.8	2.856	V
		Vout1 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.695	2.75	2.805	V
		Vout1 $=0010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.646	2.7	2.754	V
		Vout1 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.597	2.65	2.703	V
		Vout1 $=0100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.548	2.6	2.652	V
		Vout1 $=0101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.499	2.55	2.601	V
		Vout1 $=0110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.450	2.5	2.550	V
		Vout1 $=0111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	3.138	3.2	3.264	V
		Vout1 $=1000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	3.087	3.15	3.213	V
		Vout1 $=1001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	3.038	3.1	3.162	V
		Vout1 $=1010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.989	3.05	3.111	V
		Vout1 $=1011$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.940	3	3.060	V
		Vout1 $=1100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.891	2.95	3.009	V
		Vout1 $=1101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.842	2.9	2.958	V
		Vout1 $=1110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.793	2.85	2.907	V
		Vout1 $=1111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.769	2.825	2.88	V
gm1	gm value of error amp		0.8	1	1.2	mS
VOCH1 ${ }^{(3)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	2.744	2.8	2.856	V
$\Delta \mathrm{Vli11}{ }^{(3)}$	Line regulation (CROSS state)	On EVM	-28		28	mV
$\Delta \mathrm{Vli12}{ }^{(3)}$	Line regulation (DOWN state)	On EVM	-28		28	mV
$\Delta \mathrm{Vlo11}{ }^{(3)}$	Load regulation (CROSS state)	On EVM	-28		28	mV
$\Delta \mathrm{Vlo12}{ }^{(3)}$	Load regulation (DOWN state)	On EVM	-28		28	mV
IOUT1 ${ }^{(3)}$	Minimum Load current	On EVM, VCC1 1.8 V	400			mA
VSCP1	SCP detector threshold	Ratio to VCH1	75\%	80\%	85\%	
Vmod11	Mode selector threshold, rising edge	Ratio to VCH1	130\%	135\%	137\%	
Vmod12	Mode selector threshold, falling edge	Ratio to VCH1	120\%	125\%	127\%	

(2) Logic output pin is DOUT.
(3) Not production tested. Assured by design. Using reference EVM.

TPS65520

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC7}=4.9 \mathrm{~V}, \mathrm{VCC} 8=3.6 \mathrm{~V}, \mathrm{VCH} 8=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$, VCH _GD $=4.9 \mathrm{~V}$, LDO4_ON = L, and all register bits are default value (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CH-2						
VCH2	Error amp center voltage	Vout2 $=0000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.176	1.2	1.224	V
		Vout2 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.127	1.15	1.173	V
		Vout2 $=0010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.078	1.1	1.122	V
		Vout2 $=0011$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.764	1.8	1.836	V
		Vout2 $=0100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.715	1.75	1.785	V
		Vout2 $=0101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.666	1.7	1.734	V
		Vout2 $=0110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.617	1.65	1.683	V
		Vout2 $=0111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.568	1.6	1.632	V
		Vout2 $=1000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.519	1.55	1.581	V
		Vout2 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.470	1.5	1.530	V
		Vout2 $=1010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.421	1.45	1.479	V
		Vout2 $=1011$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.372	1.4	1.428	V
		Vout2 $=1100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.323	1.35	1.377	V
		Vout2 $=1101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.274	1.3	1.326	V
		Vout2 $=1110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.225	1.25	1.275	V
		Vout2 $=1111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.201	1.225	1.250	V
gm2	gm value of error amp		0.8	1	1.2	mS
VoCH2 ${ }^{(3)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	1.176	1.2	1.224	V
$\Delta \mathrm{Vli12}{ }^{(3)}$	Line regulation	On EVM	-12		12	mV
$\Delta \mathrm{Vlo}{ }^{(3)}$	Load regulation	On EVM	-12		12	mV
IOUT2 ${ }^{(3)}$	Minimum load current	On EVM, VCC2=4.2 V	500			mA
VSCP2	SCP detector threshold	Ratio to VCH2	75\%	80\%	85\%	
VOVP2	OVP detector threshold	Ratio to VCH2	115\%	120\%	125\%	
CH-3						
VCH3	Error amp center voltage	Vout1 $=0000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.802	4.9	4.998	V
		Vout1 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.753	4.85	4.947	V
		Vout1 $=0010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.704	4.8	4.896	V
		Vout1 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.655	4.75	4.845	V
		Vout1 $=0100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.606	4.7	4.794	V
		Vout1 $=0101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.557	4.65	4.743	V
		Vout1 $=0110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.508	4.6	4.692	V
		Vout1 $=0111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.459	4.55	4.641	V
		Vout1 $=1000$ (bin), $\mathrm{T}_{\text {A }}=-10 \sim 65^{\circ} \mathrm{C}$	4.410	4.5	4.590	V
		Vout1 $=1001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	5.096	5.2	5.304	V
		Vout1 $=1010$ (bin), $\mathrm{T}_{\text {A }}=-10 \sim 65^{\circ} \mathrm{C}$	5.047	5.15	5.253	V
		Vout1 $=1011$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.998	5.10	5.202	V
		Vout1 $=1100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.949	5.05	5.151	V
		Vout1 $=1101$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.900	5	5.100	V
		Vout1 $=1110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.851	4.95	5.049	V
		Vout1 $=1111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.802	4.9	4.998	V
gm3	gm value of error amp		0.8	1	1.2	mS
VoCH3 ${ }^{(4)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	4.802	4.90	4.998	V
$\Delta \mathrm{Vli} 3{ }^{(4)}$	Line regulation	On EVM	-49		49	mV
$\Delta \mathrm{Vlo3}^{(4)}$	Load regulation	On EVM	-49		49	mV
IOUT3 ${ }^{(4)}$	Minimum Load current	On EVM, [CH-3 input voltage]=1.8 V	500			mA
VSCP3	SCP detector threshold	Ratio to VCH3	75\%	80\%	85\%	
VOVP3	OVP detector threshold	Ratio to VCH3		5.99		V

(4) Not production tested. Assured by design. Using reference EVM.

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC7}=4.9 \mathrm{~V}, \mathrm{VCC8}=3.6 \mathrm{~V}, \mathrm{VCH}=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$ VCH _GD $=4.9 \mathrm{~V}$, LDO4_ON = L, and all register bits are default value (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
CH-4						
VCH4	Error amp center voltage	Vout4 $=00$ (bin), $\mathrm{T}_{\text {A }}=-10 \sim 65^{\circ} \mathrm{C}$	14.700	15	15.300	V
		Vout4 $=01$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	15.190	15.5	15.810	V
		Vout4 $=10$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	15.680	16	16.320	V
		Vout4 $=11$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	16.170	16.5	16.830	V
gm4	gm value of error amp		0.8	1	1.2	mS
VoCH4 ${ }^{(4)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	14.700	15.0	15.300	V
$\Delta \mathrm{Vli4}{ }^{(4)}$	Line regulation	On EVM	-150		150	mV
$\Delta \mathrm{Vlo4}{ }^{(4)}$	Load regulation	On EVM	-150		150	mV
IOUT4 ${ }^{(4)}$	Minimum Load current	On EVM, [CH-4 input voltage] = 1.8 V	50			mA
VSCP4	SCP detector threshold	Ratio to VCH4	75\%	80\%	85\%	
CH-5						
VCH5	Error amp center voltage	Vout5=00(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	-7.650	-7.5	-7.350	V
		Vout5=01 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	-8.160	-8.0	-7.840	V
		Vout5=10(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	-8..670	-8.5	-8.330	V
		Vout5=11(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	-9.180	-9.0	-8.820	V
gm5	gm value of error amp		0.8	1.0	1.2	mS
VoCH5 ${ }^{(5)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	-7.650	-7.5	-7.350	V
$\Delta \mathrm{Vli5}{ }^{(5)}$	Line regulation	On EVM	-75		75	mV
$\Delta \mathrm{Vlo5}{ }^{(5)}$	Load regulation	On EVM	-75		75	mV
IOUT5 ${ }^{(5)}$	Minimum Load current	On EVM, VCC5 $=4.9 \mathrm{~V}$	50			mA
VSCP5	SCP detector threshold		75\%	80\%	85\%	
CH-6						
VFB6	Error amp center voltage	Vout5 $=00$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	0.2482	0.264	0.2798	V
		Vout5 = 01 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	0.4136	0.440	0.4664	V
		Vout5 $=10$ (bin), $\mathrm{T}_{\text {A }}=-10 \sim 65^{\circ} \mathrm{C}$	0.1654	0.176	0.1866	V
gm6	gm value of error amp		0.8	1	1.2	mS
ICH6 ${ }^{(5)}$	Output voltage	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	11.28	12	12.72	mA
$\Delta \mathrm{Vli6}{ }^{(5)}$	Line regulation of VFB6	On EVM	-120		120	$\mu \mathrm{A}$
VOCP	OCP detector threshold	Monitor at FB6	0.80	0.85	0.90	V
VOVP6	OVP detector threshold		21.0	22	23.0	V
VREF6L	CH-6 disable threshold, low side		0.16	0.21	0.26	V
VREF6H	CH-6 disable threshold, high side	$\mathrm{VCH} 1=2.8 \mathrm{~V}$	1.7	2	2.3	V
VfDI6	Forward voltage of integrated diode	$\mathrm{I}(\mathrm{OUT6}=\mathrm{VCH} 6)=20 \mathrm{~mA}$			0.9	V

(5) Not production tested. Assured by design. Using reference EVM.

TPS65520
www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC7}=4.9 \mathrm{~V}, \mathrm{VCC} 8=3.6 \mathrm{~V}, \mathrm{VCH} 8=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$, VCH _GD $=4.9 \mathrm{~V}$, LDO4_ON = L, and all register bits are default value (unless otherwise noted) .

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CH-7						
VCH7U	Error amp center voltage	Vout7 $=0000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.802	4.9	4.998	V
		Vout7 = 0001 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.753	4.85	4.947	V
		Vout7 $=0010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.704	4.8	4.896	V
		Vout7 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.655	4.75	4.845	V
		Vout7 $=0100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.606	4.7	4.794	V
		Vout7 = 0101 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.557	4.65	4.743	V
		Vout7 $=0110$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.508	4.60	4.692	V
		Vout7 = 0111 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.459	4.55	4.641	V
		Vout7 = 1000(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.41	4.50	4.590	V
		Vout7 = 1001(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.361	4.45	4.539	V
		Vout7 $=1010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.312	4.40	4.488	V
		Vout7 = 1011(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.998	5.10	5.202	V
		Vout7 = 1100(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.949	5.05	5.151	V
		Vout7 = 1101(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.9	5	5.1	V
		Vout7 = 1110(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{H}$	4.851	4.95	5.049	V
		Vout7 = 1111(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	4.802	4.90	4.998	V
VCH7D	Error amp center voltage	Vout7 $=0000$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	3.038	3.1	3.162	V
		Vout7 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.989	3.05	3.111	V
		Vout7 $=0010$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.940	3.00	3.060	V
		Vout7 $=0001$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.891	2.95	3.009	V
		Vout7 $=0100$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.842	2.9	2.958	V
		Vout7 = 0101 (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.793	2.85	2.907	V
		Vout7 = 0110(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.744	2.8	2.856	V
		Vout7 $=0111$ (bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.695	2.75	2.805	V
		Vout7 = 1000(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.646	2.7	2.754	V
		Vout7 = 1001(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.597	2.65	2.703	V
		Vout7 = 1010(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.548	2.6	2.652	V
		Vout7 = 1011(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.499	2.55	2.601	V
		Vout7 = 1100(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	2.450	2.5	2.550	V
		Vout7 = 1101(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	3.138	3.2	3.264	V
		Vout7 = 1110(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	3.087	3.15	3.213	V
		Vout7 = 1111(bin), $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{MODE7}=\mathrm{L}$	3.038	3.1	3.162	V
gm7	gm value of error amp		0.8	1	1.2	mS
VoC71 ${ }^{(6)}$	Output voltage	Mode7 $=\mathrm{H}$, On EVM, $\mathrm{T}_{\text {A }}=-10 \sim 65^{\circ} \mathrm{C}$	4.802	4.9	4.998	V
$\Delta \mathrm{Vli7} 1^{(6)}$	Line regulation	Mode7 = H, On EVM	-49		49	mV
$\Delta \mathrm{Vlo71}{ }^{(6)}$	Load regulation	Mode7 = H, On EVM	-49		49	mV
IOUT71 ${ }^{(6)}$	Minimum Load current	Mode7 = H, On EVM, VCC7=1.8 V	500			mA
VOCH72 ${ }^{(6)}$	Output voltage	Mode7 = L, On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	3.038	3.1	3.162	V
$\Delta \mathrm{Vli72}{ }^{(6)}$	Line regulation	Mode7 = L, On EVM	-31		31	mV
$\Delta \mathrm{Vlo} 7{ }^{(6)}$	Load regulation	Mode7 = L, On EVM	-31		31	mV
IOUT72 ${ }^{(6)}$	Minimum load current	Mode7 = L, On EVM, [CH-7 input voltage] $=4.9 \mathrm{~V}$	150			mA
VSCP7	SCP detector threshold	Ratio to VCH7	75\%	80\%	85\%	
VOVP7	OVP detector threshold	Ratio to VCH7		5.99		V
IOS71H	Source current of OS71	$\mathrm{VOS71}=0 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$			-6	mA
IOS71L	Sink current of OS71	$\mathrm{VOS71}=4.9 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$	0.2			$\mu \mathrm{A}$
IOS72H	Source current of OS72	$\mathrm{VOS72}=4.4 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$			-100	mA
IOS72L	Sink current of OS72	$\mathrm{VOS72}=0.5 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$	100			mA

(6) Not production tested. Assured by design. Using reference EVM.

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC5}=4.9 \mathrm{~V}, \mathrm{VCC} 7=4.9 \mathrm{~V}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{VCH}=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$, VCH_GD $=4.9 \mathrm{~V}$, LDO4_ON = L, and all register bits are default value (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IOS73H	Source current of OS73	VOS73 $=0.0 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$			-100	mA
IOS73L	Sink current of OS73	$\mathrm{VOS73}=0.5 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7=4.9 \mathrm{~V}$	100			mA
ROS71n	ON resistance	NMOS (OS71, GND GD), VOS71 = $0.1 \mathrm{~V}, \mathrm{VCH3}=$ VCH7 $=4.9 \mathrm{~V}$			7.5	$\mathrm{k} \Omega$
ROS72n	ON resistance	$\begin{aligned} & \text { NMOS(OS72, GND GD), VOS72 = } 0.1 \mathrm{~V}, \mathrm{VCH3}= \\ & \text { VCH7 = } 4.9 \mathrm{~V} \end{aligned}$			5	Ω
ROS73n	ON resistance	NMOS(OS73, GND GD), VOS73 = $0.1 \mathrm{~V}, \mathrm{VCH3}=$ $\mathrm{VCH} 7=4.9 \mathrm{~V}$			5	Ω
ROS71p	ON resistance	$\begin{aligned} & \mathrm{PMOS}(\mathrm{VCH} 7, \mathrm{OS} 71), \mathrm{VOS} 71=4.8 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7= \\ & 4.9 \mathrm{~V} \end{aligned}$			360	Ω
ROS72p	ON resistance	$\begin{aligned} & \text { PMOS(VCC7, OS72), VOS72 = } 4.8 \mathrm{~V}, \mathrm{VCH} 3=\mathrm{VCH} 7= \\ & 4.9 \mathrm{~V} \end{aligned}$			5	Ω
ROS73p	ON resistance	$\begin{aligned} & \text { PMOS(VCC GD, OS73), VOS73 = } 4.8 \mathrm{~V}, \mathrm{VCH3}= \\ & \mathrm{VCH7}=4.9 \mathrm{~V} \end{aligned}$			15	Ω
CH-8						
VCH81	Error amp center voltage (normal)	PWR_ON $=\mathrm{H}, \mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}$	3.528	3.6	3.672	V
VCH82	Error detector center voltage (skip)		3.492	3.6	3.708	V
gm8	gm value of error amp		0.8	1	1.2	mS
VoCH81 ${ }^{(7)}$	Output voltage (skip)	On EVM, $\mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \mathrm{VCC8}=1.5 \sim 3.6 \mathrm{~V}$	3.492	3.6	3.708	V
VoCH82 ${ }^{(7)}$	Output voltage (normal)		3.528	3.6	3.672	V
$\Delta \mathrm{Vli81}{ }^{(7)}$	Line regulation (skip)	On EVM, VCC8 = 1.8 ~ $3.6 \mathrm{~V}(=\mathrm{VoCH} 81)^{(8)}$	-108		180	mV
$\Delta \mathrm{Vli82}{ }^{(7)}$	Line regulation (normal)	On EVM, VCC8 $=1.8 \sim 3.6 \mathrm{~V}$	-36		36	mV
$\Delta \mathrm{Vlo81}{ }^{(7)}$	Load regulation (skip)	On EVM, VCC8 = 1.8 ~ 3.6 V , ICH8 < x[mA]	-120		120	mV
$\Delta \mathrm{Vlo82}{ }^{(7)}$	Load regulation (normal)	On EVM, VCC8 $=1.8 \sim 3.6 \mathrm{~V}$	-36		36	mV
IOUT81 ${ }^{(7)}$	Minimum Load current (skip)	On EVM, VCC8 $=1.8 \mathrm{~V}$	120			mA
IOUT82 ${ }^{(7)}$	Minimum Load current (normal)	On EVM, VCC8 $=1.8 \mathrm{~V}$	170			mA

(7) Not production tested. Assured by design. Using reference EVM.
(8) This parameter $\Delta \mathrm{Vli} 81$ is covered by VoCH81 and adjusted to VoCH81.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LDO-1						
VLDO1	Output voltage	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$, ILDO1 $=5 \mathrm{~mA}$	2.842	2.9	2.958	V
$\Delta \mathrm{V}$ liL1	Line regulation	VCH8 $=3.6 \sim 5.25 \mathrm{~V}$, ILDO1 $=5 \mathrm{~mA}$			30	mV
$\Delta \mathrm{VloL} 1$	Load regulation	VCH8 $=3.6 \mathrm{~V}$, ILOD1 $=0.1 \sim 30 \mathrm{~mA}$			100	mV
	Output current limit	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$	36			mA
LDO-2						
VLDO2	Output voltage	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$, ILDO2 $=6 \mathrm{~mA}$	2.842	2.9	2.958	V
Δ VliL2	Line regulation	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$, ILDO2 $=6 \mathrm{~mA}$			30	mV
$\Delta \mathrm{VIoL} 2$	Load regulation	$\mathrm{VCH8}=3.6 \mathrm{~V}$, ILOD2 $=0.1 \sim 50 \mathrm{~mA}$			100	mV
	Output current limit	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$	60			mA
LDO-3						
VLDO3	Output voltage	VCH8 $=3.6 \sim 5.25 \mathrm{~V}$, ILDO3 $=10 \mathrm{~mA}$	3.038	3.1	3.162	V
Δ VliL3	Line regulation	VCH8 $=3.6 \sim 5.25 \mathrm{~V}$, ILDO3 $=10 \mathrm{~mA}$			30	mV
$\Delta \mathrm{VloL} 3$	Load regulation	VCH8 $=3.6 \mathrm{~V}$, ILOD3 $=0.1 \sim 20 \mathrm{~mA}$			100	mV
	Output current limit	$\mathrm{VCH8}=3.6 \sim 5.25 \mathrm{~V}$	24			mA
LDO-4						
VLDO4	Output voltage	VCH8 $=3.6 \sim 5.25 \mathrm{~V}$, ILDO4 $=5 \mathrm{~mA}$	3.078	3.142	3.202	V
Δ VliL4	Line regulation	VCH8 $=3.6 \sim 5.25 \mathrm{~V}$, ILDO4 $=5 \mathrm{~mA}$			30	mV
$\Delta \mathrm{VIoL4}$	Load regulation	VCH8 $=3.6 \mathrm{~V}$, ILOD1 $=0.5$ ~ 100 mA			100	mV
	Output current limit	VCH8 = $3.6 \sim 5.25 \mathrm{~V}$	120			mA

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LDO-5						
VLDO5	Output voltage	$\begin{aligned} & \text { LDO5Vo }=00(\mathrm{bin}), \mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \\ & \text { ILDO5 }=15 \mathrm{~mA} \end{aligned}$	13.23	13.5	13.778	V
		$\begin{aligned} & \text { LDO5Vo }=01(\mathrm{bin}), \mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \\ & \text { ILDO5 }=15 \mathrm{~mA} \end{aligned}$	12.25	12.5	12.75	
		$\begin{aligned} & \text { LDO5Vo }=10(\mathrm{bin}), \mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \\ & \text { ILDO5 }=15 \mathrm{~mA} \end{aligned}$	11.76	12	12.24	
		$\begin{aligned} & \text { LDO5Vo }=11(\mathrm{bin}), \mathrm{T}_{\mathrm{A}}=-10 \sim 65^{\circ} \mathrm{C}, \\ & \text { ILDO5 }=15 \mathrm{~mA} \end{aligned}$	8.33	8.5	8.67	
$\Delta \mathrm{V}$ liL5	Line regulation	$\mathrm{VCH} 4=15 \sim 16.5 \mathrm{~V}$, ILDO5 $=5 \mathrm{~mA}$			50	mV
$\Delta \mathrm{VloL5}$	Load regulation	$\mathrm{VCH} 4=15 \mathrm{~V}$, ILOD5 $=0.1 \sim 15 \mathrm{~mA}$			50	mV
	Output current limit	$\mathrm{VCH} 4=15 \sim 16.5 \mathrm{~V}$	36			mA

EQUIVALENT INPUT/OUTPUT CIRCUIT DIAGRAMS

Figure 1. PWR_ON, LDO4_ON, DIN, TEST

Figure 3. LD

Figure 2. TLD INPUT CIRCUIT

Figure 4. MODE7

EQUIVALENT INPUT/OUTPUT CIRCUIT DIAGRAMS (continued)

Figure 5. CLK

Figure 6. DOUT

OUTPUT CIRCUIT

Figure 7. READY, XRESET

ICC1

ICC1 represents the supply current measured when all channels are operating normally with no load. It is difficult to connect coils and other external devices to the TPS65520. Therefore, to measure characteristics in shipping tests, the desired ICC1 is specified using two testable parameters with the pins handled as shown in Table 1.
ICC_CTRL represents the supply current from the $2.9-\mathrm{V}$ and $4.2-\mathrm{V}$ power supplies shown in the tables. ICC_GD represents the supply current from the $4.2-\mathrm{V}$ power supplies shown in the tables. IVCC_GD is a self-consumed gate drive current from $\mathrm{CH}-3$. Therefore, it is associated with the desired ICC1 through the $\mathrm{CH}-3$ efficiency. Equation 1 indicates the relationship between IVCC_GD and the supply current from the power supplies in the application circuit (ICC1). ICC1 is specified as the supply current when a voltage of 4.2 V is the input. ICC_CTRL is the current consumed by the TPS65520 (excluding IVCC_GD).

$$
\begin{align*}
\text { ICC1 }= & \frac{4.9}{4.2} \times \frac{1}{\eta_{C H}-3} \times \text { IVCC_GD }+ \text { ICC_CTRL } \\
& \frac{4.9 \times \text { IVCC_GD }}{4.2 \times(\text { ICC1 }- \text { ICC_CTRL })}={ }^{\eta} \mathrm{CH}-3 \tag{1}
\end{align*}
$$

TPS65520
www.ti.com
SLVS557A-MARCH 2005-REVISED JUNE 2005
Table 1. Pin Handling for Measuring ICC1

Pin Name	Connection	Note	Pin Name	Connection	Note
POWER SUPPLY			CH-2		
			BOOT2	4.9 V	supply gate driver
VCC_GD	4.9 V	Supply gate drive			
GND_GD	GND		VCH2	GND	force MAX DUTY
GNDANA	GND		VCC2	2.9 V	bias power MOS
GNDLOG	GND		OUT2	open	(not concerned)
GNDREG	GND		GND2	GND	
GNDLDOA	GND		ERR2	4.2 V	force MAX DUTY
SUB-CPU CONTROL			CH-3		
			VCH3A/B/C	4.9 V	supply TAKUMI
PWR_ON	2.9 V				
CSCP	GND	avoid shutdown	VCH3S	open	(not concerned)
ROSC	$150 \mathrm{k} \Omega$ to GND	recommended part	OUT3A/B/C	open	(not concerned)
CREF	Cap	recommended part	GND3A/B/C	GND	force MAX DUTY
CBG	Cap	recommended part	ERR3	4.2 V	
VLDO1	Cap	recommended part	CH-4		
VLDO2	Cap	recommended part	VCH4	4.9 V	force MAX DUTY
VLDO3	Cap	recommended part	OUT4	open	(not concerned)
VLDO4	Cap	recommended part	GND4	GND	
VLDO5	Cap	recommended part	ERR4	open	(not concerned)
LOGIC			CH-5		
			VCH5	GND	force MAX DUTY
ROMWR	GND		VCC5	4.9 V	supply gate driver
TEST	open	pull down internally			
TLD	open	pull down internally	OUT5	open	(not concerned)
CLK	open	pull up internally	ERR5	open	(not concerned)
DIN	open	pull down internally	CH-6		
LD	open	pull up internally	OUT6	open	(not concerned)
DOUT	open	(not concerned)	FB6	GND	force MAX DUTY
SS, ETC.			VCH6	open	(not concerned)
READY	open	(not concerned)	ICH6	open	(not concerned)
XRESET	open	(not concerned)	GND6	GND	
LDO4_ON	2.9 V	force LDO-4 ON	REF6	CBG	(not concerned)
SS_SYNC	open	(not concerned)	ERR6	open	
SS2	open	(not concerned)	CH-7		
SS3	open	(not concerned)	VCH7	open	(not concerned)
SS5	open	(not concerned)	VCC7	4.9 V	supply gate driver
SS6	open	(not concerned)	ERR7	$4.2 \mathrm{~V}$	force MAX DUTY
SSLDO5	open	(not concerned)	MODE7	GND	fix logic value
CH-1			VOS71	open	(not concerned)
BOOT11	4.9 V	supply gate driver	VOS72	open	(not concerned)
BOOT12	4.9 V	supply gate driver	VOS73	open	(not concerned)
VCH1A/B/C	2.9 V	force output	CH-8		
VCC1A/B/C	2.9 V	supply CH -1	VCH8A/B	4.2 V	force through mode
GND1A/B/C	GND	supply CH-1	VCC8	4.2 V	force through mode
OUT11A/B/C	open	(not concerned)	ERR8	4.2 V	force MAX DUTY
OUT12A/B/C	open	(not concerned)	OUT8A/B	open	(not concerned)
ERR1	4.2 V	force MAX DUTY	GND8A/B	GND	

ICC2

ICC2 represents the supply current measured when the system operation is minimized with $\mathrm{CH}-8$ placed in sleep mode. It is difficult to connect coils and other external devices to the TPS65520 to measure its characteristics in shipping tests. Therefore, the desired ICC2 is specified using three testable parameters with the pins handled as shown in Table 2.

IVCC8 and IVCH8 represent the supply currents from the VCC8 and VCH8 pins, respectively.
Equation 2 indicates the relationship between those currents and the supply current from the power supplies in the application circuit (ICC2). ICC2 is specified as the supply current when a voltage of 3.6 V is input.

$$
\begin{equation*}
\mathrm{ICC2}=\frac{1}{\eta_{\mathrm{CH}-8: \mathrm{skip}}} \times \mathrm{IVCH} 8+\mathrm{IVCC} 8 \tag{2}
\end{equation*}
$$

Table 2. Pin Handling for Measuring ICC2

Pin Name	Connection	Note
POWER SUPPLY		
VCC_GD	open	(not concerned)
GND_GD	GND	
GNDANA	GND	
GNDLOG	GND	
GNDREG	GND	
GNDLDOA	GND	
LOGIC		
ROMWR	GND	
TEST	open	pull down internally
TLD	open	pull down internally
CLK	open	pull up internally
DIN	open	pull down internally
LD	open	pull up internally
DOUT	open	(not concerned)
SUB-CPU CONTROL		
PWR_ON	GND	
CSCP	GND	avoid shutdown
ROSC	$150 \mathrm{k} \Omega$ to GND	recommended part
CREF	Cap	recommended part
CBG	Cap	recommended part
VLDO1	Cap	recommended part
VLDO2	Cap	recommended part
VLDO3	Cap	recommended part
VLDO4	Cap	recommended part
VLDO5	Cap	recommended part
SS, ETC.		
READY	open	(not concerned)
XRESET	open	(not concerned)
LDO4_ON	GND	
SS_SYNC	open	(not concerned)
SS2	open	(not concerned)
SS3	open	(not concerned)
SS5	open	(not concerned)
SS6	open	(not concerned)

Pin Name	Connection	Note
SSLDO5	open	(not concerned)
CH-1		
BOOT11	open	(not concerned)
BOOT12	open	(not concerned)
VCH1A/B/C	open	(not concerned)
VCC1A/B/C	open	(not concerned)
GND1A/B/C	GND	
OUT11A/B/C	open	(not concerned)
OUT12A/B/C	open	(not concerned)
ERR1	open	(not concerned)
CH-2		
BOOT2	open	(not concerned)
VCH2	open	(not concerned)
VCC2	open	(not concerned)
OUT2	open	(not concerned)
GND2	GND	
ERR2	open	(not concerned)
CH-3		
VCH3A/B/C	open	(not concerned)
VCH3S	open	(not concerned)
OUT3A/B/C	open	(not concerned)
GND3A/B/C	GND	
ERR3	open	(not concerned)
CH-4		
VCH4	open	(not concerned)
OUT4	open	(not concerned)
GND4	GND	
ERR4	open	(not concerned)
CH-5		
VCH5	open	(not concerned)
VCC5	open	(not concerned)
OUT5	open	(not concerned)
ERR5	open	(not concerned)
CH-6		
OUT6	open	(not concerned)

TPS65520
INSTRUMENTS
www.ti.com
SLVS557A-MARCH 2005-REVISED JUNE 2005

Pin Name	Connection	Note
FB6	GND	
VCH6	open	(not concerned)
ICH6	open	(not concerned)
GND6	GND	
REF6	open	(not concerned)
ERR6	open	(not concerned)
CH-7		
VCH7	open	(not concerned)
VCC7	open	(not concerned)
ERR7	open	(not concerned)

Pin Name	Connection	Note
MODE7	GND	fix logic value
VOS71	open	(not concerned)
VOS72	open	(not concerned)
VOS73	open	(not concerned)
CH-8		
VCH8A/B	3.7 V	stop skip switching
VCC8	3.6 V	supply to CH-8 circuit
ERR8	open	(not concerned)
OUT8A/B	open	(not concerned)
GND8A/B	GND	

A. $\quad t_{d 1}$ (Measure SS3 when it is left open.)

Figure 8. $\mathrm{t}_{\mathrm{d} 1}$ Measurement Reference

Figure 9. $\mathrm{t}_{\mathrm{d} 2}$ Measuring Circuit and Measurement Reference

A. $t_{d 3 r}, t_{d 3 f}$ (Measure VOS71 when it is left open.)

Figure 10. $\mathrm{t}_{\mathrm{d} 3 \mathrm{r}}$ and $\mathrm{t}_{\mathrm{d} 3 \mathrm{i}}$ Measurement References

A. $t_{d 4}$ (Connect a capacitor, 4.7 $\mu \mathrm{F}$ recommended, to VLDO3.)

Figure 11. $\mathrm{t}_{\mathrm{d} 4}$ Measurement Reference

Time
A. $t_{d 5}$ (Connect a capacitor, 4.7 $\mu \mathrm{F}$ recommended, to VLDO4.)

Figure 12. $\mathrm{t}_{\mathrm{d} 5}$ Measurement Reference

Figure 13. $t_{d 6}$ and $t_{d 7}$ Measuring Circuit and Measurement References

TPS65520
INSTRUMENTS
www.ti.com

Figure 14. $\mathbf{t}_{\mathrm{d} 8}$ Measuring Circuit and Measurement Reference

TIMING REQUIREMENTS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=3.6 \mathrm{~V}, \mathrm{VCC2}=3.6 \mathrm{~V}, \mathrm{VCC} 5=3.6 \mathrm{~V}, \mathrm{VCC} 7=3.6 \mathrm{~V}, \mathrm{VCC} 8=3.6 \mathrm{~V}, \mathrm{VCH} 8=3.6 \mathrm{~V}, \mathrm{VCH} 3=4.9 \mathrm{~V}$, VCH _GD $=4.9 \mathrm{~V}, \mathrm{LDO}$ _ON $=\mathrm{L}$, and all register bits are default value (unless otherwise noted)

	PARAMETER	MIN	MAX
$\mathrm{t}_{\mathrm{s} 1}$	Setup time, LD \downarrow before CLK \uparrow (see Figure 33)	400	ns
$\mathrm{t}_{\mathrm{s} 2}$	Setup time, DIN valid before CLK \uparrow (see Figure 33)	200	ns
$\mathrm{t}_{\mathrm{s} 3}$	Setup time, TLD \uparrow after CLK \uparrow (see Figure 39)	50	ns
$\mathrm{t}_{\mathrm{s} 4}$	Setup time, TLD \uparrow before CLK \uparrow (see Figure 39)	50	ns
$\mathrm{t}_{\mathrm{s} 5}$	Setup time, ROMWR \uparrow before TLD \uparrow (see Figure 43)	10	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{h} 1}$	Hold time, DIN valid after CLK \uparrow (see Figure 33)	50	ns
$\mathrm{t}_{\mathrm{h} 2}$	Hold time, LD \uparrow after last CLK \uparrow (see Figure 33)	50	ns
$\mathrm{t}_{\mathrm{h} 3}$	Hold time, ROMWR \downarrow after last TLD \downarrow (see Figure 33)	10	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{w} 1}$	Pulse width of TLD $=\mathrm{H}$ for Test0 \sim Test5 (see Figure 39)	50	ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse width of TLD $=\mathrm{H}$ for Test6,Test7 (see Figure 43)	20	ms
$\mathrm{t}_{\mathrm{w} 3}$	Pulse width of CLK = H (see Figure 33)	100	ns
$\mathrm{t}_{\text {cyc }}$	Period of CLK \uparrow (see Figure 33)	500	ns

SWITCHING CHARACTERISTICS

	PARAMETER	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, PWR_ON \uparrow to start of charging SS3 (see Figure 8 and Figure 30)		1.1	1.15	ms
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, LD \uparrow to VCH3S \uparrow (see Figure 9 and Figure 30)		500	750	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, LD \uparrow to VOS71 $\uparrow, \mathrm{VCH7}=4.9 \mathrm{~V}$ (see Figure 10 and Figure 30)		500	1000	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, LD \uparrow to VOS71 $\downarrow, \mathrm{VCH7}=4.9 \mathrm{~V}$ (see Figure 10 and Figure 30)		60	100	$\mu \mathrm{s}$
td4	Delay time, LD \uparrow to VLDO3 \uparrow (see Figure 11] and Figure 30)		300	650	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, LDO4_ON \uparrow to VLDO4 \uparrow (see Figure 12 and Figure 30)		300	650	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} 6}$	Delay time, last CLK \uparrow to DOUT valid for Normal Mode (see Figure 13, Figure 33, and Figure 39)		100	200	ns
$\mathrm{t}_{\mathrm{d} 7}$	Delay time, CLK \downarrow to DOUT valid for Test0, Test2, Test3, Test5 (see Figure 13, Figure 33, and Figure 39)		100	200	ns
	Delay time, VLDO2 exceeds VRST1 to XRESET \uparrow (see Figure 14)	200	300	600	$\mu \mathrm{s}$

SLVS557A-MARCH 2005-REVISED JUNE 2005

A
B
C
D
E

F

G
H
J
K
L

Figure 15. Pin Layout

TPS65520
www.ti.com

TERMINAL FUNCTIONS

TERMINAL		NAME	I/O	DESCRIPTION
NO.	PIN ADDRESS			
1	1-A	ERR6	0	Output of gm amp for $\mathrm{CH}-6$
2	1-B	REF6	10	Reference resistor of $\mathrm{CH}-6$
3	1-C	GND_REG	G	Ground for analog circuit of regulators
4	1-D	NC		No connection (recommended to be GND)
5	1-E	CSCP	10	Current source of short-circuit protection
6	1-F	OUT6	10	Output side terminal of coil L6 for CH-6
7	1-G	VCH6	0	Output voltage of CH-6
8	1-H	VCC_GD	V	Power supply for gate driver of internal power MOS-FET
9	1-J	VCH3A	0	Output of CH-3 (1/3)
10	1-K	OUT3B	10	Output side terminal of coil L3 for CH-3 (2/3)
11	1-L	GND3C	G	Ground for CH-3 (3/3)
12	2-A	SS3	0	Current source of soft-start for $\mathrm{CH}-3$
13	2-B	ERR3	0	Output of gm amp for $\mathrm{CH}-3$
14	2-C	SS2	I	Current source of soft-start for CH-2
15	2-D	NC		No connection (recommended to be GND)
16	2-E	ROSC	0	Reference resistor for PWM oscillator
17	2-F(= 3-F)	GND6	G	Ground for CH-6(same pin as No.28, 3-F)
18	2-G	ICH6	10	LEDs cathode of CH-6
19	2-H	VCH3S	0	Analog switched output of CH-3
20	2-J	OUT3C	10	Output side terminal of coil L3 for CH-3 (3/3)
21	2-K	GND3B	G	Ground for CH-3 (2/3)
22	2-L	GND3A	G	Ground for $\mathrm{CH}-3$ (1/3)n
23	3-A	VOS71	0	Gate drive of external PMOS switch for $\mathrm{CH}-7$
24	3-B	MODE7	1	Mode selection of CH-7
25	3-C	SS6	0	Current source of soft-start for CH-6
26	3-D	NC		No connection (recommended to be GND)
27	3-E	NC		No connection (recommended to be GND)
28	$3-\mathrm{F}(=2-\mathrm{F})$	GND6	G	Ground for CH-6 (same pin as No.17, 2-F)
29	$3-\mathrm{G}(=4-\mathrm{G})$	FB6	10	Current sense input of CH-6 (same pin as No.40, 4-G)
30	3-H	VCH3C	0	Output of CH-3 (3/3)
31	3-J	OUT3A	10	Output side terminal of coil L3 for CH-3 (1/3)
32	3-K	VCH7	0	Output of CH-7
33	3-L	VOS73	0	Gate drive of low side NMOS switch for CH-7
34	4-A	ERR5	0	Output of gm amp for $\mathrm{CH}-5$
35	4-B	SS5	0	Current source of soft-start for $\mathrm{CH}-5$
36	4-C	ERR7	0	Output of gm amp for $\mathrm{CH}-7$
37	4-D	NC		No connection (recommended to be GND)
38	4-E	NC		No connection (recommended to be GND)
39	4-F	GND_LOG	G	Ground for general logic circuit
40	$4-\mathrm{G}(=3-\mathrm{G})$	FB6	10	Current sense input of CH-6 (same pin as No.29, 3-G)
41	4-H	VCH3B	0	Output of CH-3 (2/3)
42	4-J	VCC7	V	Power supply of CH-7
43	4-K	VOS72	0	Gate drive of high side PMOS switch for CH-7
44	4-L	GND_GD	G	Ground for gate driver of internal power MOS-FET
45	5-A	GND_ANA	G	Ground for general analog circuit

TERMINAL FUNCTIONS (continued)

TERMINAL		NAME	I/O	DESCRIPTION
NO.	PIN ADDRESS			
46	5-B	CBG	10	Output of BG reference voltage buffer
47	5-C	SS_SYNC	0	Current source of soft-start for $\mathrm{CH}-1, \mathrm{CH}-4$ and $\mathrm{CH}-7$
48	5-D	ERR4	\bigcirc	Output of gm amp for $\mathrm{CH}-4$
49	5-E	NC		No connection (recommended to be GND)
50	5-H(= 7-J)	TEST	1	Test mode selection Input of serial I/F (same pin as No.67, 7-J)
51	5-J	VCH5	O	Output of CH-5
52	5-K	VCC5	V	Power supply of CH-5
53	5-L	OUT5	10	Primary side terminal of coil L5 for CH-5
54	6-A	ERR1	0	Output of gm amp for $\mathrm{CH}-1$
55	6-B	ERR2	0	Output of gm amp for $\mathrm{CH}-2$
56	$6-C(=6-D)$	ERR8	0	Output of gm amp for CH-8 (same pin as No.57, 6-D)
57	$6-\mathrm{D}(=6-\mathrm{C})$	ERR8	0	Output of gm amp for CH-8 (same pin as No.56, 6-C)
58	6-H	TLD	I	Test mode latch input of serial I/F
59	6-J	VCH4	0	Output of CH-4
60	6-K	OUT4	10	Output side terminal of coil L4 for CH-4
61	6-L	GND4	G	Ground for CH-4
62	7-A	READY	0	READY output for Sub-CPU
63	7-B	XRESET	0	Low Active RESET output for Sub-CPU
64	7-C	PWR_ON	I	TPS65520 device enable input
65	7-D	LDO4_ON	1	Enable of LDO-4
66	7-H(= 8-J)	ROMWR	1	Voltage bias to write EEPROM (same pin as No.78, 8-J)
67	$7-\mathrm{J}=5-\mathrm{H})$	TEST	1	Test mode selection input of serial I/F (same pin as No.50, 5-H)
68	7-K	LD	1	Latch input of serial I/F
69	7-L	DOUT	0	Data output of serial I/F
70	8-A	CREF	10	Capacitor of RC filter for band-gap reference
71	8-B	VLDO5	0	Output of LDO-5
72	8-C	VLDO4	0	Output of LDO-4
73	8-D	NC		No connection (recommended to be GND)
74	8-E	NC		No connection (recommended to be GND)
75	8-F	SSLDO5	0	Current source of soft-start for LDO-5
76	8-G	BOOT11	10	Bootstrap for primary side of $\mathrm{CH}-1$
77	8-H	BOOT12	10	Bootstrap for output side of $\mathrm{CH}-1$
78	$8-J(=7-H)$	ROMWR	1	Voltage bias to write EEPROM (same pin as No.66, 7-H)
79	8-K	CLK	1	Clock input of serial I/F
80	8-L	DIN	1	Data input of serial I/F
81	9-A	GND_LDOA	G	Ground for analog circuit of LDO-1,LDO-2,LDO-3
82	9-B	VLDO2	0	Output of LDO-2
83	9-C	NC		No connection (recommended to be GND)
84	9-D	OUT8A	10	Output side terminal of coil $\mathrm{L8}$ for $\mathrm{CH}-8(1 / 2)$
85	9-E	OUT8B	10	Output side terminal of coil L8 for CH-8 (2/2)
86	9-F	VCC2	V	Power supply of CH-2
87	9-G	VCC1C	V	Power supply of CH-1 (3/3)
88	9-H	GND1A	G	Ground for CH-1 (1/3)
89	9-J	OUT12C	10	Output side terminal of coil L1 for CH-1 (3/3)
90	9-K	VCH1B	O	Output of CH-1 (2/3)

TPS65520
INSTRUMENTS
www.ti.com
SLVS557A-MARCH 2005-REVISED JUNE 2005
TERMINAL FUNCTIONS (continued)

	ERMINAL			
NO.	PIN ADDRESS	NAME	I/O	DESCRIPTION
91	9-L	VCH1C	0	Output of CH-1 (3/3)
92	10-A	VLDO3	0	Output of LDO-3
93	10-B	NC		No connection (recommended to be GND)
94	10-C	VCH8A	0	Output of CH-8 (1/2)
95	10-D	GND8A	G	Ground for $\mathrm{CH}-8(1 / 2)$
96	10-E	BOOT2	10	Bootstrap for $\mathrm{CH}-2$
97	10-F	OUT2	10	Primary side terminal of coil L2 for CH-2
98	10-G	VCC1B	V	Power supply of CH-1 (2/3)
99	10-H	OUT11B	10	Primary side terminal of coil L1 for $\mathrm{CH}-1(2 / 3)$
100	10-J	GND1B	G	Ground for CH-1 (2/3)
101	10-K	OUT12B	10	Output side terminal of coil L1 for CH-1 (2/3)
102	10-L	VCH1A	0	Output of CH-1 (1/3)
103	11-A	VLDO1	0	Output of LDO-1
104	11-B	VCC8	V	Power supply of CH-8
105	11-C	VCH8B	0	Output of CH-8 (2/2)
106	11-D	GND8B	G	Ground for $\mathrm{CH}-8$ (2/2)
107	11-E	VCH2	0	Output of $\mathrm{CH}-2$
108	11-F	GND2	G	Ground for $\mathrm{CH}-2$
109	11-G	VCC1A	V	Power supply of CH-1 (1/3)
110	11-H	OUT11A	10	Primary side terminal of coil L1 for $\mathrm{CH}-1(1 / 3)$
111	11-J	OUT11C	10	Primary side terminal of coil L1 for $\mathrm{CH}-1(3 / 3)$
112	11-K	GND1C	G	Ground for CH-1 (3/3)
113	11-L	OUT12A	10	Output side terminal of coil L1 for CH-1 (1/3)

REGISTER MAP

Some switching regulators allow the output voltage to be changed according to control register settings. However, changing the voltage setting while a regulator is operating may cause the output to overshoot and exceed the rating. Be careful when dynamically changing the regulator output voltage.

LIST OF REGISTERS

NAME	POSITION	DESCRIPTION
parity	$\mathrm{D}[47]-\mathrm{D}[40]$	parity data
$\mathrm{CH} 7-\mathrm{SW}$	$\mathrm{D}[38]$	VOS71, load side switch of CH-7
Dmax7	$\mathrm{D}[37]-\mathrm{D}[36]$	duty setting of CH-7
Dmax5	$\mathrm{D}[35]-\mathrm{D}[34]$	duty setting of CH-5
Dmax4	$\mathrm{D}[33]-\mathrm{D}[32]$	duty setting of CH-4
$\mathrm{CH} 3-\mathrm{SW}$	$\mathrm{D}[31]-\mathrm{D}[30]$	Load side switch of CH-3
Dmax3	$\mathrm{D}[29]-\mathrm{D}[28]$	duty setting of CH-3, CH-1(UP,CROSS) and CH-8
Vout7	$\mathrm{D}[27]-\mathrm{D}[24]$	Voltage setting of CH-7
Vout5	$\mathrm{D}[23]-\mathrm{D}[22]$	Voltage setting of CH-5
Vout4	$\mathrm{D}[21]-\mathrm{D}[20]$	Voltage setting of CH-4
Vout3	$\mathrm{D}[19]-\mathrm{D}[16]$	Voltage setting of CH-3
Vout2	$\mathrm{D}[15]-\mathrm{D}[12]$	Voltage setting of CH-2
Vout1	$\mathrm{D}[11]-\mathrm{D}[08]$	Voltage setting of CH-1
LDO5Vo	$\mathrm{D}[07]-\mathrm{D}[06]$	Voltage setting of LDO-5
LDOSW5	$\mathrm{D}[05]$	LDO-5 ON/OFF switch
LDOSW3	$\mathrm{D}[04]$	LDO-3 ON/OFF switch
Dmax6	$\mathrm{D}[03]-\mathrm{D}[02]$	duty setting of CH-6
Vout6B	$\mathrm{D}[01]-\mathrm{D}[00]$	Back-light LED current of CH-6

CH7-SW

$\mathrm{D}[39]$	$\mathrm{D}[38]$	$\mathrm{D}[37]$	$\mathrm{D}[36]$	ON/OFF	
${ }^{*}$	0	${ }^{*}$	${ }^{*}$	OFF	default
${ }^{*}$	1	${ }^{*}$	${ }^{*}$	ON	

Dmax7

D[39]	D[38]	D[37]	D[36]	DUTY [\%]			
				MIN	TYP	MAX	
$*$	$*$	0	0	82	86	91	default
$*$	$*$	0	1	77	81	86	
$*$	$*$	1	0	72	76	81	
$*$	$*$	1	1	67	71	76	

Dmax5

$\mathbf{D}[35]$	\mathbf{D} D[34]	$\mathbf{D}[33]$	D[32]	DUTY [\%]			
				MIN	TYP	MAX	
0	0	${ }^{*}$	${ }^{*}$	84	88	92	default
0	1	${ }^{*}$	${ }^{*}$	79	83	87	
1	0	${ }^{*}$	${ }^{*}$	74	78	82	
1	1	${ }^{*}$	${ }^{*}$	69	73	77	

Dmax4

$\mathbf{D}[35]$	$\mathbf{D}[34]$	$\mathbf{D}[33]$	$\mathbf{D}[32]$	DUTY [\%]			
				MIN	TYP	MAX	
${ }^{*}$	${ }^{*}$	0	0	92	94	96	default
${ }^{*}$	${ }^{*}$	0	1	90	92	94	
${ }^{*}$	${ }^{*}$	1	0	88	90	92	
${ }^{*}$	${ }^{*}$	1	1	86	88	90	

CH3-SW

$\mathbf{D}[31]$	$\mathbf{D}[30]$	$\mathbf{D}[29]$	$\mathbf{D}[28]$	ON/OFF	
0	0	${ }^{*}$	${ }^{*}$	OFF	default
0	1	${ }^{*}$	${ }^{*}$	OFF	
1	0	${ }^{*}$	${ }^{*}$	OFF	
1	1	${ }^{*}$	${ }^{*}$	ON	

Dmax3

$\mathbf{D}[31]$	$\mathbf{D}[30]$	$\mathbf{D}[29]$	$\mathbf{D}[28]$	DUTY [\%]			
					MIN	TYP	MAX
${ }^{*}$	$*$	0	0	82	86	91	default
${ }^{*}$	$*$	0	1	77	81	86	
${ }^{*}$	$*$	1	0	72	76	81	recommend
${ }^{*}$	${ }^{*}$	1	1	67	71	76	

Vout7

$\mathbf{D}[\mathbf{2 7]}$	$\mathbf{D}[\mathbf{2 6]}$	$\mathbf{D}[\mathbf{2 5]}$	$\mathbf{D}[\mathbf{2 4]}$	Output Voltage [V]		
				DOWN	UP	
0	0	0	0	3.10	4.90	default
0	0	0	1	3.05	4.85	
0	0	1	0	3.00	4.80	
0	0	1	1	2.95	4.75	
0	1	0	0	2.90	4.70	
	1	0	1	2.85	4.65	
0	1	1	0	2.80	4.60	
0	1	1	1	2.75	4.55	
1	0	0	0	2.70	4.50	
1	0	0	1	2.65	4.45	
1	0	1	0	2.60	4.40	
1	0	1	1	2.55	5.10	
1	1	0	0	2.50	5.05	
1	1	0	1	3.20	5.00	
1	1	1	0	3.15	4.95	
1	1	1	1	3.10	4.90	

Vout5

$\mathbf{D}[23]$	$\mathbf{D}[22]$	$\mathbf{D}[21]$	$\mathbf{D}[20]$	Output Voltage [V]	
0	0	${ }^{*}$	${ }^{*}$	-7.5	default
0	1	$*$	$*$	-8.0	

Vout5 (continued)

$\mathbf{D}[23]$	$\mathbf{D}[22]$	$\mathbf{D}[21]$	$\mathbf{D}[20]$	Output Voltage [V]	
1	0	${ }^{*}$	${ }^{*}$	-8.5	
1	1	${ }^{*}$	${ }^{*}$	-9.0	

Vout4

$\mathbf{D}[19]$	$\mathbf{D}[18]$	$\mathbf{D}[17]$	$\mathbf{D}[16]$	Output Voltage [V]	
${ }^{*}$	${ }^{*}$	0	0	15.0	default
${ }^{*}$	${ }^{*}$	0	1	15.5	
${ }^{*}$	${ }^{*}$	1	0	16.0	
${ }^{*}$	${ }^{*}$	1	1	16.5	

Vout3

$\mathbf{D}[\mathbf{1 9]}$	$\mathbf{D}[\mathbf{1 8}]$	$\mathbf{D}[17]$	$\mathbf{D}[16]$	Output Voltage [V]	
0	0	0	0	4.90	default
0	0	0	1	4.85	
0	0	1	0	4.80	
0	0	1	1	4.75	
0	1	0	0	4.70	
0	1	0	1	4.65	
0	1	1	0	4.60	
0	1	1	1	4.55	
1	0	0	0	4.50	
1	0	0	1	5.20	
1	0	1	0	5.15	
1	0	1	1	5.10	
1	1	0	0	5.05	
1	1	0	1	5.00	
1	1	1	0	4.95	
1	1	1	1	4.90	

Vout2

$\mathbf{D}[\mathbf{1 5]}$	$\mathbf{D}[14]$	$\mathbf{D}[13]$	$\mathbf{D}[12]$	Output Voltage [V]	
0	0	0	0	1.20	default
0	0	0	1	1.15	
0	0	1	0	1.10	
0	0	1	1	1.80	
0	1	0	0	1.75	
0	1	0	1	1.70	
0	1	1	0	1.65	
0	1	1	1	1.60	
1	0	0	0	1.55	
1	0	0	1	1.50	
1	0	1	0	1.45	
1	0	1	1	1.40	
1	1	0	0	1.35	
1	1	0	1	1.30	
1	1	1	0	1.25	
1	1	1	1	1.225	

Vout1						
D[11]	D[10]	D[09]	D[08]	Output Voltage [V]		
0	0	0	0	2.80	default	
0	0	0	1	2.75		
0	0	1	0	2.70		
0	0	1	1	2.65		
0	1	0	0	2.60	not recommended	
0	1	0	1	2.55	not recommended	
0	1	1	0	2.50	not recommended	
0	1	1	1	3.20		
1	0	0	0	3.15		
1	0	0	1	3.10		
1	0	1	03.05	3.05		
1	0	1	1	3.00		
1	1	0	0	2.95		
1	1	0	1	2.90		
1	1	1	0	2.85		
1	1	1	1	2.825		

LDO5Vo

$\mathrm{D}[07]$	$\mathrm{D}[06]$	$\mathrm{D}[05]$	$\mathrm{D}[04]$	Output Voltage [V]	
0	0	${ }^{*}$	${ }^{*}$	13.5	default
0	1	${ }^{*}$	${ }^{*}$	12.5	
1	0	${ }^{*}$	${ }^{*}$	12.0	
1	1	${ }^{*}$	${ }^{*}$	8.5	

LDOSW5

$\mathbf{D}[07]$	$\mathbf{D}[06]$	$\mathbf{D}[05]$	$\mathrm{D}[04]$	ON / OFF	
${ }^{*}$	${ }^{*}$	0	${ }^{*}$	OFF	default
${ }^{*}$	${ }^{*}$	1	${ }^{*}$	ON	

LDOSW3

$\mathrm{D}[07]$	$\mathrm{D}[06]$	$\mathrm{D}[05]$	$\mathrm{D}[04]$	ON $/$ OFF	
$*$	$*$	$*$	0	ON	default
$*$	$*$	$*$	1	OFF	

Dmax6

D[03]	D[02]	D[01]	D[00]	DUTY [\%]			
				MIN	TYP	MAX	
0	0	$*$	$*$	87	89	91	default
0	1	$*$	$*$	89	91	93	
1	0	$*$	$*$	91	93	95	
1	1	$*$	$*$	93	95	97	

Vout6B

D[03]	D[02]	D[01]	D[00]	Output Current [mA]	
${ }^{*}$	${ }^{*}$	0	0	12.0	default
${ }^{*}$	${ }^{*}$	0	1	20.0	
${ }^{*}$	${ }^{*}$	1	0	8.0	
${ }^{*}$	${ }^{*}$	1	1	OFF	

EEPROM MAP

Note: TI is shipping ICs with recommended values.
DEFAULT VALUE SETUP BITS

NAME	POSITION	DESCRIPTION
Test Mode	$\mathrm{D}[47]-\mathrm{D}[45]$	$001:$ Test1 (write), 010: Test2 (read)
(none)	$(\mathrm{D}[44])$	(not used)
TRIM_DTC0	$\mathrm{D}[43]-\mathrm{D}[42]$	Trimming for DTC of Tr/Tf, CH-1,CH-2
TRIM_DTCR0	$\mathrm{D}[41]-\mathrm{D}[40]$	Trimming for DTC of Tr, CH-3,CH-8
TRIM_DTCR1	$\mathrm{D}[39]-\mathrm{D}[38]$	Trimming for DTC of Tr, CH-7
TRIM_DTCF0	$\mathrm{D}[37]-\mathrm{D}[36]$	Trimming for DTC of Tf, CH-3,CH-8
TRIM_DTCF1	$\mathrm{D}[35]-\mathrm{D}[34]$	Trimming for DTC of Tf, CH-7

TRIMMING BITS

NAME	POSITION	DESCRIPTION
Test Mode	D[47] - D[45]	100: Test1 (write), 101: Test2 (read)
TRIM_BG	$(5[$ bit])	Trimming for band-gap reference voltage
TRIM_OSC	$(3[$ bit] $)$	Trimming for oscillator frequency
TRIM_GAIN0	$(2[$ bit] $)$	Trimming for AMP gain of CH-1
TRIM_VOFFO	$(2[$ bit] $)$	Trimming for AMP offset voltage of CH-1

PROTECTION STATUS READ MAP

NAME	POSITION	DESCRIPTION
Test Mode	$\mathrm{D}[47]-\mathrm{D}[45]$	011: Test3
SCP7	$\mathrm{D}[12]$	SCP7 to previous system down
(none)	$(\mathrm{D}[11])$	(not assigned, always L)
SCP5	$\mathrm{D}[10]$	SCP5 to previous system down
SCP4	$\mathrm{D}[09]$	SCP4 to previous system down
SCP3	$\mathrm{D}[08]$	SCP3 to previous system down
SCP2	$\mathrm{D}[07]$	SCP2 to previous system down
SCP1	$\mathrm{D}[06]$	SCP1 to previous system down
OVP7	$\mathrm{D}[05]$	OVP7 to previous system down
OVP6	$\mathrm{D}[04]$	OVP6 to previous system down
OVP3	$\mathrm{D}[03]$	OVP3 to previous system down
OVP2	$\mathrm{D}[02]$	OVP2 to previous system down
TSD	$\mathrm{D}[01]$	TSD to previous system down

TPS65520 BLOCK CONFIGURATION

Figure 16 shows the overall block configuration of the TPS65520. Note that the figure is simplified for clarity and does not show accurate details for the IC wiring, pin layout, and internal component layout.

Figure 16. TPS65520 Block Diagram

FUNCTIONAL DESCRIPTION

COMMON SWITCHING REGULATOR FUNCTIONS

The following sections describe the common features for all switching regulators.

MAXIMUM DUTY CYCLE CONTROL

The maximum duty cycle control is applied to each channel to prevent a 100% on condition.
For $\mathrm{CH}-3, \mathrm{CH}-4, \mathrm{CH}-5, \mathrm{CH}-6$, and $\mathrm{CH}-7$, control registers are provided to adjust the maximum duty cycle settings that affects the channel characteristics substantially.
For CH-1 (step-up and step-up/down) and $\mathrm{CH}-8$, which have relatively large margins for maximum duty cycle control, settings are linked to $\mathrm{CH}-3$ to simplify circuits.
Table 3 lists settings for each channel:
Table 3. Settings for Each Channel

CHANNEL CONTROL	SETTINGS
CH-1 (step-up, step-up/down)	(Dmax3)
CH-1 (step-down)	Fixed at 95\%
CH-2	Fixed at 95\%
CH-3	Dmax3
CH-4	Dmax4
CH-5	Dmax5
CH-6	Dmax6
CH-7	Dmax7
CH-8	(Dmax3)

DEAD TIME CONTROL

The synchronous rectification channels are subjected to dead time control to prevent a flow-through current. The dead time for each channel is fixed by the EEPROM, as shown in Table 4:

Table 4.

Channel	CH-1	CH-2	CH-3	CH-7	CH-8
Dead time	$30[\mathrm{~ns}]$	$30[\mathrm{~ns}]$	$30[\mathrm{~ns}]$	$40[\mathrm{~ns}]$	$30[\mathrm{~ns}]$

CH-1

CH-1 is a step-up/down switching regulator for I/F 3-V power supplies, including those for the main processor, TMS320 ${ }^{\text {TM }}$ DSP family, and ASIC. Figure 17 shows its block diagram and the connection of external devices.
CH-1 operates by automatically switching between two modes: step-up to step-up/down mode and step-down mode. In Step-up to step-up/down mode, the channel shifts between step-up and step-up/down operations within the single mode.
Table 5 shows the rough relationship between the input voltage and $\mathrm{CH}-1$ mode. Note that the threshold values shown in the table are merely guidelines because the actual $\mathrm{CH}-1$ circuit finely adjusts the threshold voltages to maximize efficiency. Electrical Characteristics section for the voltage specifications of thresholds for switching between step-up to step-up/down mode and step-down mode (Vmod11 and Vmod12).
$\mathrm{CH}-1$ incorporates a voltage retention circuit that maintains the boosting power supply voltage when the channel is performing step-up only or step-down only operation.
$\mathrm{CH}-1$ supports the SCP and soft-start functions. The soft-start function is common to $\mathrm{CH}-1, \mathrm{CH}-4$, and $\mathrm{CH}-7$.

TPS65520
INSTRUMENTS
www.ti.com
Table 5.

VCC1 [V] (1)	CH-1 MODE	OPERATION
~ 2.3	Step-up to step-up/Down	Step-up
$2.3 \sim 3.78$	Step-up to step-up/down	Step-up/down
$3.5 \sim$	Step-down	-

(1) The voltages shown are for guideline purposes only.

Figure 17. CH-1 Block Diagram

CH-2

$\mathrm{CH}-2$ is a step-down switching regulator for core $1 . x-\mathrm{V}$ power supplies, including those for the main processor, TMS360 ${ }^{\text {TM }}$ DSP family, and ASIC. Figure 18 shows the block diagram and the connection of external devices.
$\mathrm{CH}-2$ supports the OVP, SCP and soft-start functions.

Figure 18. CH-2 Block Diagram

CH-3

$\mathrm{CH}-3$ is a step-up switching regulator for $5-\mathrm{V}$ power supplies, including those for the motor and audio IC. Figure 19 shows its block diagram and the connection of external devices.
CH-3 incorporates a PMOS switch, which prevents the input voltage from appearing on the output side when the channel is turned off. Without the switch, the parasitic diode in the internal PMOS carries the input voltage from coil (L3) and causes a current to flow into the load. This switch turns the VCH3S output pin on or off according to the settings in the $\mathrm{CH} 3-\mathrm{SW}$ control register.
The motor driver, as a load for $\mathrm{CH}-3$, is a switch itself. It does not have a current path so that it can be connected to the VCH3 pin. Other current loads, which may have current paths, are intended to be connected to the VCH3S pin.
When $\mathrm{CH}-3$ is activated, $\mathrm{CH}-8$ supplies power to $\mathrm{CH}-3$. To prevent overload on $\mathrm{CH}-8$ during startup, $\mathrm{CH}-3$ compares VCH8 and VCH3 and performs asynchronous rectification using a body diode until VCH3 exceeds VCH8.

CH-3 supports the OVP, SCP and soft-start functions.
When using the TPS65520, note the following:

- The following conditions must be satisfied to use a $5-\mathrm{V}$ ac adaptor:
- An appropriate voltage drop circuit is provided so that the input voltages for step-up $\mathrm{CH}-3$ are at least 0.3 V lower than the values specified with the control register.

TPS65520
INSTRUMENTS
www.ti.com

Figure 19. CH-3 Block Diagram

CH-4

CH-4 is a step-up switching regulator for $15-\mathrm{V}$ power supplies the LCD and CCD. Figure 20 shows its block diagram and the connection of external devices.

CH-4 is controlled by asynchronous rectification because it outputs a high voltage and does not benefit much from synchronous rectification. An external SBD is connected between the OUT4 and VCH4 pins as a rectification device for $\mathrm{CH}-4$.
$\mathrm{CH}-4$ supports the SCP and soft-start functions. The soft-start function is common to $\mathrm{CH}-1, \mathrm{CH}-4$, and $\mathrm{CH}-7$.

Figure 20. CH-4 Block Diagram

CH-5

CH-5 is an inversion switching regulator for -8-V power supplies for the LCD and CCD. Figure 21 shows its block diagram and the connection of external devices.
$\mathrm{CH}-5$ supports the SCP and soft-start functions.

Figure 21. CH-5 Block Diagram

CH-6

CH-6 is a step-up switching regulator for driving the power supply for the LCD backlight LED. CH-6 is controlled by monitoring the current flowing through the LED so that it operates as a constant-current driver. Figure 22 shows the block diagram and the connection of external devices.

The output current for $\mathrm{CH}-6$ can be finely adjusted using the REF6 pin. The output current becomes the value specified with the Vout6B control register when the potential of the REF6 pin equals that of the CBG pin. Note that the REF6 pin always expects a voltage to be applied. One example to ensure that an appropriate voltage is applied to the REF6 pin, is to connect it to a DAC or to the CBG pin through a resistor. The following formulas show the relationship between the voltage on the REF6 pin and that on the FB6 pin, which senses the output current:

$$
\begin{aligned}
& 20 \mathrm{~mA} \text { setting } \\
& 12 \mathrm{~mA} \text { setting } \\
& 8 \mathrm{~mA} \text { setting }
\end{aligned}
$$

$$
\begin{aligned}
V_{(\text {FB6 })} & =0.52 \times V_{(\text {REF6 })}-0.002 \\
V_{(F B 6)} & =0.52 \times V_{(\text {REF6 })}-0.177 \\
V_{(\text {FB6 })} & =0.52 \times V_{(\text {REF6 })}-0.265
\end{aligned}
$$

For example, when using 0.85 V of CBG as reference voltage and using 22Ω of recommended sense resistor, the caluculation is like this: $\mathrm{I}_{\mathrm{O}}=\mathrm{V}_{(\mathrm{FB6})} / \mathrm{R}_{\text {sense }}=(0.52 \times 0.85 \mathrm{~V}-0.002) / 22 \Omega=20 \mathrm{~mA}$.
$\mathrm{CH}-6$ supports the OVP, SCP and soft-start functions.
Without serial I/F control, CH-6 is controlled by the voltage of REF6. When the potential of REF6 is out of range between VREF6L and VREF6H, CH-6 is OFF in logical. Soft-start is reset.

TPS65520
www.ti.com

CH-7

According to the state of the MODE7 pin, CH-7 operates either as a step-up switching regulator for 5-V power supplies, including those for the motor and audio IC, or as a step-down switching regulator for I/F 3-V power supplies, including those for the main processor, TMS320 ${ }^{\text {TM }}$ DSP family, and ASIC. Table 6 shows the relationship between the state and mode:

Table 6.

MODE7	MODE
H	Step-up
L	Step-down

CH-7 requires different external component connections depending on the MODE7 pin state. Figure 23 shows its block diagram and the connection of external devices for step-up mode. Figure 24 shows its block diagram and the connection of external devices for step-down mode.
When using the TPS65520, note the following:

- The following conditions must be satisfied to use a $5-\mathrm{V}$ ac adaptor:
- An appropriate voltage drop circuit is provided so that the input voltages for step-up CH-7 (MODE7 = H) are at least 0.3 V lower than the values specified with the control register.

Figure 22. CH-6 Block Diagram

Figure 23. CH-7 Block Diagram (Step-up)

Figure 24. CH-7 Block Diagram (Step-down)
As shown in Figure 24, the step-down circuit configuration uses $\mathrm{CH}-3$ as an input power supply that ensures a voltage higher than the output voltage.
CH-7 has the VOS71 pin for controlling a separate PMOS switch, preventing the input voltage from appearing on the output side when the channel is turned off (MODE7 = H). Without the switch, the parasitic diode in the external PMOS carries the input voltage from coil (L7) which causes a current to flow into the load. This switch turns on or off according to the settings in the CH7-SW control register.

When $\mathrm{CH}-7$ is activated, $\mathrm{CH}-8$ supplies power to $\mathrm{CH}-7$. To prevent overload on $\mathrm{CH}-8$ during startup, $\mathrm{CH}-7$ compares VCH8 and VCH7 and performs asynchronous rectification using a body diode until VCH7 exceeds VCH8.
$\mathrm{CH}-7$ supports the OVP, SCP and soft-start functions. The soft-start function is common to $\mathrm{CH}-1, \mathrm{CH}-4$, and CH-7.

TPS65520
www.ti.com
When $\mathrm{CH}-7$ is not used, handle the pins as shown in Table 7. CH-7 enters step-down mode with its state equal to the stable output state, stopping operation.

Table 7.

PIN	HANDLING
ERR7	$0.1 \mu \mathrm{~F}$ - Connect a $0.1-\mu \mathrm{F}$ capacitor between the pin and ground
VCH7	VCH1 - Short-circuit to VCH 1
VOS71	Open
MODE7	Short-circuit to the ground
VCC7	Open
VOS72	Open
VOS73	Open

CH-8

CH-8 is a step-up switching regulator for LDO-1, LDO-2, LDO-3, LDO-4, and the internal power supplies of the TPS65520. $\mathrm{CH}-8$ is a $3.6-\mathrm{V}$ output regulator that outputs the input voltage (VCC8) when it is higher than 3.6 V .
CH-8 is turned on whenever the battery and/or ac adaptor is connected. It operates in skip mode while the PWR_ON pin is low, meaning that only the Sub-CPU real-time clock is operating. Once the PWR_ON pin is driven high, $\mathrm{CH}-8$ enters synchronous rectification mode, where it can supply the maximum load current.
CH-8 has a startup circuit that can start with a low input voltage because the startup of $\mathrm{CH}-8$ enables the entire DSC system to start up. It outputs 3.6 V from a minimum input voltage (VCC8) of 1.6 V .
See the $\mathrm{CH}-8$ operating sequence for details of starting $\mathrm{CH}-8$.
Figure 25 shows its block diagram and the connection of external devices.
$\mathrm{CH}-8$ supports the soft-start function.

Figure 25. CH-8 Block Diagram

LDO-1

LDO-1 takes the $\mathrm{CH}-8$ output voltage as an input and then outputs a voltage of 2.9 V . LDO-1 supports a current limit function, which reduces the output voltage when the current exceeds the specified value.

LDO-2

LDO-2 takes the CH-8 output voltage as an input and then outputs a voltage of 2.9 V . LDO-2 supports a current limit function, which reduces the output voltage when the current exceeds the specified value.

LDO-3

LDO-3 takes the CH-8 output voltage as an input and then outputs a voltage of 3.1 V . LDO-3 supports a current limit function, which reduces the output voltage when the current exceeds the specified value. LDO-3 can be turned on/off using the LDOSW3 control register.
A delay is inserted before LDO-3 is turned on so that the entire system can start up and be stable. LDO-3 cannot be turned on until approximately $30 \mu \mathrm{~s}$ elapse after the detection of READY. DELAY2 in Figure 29 represents this delay.

LDO-4

LDO-4 takes the CH-8 output voltage as an input and then outputs a voltage of 3.1 V . LDO-4 supports a current limit function, which reduces the output voltage when the current exceeds the specified value.

To prevent an inrush current during startup, LDO-4 has a delay so that it is not turned on simultaneously with LDO-3. LDO-4 cannot be turned on until 1.03 ms elapses after the detection of READY. This ensures that LDO-4 is not turned on until 1 ms elapses after the startup of LDO-3, which is turned on $30 \mu \mathrm{~s}$ after READY detection. DELAY3 in Figure 29 represents this delay.

LDO-4 is controlled using the LDO4_ON pin, as follows:

USB ON	ON/OFF
H	On
L	Off

LDO-5

LDO-5 takes the CH-4 output voltage as an input and then outputs a voltage of 8.5 V to 13.5 V for the LCD panel. LDO- 5 supports a current limit function, which reduces the output voltage when the current exceeds the specified value. LDO-5 can be turned on/off using the LDOSW5 control register. LDO-3 has a soft-start pin due to the power it drives.

PROTECTION FUNCTIONS

TSD

The thermal shutdown (TSD) function protects the TPS65520 from overheat.
If the TSD activates, the TPS65520 stops all channels other than $\mathrm{CH}-8 . \mathrm{CH}-8$ expects that the Sub-CPU drives PWR_ON low due to the stop of $\mathrm{CH}-1$ and $\mathrm{CH}-2$, causing the TPS65520 to enter skip mode.

SCP

The short-circuit protection (SCP) function protects the output of each switching regulator from short-circuiting. If the SCP activates, the TPS65520 stops all channels other than $\mathrm{CH}-8 . \mathrm{CH}-8$ expects that the Sub-CPU drives PWR_ON low due to the stop of $\mathrm{CH}-1$ and $\mathrm{CH}-2$, causing the TPS 65520 to enter skip mode.

Figure 26 shows the block diagram, the connection of external devices, and the per-channel short-circuit information from the control section for each switching regulator

TPS65520
INSTRUMENTS
www.ti.com

Figure 26. SCP Block Diagram

OVP

The overvoltage protection (OVP) function protects the $\mathrm{CH}-2, \mathrm{CH}-3, \mathrm{CH}-6$, and $\mathrm{CH}-7$ outputs from overvoltage.
If the OVP for $\mathrm{CH}-6$ activates, the TPS65520 internally latches the CH-6 OVP and disables $\mathrm{CH}-6$. The MOS switch between ICH6 and FB6 is designed to remain on if the OVP activates and discharges the VCH6 potential through a diode and sense resistor. To cancel the OVP for CH-6, drive PWR_ON low. The OVP for CH-6 affects the $\mathrm{CH}-6$ output only.
If the OVP for a channel other than CH-6 activates, the TPS65520 disables the power MOS-FET switching for that channel while still allowing the operation of the channel.

The OVP for channels other than CH-6 does not have a latch function so that the TPS65520 automatically restores normal operation once it exits from the overvoltage state.

OCP

The overcurrent protection (OCP) function protects the CH-6 output from overcurrent.
The OCP monitors the FB6 pin and, if its voltage exceeds 0.85 V , it determines that an overcurrent is flowing through CH-6. If the OCP activates, the TPS65520 disables power MOS-FET switching for CH-6 while still allowing the operation of $\mathrm{CH}-6$. In the same way as with the OVP, the MOS switch between ICH6 and FB6 is designed to remain on if the OCP activates and discharges the VCH6 potential through a diode and sense resistor.
The TPS65520 restarts switching once the voltage on the FB6 pin falls below 0.85 V . The OCP does not have a latch function so that the TPS65520 automatically restores normal operation once it exits from the overcurrent state.

SUB-CPU CONTROL (RESET)

The Sub-CPU function monitors the LDO-2 voltage to output XRESET, and it monitors VCH8 to output READY. Figure 27 shows a block diagram of this function.

Figure 27. Sub-CPU Control Block Diagram

OPERATION SEQUENCE

SOFT-START

The soft-start function of the TPS65520 controls the constant-current charging of the capacitors connected to the SS_SYNC, SS2, SS3, SS5, SS6, and SSLDO5 pins based on their pin voltages. When the voltage at a soft-start pin becomes approximately 0.85 V , its corresponding regulator output becomes 100%.

SOFT-START OK SIGNAL FOR CH-3

The soft-start circuit for $\mathrm{CH}-3$ has a logic output (internal signal) function that indicates the end of soft-start for sequence control.
Figure 28 shows the entire soft-start circuit. As shown, the voltage on the SS3 pin is used as a reference for the $\mathrm{CH}-3$ control section. The control section operates based on the SS3 voltage or the band gap buffer reference voltage for the CBG pin, whichever is lower.

In Figure 28, the comparator that outputs the SS3OK signal implements the logic output function for sequence control. The threshold value for the comparator is set to a value (VSS3OK) that is sufficiently higher than the band gap buffer reference voltage. It can be assumed that $\mathrm{CH}-3$ has been started when the comparator outputs the SS3OK signal, except when the $\mathrm{CH}-3$ load is heavy or short-circuited.

TPS65520

Figure 28. CH-3 Soft-Start Circuit

SEQUENCE CONTROL

Most operations of the TPS65520 are controlled by the Sub-CPU. When a valid power supply, ac adaptor, or battery is inserted, the TPS65520 automatically activates the Sub-CPU. If a Sub-CPU does not exist, the TPS65520 automatically activates the regulators and LDOs using the default values for control registers.

Figure 29 shows the connection of enable signals for the TPS65520. Figure 30 shows a timing chart. In Figure 30, ENREGs, EN3S, EN6, EN7, ENLDO3, and ENLDO5 represent the internal enable signals shown in Figure 29.

The following describes the relationship among enable signals in

1. Upon power-up, the TPS65520 starts the wake-up circuit for $\mathrm{CH}-8$ and activates the VCH8 potential. In the figure, only $\mathrm{CH}-8$ is operating.
2. Once VCH8 rises, the READY detection circuit is activated and detects READY.
3. Upon the detection of READY, $\mathrm{CH}-8$ exits from the wake-up state and enters skip mode. At this time, the blocks in the upper half of the figure can operate. They are turned on if the enable logic signal is valid.
4. In skip mode after wake-up, CH-8 enters PWM mode when PWR_ON is driven high.
a. PWR_ON has a delay of approximately 60μ s to ensure that the OSC starts completely before channels start operating. DELAYO in the figure represents this delay.
b. A delay of approximately 1 ms is inserted to ensure that $\mathrm{CH}-8$ enters PWM mode completely before channels start operating. DELAY1 in the figure represents this delay.
5. Once $\mathrm{CH}-8$ enters PWM mode, each switching regulator channel starts operating. $\mathrm{CH}-3$ starts first. The SS3OK signal from $\mathrm{CH}-3$ causes other channels to start.
In Figure 30, the TPS65520 performs the following operation, described along the time axis in the figure:
6. In response to $\mathrm{CH}-8$ starting up, the internal logic reset signal is generated th the same time as READY being canceled, thus resetting the maintained status values.
7. On the rising edge of PWR_ON, CH-8 exits from skip mode and enters PWM mode. The DELAYO and DELAY1 blocks, shown in the upper part of Figure 29, insert delays to ensure that the mode transition is over before channels start operating, resulting in a total delay of 544 PWM pulses to complete this process.
8. Upon the mode transition of $\mathrm{CH}-8, \mathrm{CH}-3$ starts using the soft-start procedure.
9. The SS3OK signal output during the soft-start of $\mathrm{CH}-3$ causes all other blocks to be enabled at one time, after which normal operation starts.
10. On the falling edge of SYDDON, all channels are disabled at one time.

SLVS557A-MARCH 2005-REVISED JUNE 2005
The shaded portions of Figure 30 represent the on/off control applied by the Sub-CPU (if used) through the serial interface. If a Sub-CPU is used, control registers are written between the rising edges of XRESET and PWR_ON. Any channels that have been turned off do not start until the Sub-CPU turns them on again. If the Sub-CPU specifies off for a channel that has been active from the startup, the channel goes off from that instant.
If a Sub-CPU is not used, the timing waveforms do not have the shaded portions. All channels are turned on with default values set in the control registers.

TPS65520
INSTRUMENTS

Figure 29. Enable Signal Connections
The shaded portions apply only when a Sub-CPU is used.

Figure 30. Operation Sequence Chart

TPS65520

SERIAL INTERFACE, CONTROL REGISTERS, AND EEPROMS

The logic control section of the TPS65520 consists of the serial interface, control registers, and EEPROMs. See the EEPROM MAP section for details of control registers, EEPROMs, and the bit assignment for reading the protection states.
The logic section operates in either of two operating modes: para mode or test mode. Each mode is described in this section.
Figure 34 shows the overall block configuration. In the figure, the 48-bit Shift Register block accepts D[47] (MSB) last in the time sequence. Figure 31] shows the configuration of the parity judgment circuit.

Figure 31. Configuration for Parity Bit Calculation

NORMAL MODE

Driving the TEST input signal low selects para mode. In this mode, the TPS65520 allows access to the control registers.
Figure 32 shows the shift register configuration from input DIN to output DOUT. Figure 33 shows a single access cycle. As shown in Figure 33, once 48 bits have been input to the shift register, the TPS65520 determines the parity according to the output from DOUT and latches the input data using the LD input signal.
In para mode, DOUT directly reflects the output from the parity check block, which is a random logic circuit. Note, therefore, that any circuit that responds to the edge of DOUT may cause malfunctioning connections.

In para mode, the EEPROMs send the written data to each internal block.

Figure 32. Shift Register Configuration in Para Mode

Figure 33. Serial Interface Timing Chart in Para Mode

TPS65520
INSTRUMENTS

Figure 34. Serial Interface Block Diagram

TEST MODE

Driving the TEST input signal high selects test mode. In this mode, the TPS65520 allows access to all logic functions, including EEPROMs. The following test operations are supported:

- Test A: In the same way as Para mode, the TPS65520 allows access to the control registers. Unlike the para mode, no parity check is performed. The parity judgment result is internally fixed to OK and the contents of the shift register are sent to DOUT.
- Test 0 : The contents of the control registers are copied to the shift register in synchronization with the TLD input signal. After copying, a CLK input causes the control register value to appear at DOUT.
- Test 1: Prepare (latch) the data to be written to the user setup EEPROM. When Test 6 is performed subsequently, the latched data is written to the EEPROM. After the data is latched, any internal blocks that reference values from EEPROM will see the latched data, instead of the data stored in EEPROM.
- Test 2: The contents of the user setup EEPROM are copied to the shift register in synchronization with the TLD input signal. After copying, a CLK input causes the value from the user setup EEPROM to appear at DOUT.
- Test 3: The states of the protection functions are copied to the shift register in synchronization with the TLD input signal. After copying, a CLK input causes the protection state value to appear at DOUT.
- Test 4: Prepare (latch) the data to be written to the trimming EEPROM. When Test 7 is performed subsequently, the latched data is written to the EEPROM. After the data is latched, any internal blocks that reference values from EEPROM will see the latched data, instead of the data stored in EEPROM.
- Test 5: The contents of the trimming EEPROM are copied to the shift register in synchronization with the TLD input signal. After copying, a CLK input causes the value from the trimming EEPROM to appear at DOUT.
- Test 6: Data is written to the user setup EEPROM.
- Test 7: Data is written to the trimming EEPROM.
- Test Mode Switching: Test A does not require a transition to a special mode. Its operation is the same as in normal mode, except the difference in the DOUT output.
- Tests 0 to 7 require explicit mode switching using the Decoder shown in Figure 34. The Decoder uses the three high-order bits in the shift register to change the mode. Table 8 shows the bit assignment.

Table 8. Bit Assignments

D[47]	D[46]	D[45]	MODE
${ }^{*}$	${ }^{*}$	${ }^{*}$	Test A
0	0	0	Test 0
0	0	1	Test 1
0	1	0	Test 2
0	1	1	Test 3
1	0	0	Test 4
1	0	1	Test 5
1	1	0	Test 6
1	1	1	Test 7

- Information Read Mode: In Test mode, Tests 0, 2, 3, and 5 have a common function: copy some TPS65520 internal logic values to the shift register and read them from DOUT. Since their operations are similar, this section describes them together.

Figure 35 to Figure 38 shows the shift register configuration from input DIN and output DOUT as well as changes in the shift register caused by a TLD input pulse.

TPS65520

Figure 35. Shift Register Configuration and Changes for Test 0

Figure 36. Shift Register Configuration and Changes for Test 2

Figure 37. Shift Register Configuration and Changes for Test 3

Figure 38. Shift Register Configuration and Changes for Test 5
Figure 39 takes Test 0 as an example and shows a single access cycle. As shown in the figure, a TLD input from DIN, following the input of the data 000 (bin) to select Test 0 , causes the contents of the control registers to be copied to the shift register. Subsequent 48-bit CLK inputs enables the user to read data sequentially from DOUT.
The values read in Test 3 are cleared once PWR_ON is pulled high. Data should, therefore, be read while PWR_ON is low after protection activates.

Figure 39. Serial Interface Timing Chart in Test Mode: Information Read
EEPROM Data Input Mode: In test mode, Tests 1 and 4 have a common function: internally latch the data to be written to an EEPROM in the TPS65520 temporarily. Since their operations are similar, this section describes them together.

Figure 40 and Figure 41 show the shift register configuration from input DIN and output DOUT.

Figure 40. Shift Register Configuration for Test 1

Figure 41. Shift Register Configuration for Test 4

Figure 42 takes test 1 as an example and shows a single access cycle. As shown in the figure, a TLD input from DIN, following the input of the data to be written to the EEPROM and then 001 (bin) to select Test 1, causes the TPS65520 to internally latch the data to be written temporarily. If data is latched at least once by TLD, any internal blocks that reference values from EEPROM will see the latched data, instead of the data stored in EEPROM, until TEST is driven low.

Figure 42. Serial Interface Timing Chart in Test Mode: EEPROM Data Input
EEPROM Data Write Mode: In test mode, tests 6 and 7 have a common function: write data to an EEPROM in the TPS65520. Since their operations are similar, this section describes them together.
Figure 43 takes test 6 as an example and shows a single access cycle. As shown in the figure, the EEPROM write voltage, ROMWR, is applied after the data 110 (bin) is input from DIN to select Test 6. A TLD input following the rise of ROMSW triggers a write to the EEPROM. The duration of the write depends on the TLD pulse width. Once the write is finished, stop applying ROMWR.
For Test 7, write protection is applied to the write timing signal generated using TLD.

LD

DIN

CLK

TEST

TLD

T110

ROMWR

WD1[14:0]

ED1[14:0]

\square

Figure 43. Serial Interface Timing Chart in Test Mode: EEPROM Data Write

Table 9. EVM-XX LIST OF MATERIALS

NAME	VALUE	DEVICE TYPE	EXAMPLE PART NAME
PM71	(CH-7 PMOS $)$	PMOS	SANYO MCH3306/CPH5802
PM72	$(\mathrm{CH}-7$ Load SW)	PMOS	SANYO MCH3306/CPH5802
NM71	$(\mathrm{CH}-7 \mathrm{NMOS})$	NMOS	SANYO MCH3406/MCH5801
D4	$(\mathrm{CH}-4)$	SBD	SANYO SBS004M
D5	$(\mathrm{CH}-5)$	SBD	SANYO SBS004M
D6	$(\mathrm{CH}-6)$	SBD	SANYO SBS004M
LED6	$(\mathrm{CH}-6)$	White LED	NICHIA NSCW100-T38,NSCW100-T39
ROSC	$150 \mathrm{k} \Omega$	Resistor	
RSNS6	$22 \mathrm{k} \Omega$	Resistor	
CERR1	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C0603[B, 6.3V], Murata GRP03[0603, B, 6.3]
CERR2	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C0603[B, 6.3V], Murata GRP03[0603, B, 6.3]
CERR3	$0.022 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
CERR4	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C0603[B, 6.3V], Murata GRP03[0603, B, 6.3]
CERR5	$0.022 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
CERR6	$1 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
CERR7	$0.1 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
CERR8	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]

TPS65520
www.ti.com
Table 9. EVM-XX LIST OF MATERIALS (continued)

NAME	VALUE	DEVICE TYPE	EXAMPLE PART NAME
CCH1	$22 \mu \mathrm{~F}$	Ceramic capacitor	TDK C3225[B, 6.3V]
CCH 2	$10 \mu \mathrm{~F}$	Ceramic capacitor	TDK C2012[B, 6.3V]
CCH3	$22 \mu \mathrm{~F}$	Ceramic capacitor	TDK C3225[22 $\mu \mathrm{F}, \mathrm{B}, 6.3 \mathrm{~V}$]
CCH 4	$10 \mu \mathrm{~F}$	Ceramic capacitor	TDK C3225[10 $\mu \mathrm{F}, \mathrm{B}, 25 \mathrm{~V}]$
CCH5	$10 \mu \mathrm{~F}$	Ceramic capacitor	(unknown)[10 $\mu \mathrm{F}, \mathrm{B}, 10 \mathrm{~V}$]
CCH6	$10 \mu \mathrm{~F}$	Ceramic capacitor	TDK C3225[10 $\mu \mathrm{F}, \mathrm{B}, 25 \mathrm{~V}]$
CCH7	$22 \mu \mathrm{~F}$	Ceramic capacitor	TDK C3225[22 $\mu \mathrm{F}, \mathrm{B}, 6.3 \mathrm{~V}$]
CCH8	$10 \mu \mathrm{~F}$	Ceramic capacitor	TDK C2012[B, 6.3V]
CLDO1	$4.7 \mu \mathrm{~F}$	Ceramic capacitor	TDK C2012[B, 6.3V], Murata GRM21[2012, B, 6.3V]
CLDO2	$22 \mu \mathrm{~F}$	Tantalium capacitor	
CLDO3	$4.7 \mu \mathrm{~F}$	Ceramic capacitor	TDK C2012[B, 6.3V], Murata GRM21[2012, B, 6.3V]
CLDO4	$10 \mu \mathrm{~F}$	Ceramic capacitor	TDK C2012[B, 6.3V]
CLDO5	$22 \mu \mathrm{~F}$		
SS_SYNC		Ceramic capacitor	
SS2		Ceramic capacitor	
SS3		Ceramic capacitor	
SS5		Ceramic capacitor	
SS6		Ceramic capacitor	
SSLDO5		Ceramic capacitor	
BOOT11	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
BOOT12	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
BOOT2	$0.01 \mu \mathrm{~F}$	Ceramic capacitor	TDK C1005[B, 25V], Murata GRP15[1005, B, 16V]
CSCP		Ceramic capacitor	
CBG	$1 \mu \mathrm{~F}$	Ceramic capacitor	TDK C0603[B, 6.3V], Murata GRP03[0603, B, 6.3]
CREF	$0.1 \mu \mathrm{~F}$	Ceramic capacitor	TDK C0603[B, 6.3V], Murata GRP03[0603, B, 6.3]
L1	$10 \mu \mathrm{H}$		TDK RLF5018
L2	$10 \mu \mathrm{H}$		TDK RLF5018
L3	$10 \mu \mathrm{H}$		Sumida CDRH6D28
L4	$4.7 \mu \mathrm{H}$		TDK RLF5018
L5	$33 \mu \mathrm{H}$		DK RLF5018
L6	$4.7 \mu \mathrm{H}$		TDK RLF5018
L7	$10 \mu \mathrm{H}$		Sumida CDRH6D28 L8
L8	$10 \mu \mathrm{H}$		TDK RLF5018

TYPICAL CHARACTERISTICS

Figure 44.

Figure 46.

Figure 45.
CH-3 Efficiency vs Load Current

Figure 47.

TPS65520
www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 48.
CH-5 Efficiency vs Load Current (Input: UNREG)

Figure 50.

Figure 49.
CH-6 Efficiency vs REF6 (Output: 8 mA , LED2 on)

Figure 51.

TYPICAL CHARACTERISTICS (continued)

Figure 52.

Figure 54.

CH-6 Efficiency vs REF6 (Output: 12 mA , LED2 on)

Figure 53.
CH-6 Efficiency vs REF6 (Output: 20 mA , LED2 on)

Figure 55.

TPS65520
www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 56.

Figure 58.

CH-7 Efficiency vs Load Current
(MODE7 = H)

Figure 57.
CH-7 Efficiency vs Load Current (Input: UNREG, MODE7 = L)

Figure 59.

TYPICAL CHARACTERISTICS (continued)

Figure 60.

Figure 62.

Figure 61.
CH-2 Output Voltage vs Load Current ($\pm 2 \%$ Axis)

Figure 63.

TPS65520
INSTRUMENTS
www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 64.

Figure 66.

Figure 65.

CH-5 Output Voltage vs Load Current (Input: UNREG, $\mathbf{\pm 2 \%}$ Axis)

Figure 67.

TYPICAL CHARACTERISTICS (continued)

Figure 68.

Figure 70.

Figure 69.

CH-7 Output Voltage vs Load Current (Input: UNREG, MODE7 = L, $\pm 2 \%$ Axis)

Figure 71.

TPS65520
INSTRUMENTS
www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 72.
CH-8 Output Voltage vs Load Current (Skip Mode, $\pm 5 \%$ Axis)

Figure 74.

CH-8 Output Voltage vs Load Current (PWM Mode, 3.5 to 4.3 V Axis)

Figure 73.
CH-1 Peak Current Waveform
(Step-up, Input: 1.8 V , Output: 400 mA)

Figure 75.

TYPICAL CHARACTERISTICS (continued)

Figure 76.

Figure 78.

CH-3 Peak Current Waveform (Input: 1.8 V , Output: 400 mA)

Figure 77.

CH-5 Peak Current Waveform (Input: VCH3, Output: 50 mA)

0.5 [us/div]

Figure 79.

TYPICAL CHARACTERISTICS (continued)

Figure 80.

CH-7 Peak Current Waveform (MODE7 = L, Input: VCH3, Output: 150 mA)

0.5 [us/div]

Figure 82.

Figure 81.

CH-8 Peak Current Waveform (Input: 1.8 V , Output: 200 mA)

0.5 [us/div]

Figure 83.

Instruments

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Samples (Requires Login)
TPS65520ZVDR	OBSOLETE	NFBGA	ZVD	113		TBD	Call TI	Call TI	

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
 TMS320 is a trademark of Texas Instruments.

[^1]: (1) Not production tested. Assured by design.

