The TCD1103GFG is a high sensitive and low dark current 1500-elements linear image sensor. This device consists of sensitivity CCD chip. The TCD1103GFG has electronic shutter function (ICG). Electronic shutter function can keep always output voltage constant that vary with intensity of lights.

Features
- Number of Image Sensing Elements: 1500 elements
- Image Sensing Element Size: 5.5 μm × 64 μm
- Photo Sensing Region: High sensitive and low dark current pn photodiode
- Internal Circuit: CCD Drive Circuit
- Power Supply: Only 3.0V Drive (MIN.)
- Function: Electronics Shutter, Sample and Hold Circuit
- Package: 16 pin GLCC Package

Maximum Ratings (Note1)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master clock pulse voltage</td>
<td>(V_{\phi \mu})</td>
<td>-0.3~7.0</td>
<td>V</td>
</tr>
<tr>
<td>Shift pulse voltage</td>
<td>(V_{SH})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICG pulse voltage</td>
<td>(V_{ICG})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital power supply</td>
<td>(V_{DD})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Power Supply</td>
<td>(V_{AD})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_{opr})</td>
<td>-25~60</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td>-40~85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1: All voltage are with respect to SS terminals (ground).
Block Diagram

Pin Names

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Name</th>
<th>Pin No.</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OS</td>
<td>Output signal</td>
<td>16</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>Ground</td>
<td>15</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>3</td>
<td>VAD</td>
<td>Power (Analog)</td>
<td>14</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Power (Digital)</td>
<td>13</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>5</td>
<td>ϕM</td>
<td>Master clock</td>
<td>12</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>6</td>
<td>ICG</td>
<td>Integration clear gate</td>
<td>11</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>7</td>
<td>SH</td>
<td>Shift gate</td>
<td>10</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>Non Connection</td>
<td>9</td>
<td>NC</td>
<td>Non Connection</td>
</tr>
</tbody>
</table>
Optical/Electrical Characteristics

(Ta = 25°C, Vφ = 3.3V (pulse), fφ = 2.0 MHz (Data rate=1MHz), Tint(Integration time) = 10ms, Load resistance = 100 kΩ, VAD = VDD = 3.3V, Light source = Daylight fluorescent lamp)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>R</td>
<td>55</td>
<td>79</td>
<td>—</td>
<td>V/lx·s</td>
<td>(Note2)</td>
</tr>
<tr>
<td>Photo response non uniformity</td>
<td>PRNU</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>%</td>
<td>(Note3)</td>
</tr>
<tr>
<td>Register imbalance</td>
<td>R I</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>%</td>
<td>(Note4)</td>
</tr>
<tr>
<td>Saturation output voltage</td>
<td>V SAT</td>
<td>450</td>
<td>900</td>
<td>—</td>
<td>mV</td>
<td>(Note5)</td>
</tr>
<tr>
<td>Saturation exposure</td>
<td>SE</td>
<td>—</td>
<td>0.008</td>
<td>—</td>
<td>lx·s</td>
<td>(Note6)</td>
</tr>
<tr>
<td>Dark signal voltage</td>
<td>V MDK</td>
<td>—</td>
<td>3</td>
<td>15</td>
<td>mV</td>
<td>(Note7)</td>
</tr>
<tr>
<td>DC power dissipation</td>
<td>PD</td>
<td>—</td>
<td>16</td>
<td>48</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Total transfer efficiency</td>
<td>TTE</td>
<td>92</td>
<td>95</td>
<td>—</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>Z O</td>
<td>—</td>
<td>0.5</td>
<td>1.0</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>DC output voltage</td>
<td>V OS</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>V</td>
<td>(Note8)</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>DR</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>—</td>
<td>(Note9)</td>
</tr>
</tbody>
</table>

Note 2: Sensitivity is defined for signal outputs when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

Note 3: PRNU is defined for a single chip by the expressions below when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

\[
PRNU = \frac{\Delta X}{X} \times 100(\%)
\]

Where \(\bar{X} \) is average of total signal output and \(\Delta X \) is the maximum deviation from \(\bar{X} \). The amount of incident light is \(1/2 \cdot SE \).

Note 4: Register imbalance is defined as follows.

\[
RI = \frac{\Delta Y - \Delta Z}{X} \times 100(\%)
\]

Where \(\bar{X} \) is average of total signal output.

\(\Delta Y \) : | average of odd signal output – average of even signal output |

\(\Delta Z \) : | average of odd dummy signal – average of even dummy signal |

Note 5: \(V_{SAT} \) is defined as minimum saturation output of all effective pixels.

Note 6: Definition of SE

\[
SE = \frac{V_{SAT}}{R} \text{ (lx·s)}
\]

Note 7: \(V_{MDK} \) is defined as maximum dark signal voltage of all effective pixels.
Note 8: DC signal output voltage is defined as follows.

Note 9: Definition of DR

\[DR = \frac{V_{SAT}}{V_{MDK}} \]

\(V_{MDK} \) is proportional to \(T_{int} \) (Integration time), so, the shorter \(T_{int} \) condition makes wider DR.
Operating Condition

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
<th>(Note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master clock pulse voltage</td>
<td>V_{\phi M}</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
<td>(Note 10)</td>
</tr>
<tr>
<td>"H" Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"L" Level</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Shift pulse voltage</td>
<td>V_{SH}</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
<td>(Note 10)</td>
</tr>
<tr>
<td>"H" Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"L" Level</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ICG pulse voltage</td>
<td>V_{ICG}</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
<td>(Note 10)</td>
</tr>
<tr>
<td>"H" Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"L" Level</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power supply voltage (Digital)</td>
<td>V_{DD}</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
<td>(Note 11)</td>
</tr>
<tr>
<td>Power supply voltage (Analog)</td>
<td>V_{AD}</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
<td>(Note 11)</td>
</tr>
</tbody>
</table>

Note 10: "H" level of maximum pulse voltage = VDD ≥ VDD-0.5V = “H” level of minimum pulse voltage.

Note 11: VAD = VDD

Clock Characteristics (Ta = 25°C) (3.0V ≤ V_{AD} = VDD ≤ 4.0V)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master clock frequency</td>
<td>f_{\phi M}</td>
<td>0.4</td>
<td>2</td>
<td>4</td>
<td>MHz</td>
</tr>
<tr>
<td>Data Rate</td>
<td>f_{DATA}</td>
<td>0.2</td>
<td>1</td>
<td>2</td>
<td>MHz</td>
</tr>
<tr>
<td>Master clock capacitance</td>
<td>C_{\phi M}</td>
<td>---</td>
<td>10</td>
<td>---</td>
<td>pF</td>
</tr>
<tr>
<td>ICG Pulse capacitance</td>
<td>C_{ICG}</td>
<td>---</td>
<td>35</td>
<td>---</td>
<td>pF</td>
</tr>
<tr>
<td>Shift pulse capacitance</td>
<td>C_{SH}</td>
<td>---</td>
<td>150</td>
<td>---</td>
<td>pF</td>
</tr>
</tbody>
</table>

Optical/Electrical characteristics of page 3 are defined under the condition of 1MHz data rate.
Timing Chart 1

TINT (Integration Time)

SH

ICG

ϕM

D31, D30, D29, D28, D27, D26, D25, D24, D23, D22, D21, D20, D19, D18, D17, D16, D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0

OS

(Output at S/H ON)

1 LINE READOUT PERIOD 1546 elements

DUMMY OUTPUTS (32 elements)
LIGHT SHIELD OUTPUTS (13 elements)
SIGNAL OUTPUTS (1500 elements)
DUMMY OUTPUTS (14 elements)

DUMMY OUTPUTS (3 elements)

DUMMY OUTPUTS (16 elements)
LIGHT SHIELD OUTPUTS (13 elements)
SIGNAL OUTPUTS (1500 elements)
DUMMY OUTPUTS (14 elements)

1 LINE READOUT PERIOD 1546 elements
Timing Chart 2 (Use electric shutter function)

Read Out Time

TINT (Integration Time)

SH

ICG

φM

D45
D44
D43
D42
D41
D40
D37
D36
D35
D34
D33
D32
D31
D30
D29
D28
D27
D26
D25
D19
D18
D17
D16
D15
D14
D13
D3
D2
D1
D0

1 LINE READOUT PERIOD 1546 elements

DUMMY OUTPUTS (32 elements)

LIGHT SHIELD OUTPUTS (13 elements)

SIGNAL OUTPUTS (1500 elements)

DUMMY OUTPUTS 14 elements)

DUMMY OUTPUTS (32 elements)

DUMMY OUTPUTS (16 elements)

SIGNAL OUTPUTS (1500 elements)

DUMMY OUTPUTS (32 elements)
Timing Requirements

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICG pulse delay</td>
<td>t1</td>
<td>1000</td>
<td>5000</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Pulse timing of ICG and SH</td>
<td>t2</td>
<td>100</td>
<td>500</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>Shift pulse width</td>
<td>t3</td>
<td>1000</td>
<td>—</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>Pulse timing of ICG and φ M</td>
<td>t4</td>
<td>0</td>
<td>20</td>
<td>*</td>
<td>ns</td>
</tr>
</tbody>
</table>

* : To keep φ M “High” level when ICG switch from “Low” to “High” level.

Use electronic shutter

Pulse timing of SH and ICG

** : Each SH high pulse have to keep always the same value with “ t3 “. \(t3 \geq 1000 \)ns (Min.)

*** : SH pulse cycle have to keep the same cycle (SH cycle period \(\geq 10 \mu \)s除外 TINT period.

**** : TINT \(\geq 10 \mu \)s (Min.)

Note : The illumination of light source must be used with less that 1000 times based on 10ms TINT.
Typical performance curves
Typical performance curves

![Graph showing DC output voltage vs. power supply voltage](image-url)

- DC OUTPUT VOLTAGE - POWER SUPPLY VOLTAGE
- POWER SUPPLY VAD,VDD (V)
- DC OUTPUT VOLTAGE VOS (V)
Typical Drive Circuit

IC1 : TC74AC04P
R1 : 150 Ω
R2 : 2200 Ω

3.3V

10μF/25V

R1

R2

VDD SS OS VAD

NC NC NC NC NC NC NC NC NC

TCD1103GFG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.1 μF/25 V

SH IC

3.3V
Caution

1. Electrostatic Breakdown
 Store in shorting clip or in conductive foam to avoid electrostatic breakdown. CCD Image Sensor is protected against static electricity, but inferior puncture mode device due to static electricity is sometimes detected. In handing the device, it is necessary to execute the following static electricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.
 a. Prevent the generation of static electricity due to friction by making the work with bare hands or by putting on cotton gloves and non-charging working clothes.
 b. Discharge the static electricity by providing earth plate or earth wire on the floor, door or stand of the work room.
 c. Ground the tools such as soldering iron, cutting pliers, tweezers or pincer.
 It is not necessarily required to execute all precaution items for static electricity.
 It is all right to mitigate the precautions by confirming that the trouble rate within the prescribed range.
 d. When the product is handed, please use tweezers to avoid the damage of CCD image sensor.
 Recommended tweezers is P-815 (HOZAN) or equivalent.
 e. Ionized air is recommended for discharge when handling CCD image sensors.

2. Incident Light
 CCD sensor is sensitive to infrared light. Note that infrared light component degrades resolution and PRNU of CCD sensor.

3. Ultrasonic Cleaning
 Ultrasonic cleaning should not be used with such hermetically-sealed ceramic package as CCD because the bonding wires can become disconnected due to resonance during the cleaning process.

4. Window Glass Protective Tape
 The window glass protective tape is manufactured from materials in which static charges tend to build up. When removing the tape from CCD sensor after solder mounting, install an ionizer to prevent the tape from being charged with static electricity.
 When the tape is removed, adhesives will remain in the glass surface. Since these adhesives appear as black or white flaws on the image, please wipe the window glass surface with the cloth into which the organic solvent was infiltrated. Then please attach CCD to a product.
 Do not reuse the tape.
5. Cleaning Method of the Window Glass Surface

Wiping Cloth
a. Use soft cloth with a fine mesh.
b. The wiping cloth must not cause dust from itself.
c. Use a clean wiping cloth necessarily.
 Recommended wiping cloth is as follow:
 · MK cloth (Toray Industries)
Cleaner
 Recommended cleaning liquid of window glass are as follow:
 · EE-3310 (Olympus)
When using solvents, such as alcohol, unavoidably, it is cautious of the next.
a. A clean thing with quick-drying.
b. After liquid dries, there needs to be no residual substance.
c. A thing safe for a human body.
 And, please observe the use term of a solvent and use the storage container of a solvent to be clean.
 Be cautious of fire enough.
Way of Cleaning
 First, the surface of window glass is wiped with the wiping cloth into which the cleaner was infiltrated.
 Please wipe down the surface of window glass at least 2 times or more.
 Next, the surface of window glass wipes with the dry wiping cloth. Please wipe down the surface of
 window glass at least 3 times or more.
 Finally, blow cleaning is performed by dry N2 filtered.
 If operator wipes the surface of the window glass with the above-mentioned process and dirt still remains,
 Toshiba recommends repeating the clean operation from the beginning.
 Be cautious of the next thing.
a. Don't infiltrate the cleaner too much.
b. A wiping portion is performed into the optical range and don't touch the edge of window glass.
c. Be sure to wipe in a long direction and the same direction.
d. A wiping cloth always uses an unused portion.
The standard reflow condition for GLCC (Surface Mount device, Pb-Free)

1. Storage precautions

1) Do not drop or toss device packaging. The laminated aluminum material in it can be rendered ineffective by rough handling.
2) Ensure packaging materials are stored in a 30°C 90%RH environment and do not store at the low temperature to prevent dew condensation. Use devices within 12 months; do not store them longer than that.
3) If the 30% humidity indicator is pink when the packaging is opened, bake the devices at 125°C for 24 hours to remove any moisture present. Devices should also be baked, whether still packed or not, if the effective usage period of the indicator has expires.
4) Perform destructive prevention of the devices by static electricity in case of implementation of baking processing.
5) After opening the moisture-proof packing, store the products in the environment under 30°C, and below 60%RH, and use them within 5 days.
 If the effective usage period passed after opening the moisture-proof packing, baking should be done before use at 125°C for 24 hours.
6) CCD surface mount products may have a haze on the inside of glass, so be careful about falling.
 Even if the haze arises inside of glass, when it is not on the pixel era, there is no problem in quality.

2. Mounting conditions using reflow

1) Mounting method :
 (a) Hot air reflows.
 (b) Infrared ray reflow
2) Preheating condition : 150~180°C, 60~120 seconds
3) Reflow condition :
 (a) maximum 240°C
 (b) over 230°C, within 30~50 seconds
4) Heating times : only 1 time
5) Caution : This product does not support a Re-flow with Pb-Sn solder. Pb-free solder should be used to Re-flow with Fig1’s profile.

* The temperature profile is specified in terms of the temperature of top surface of the device.
This temperature profile shows maximum guaranteed device temperature. Please set up the optimum temperature profile conditions within the Fig.1 profile.

Fig.1 Example of recommended temperature profile for reflows

In addition, in case of the repair work accompanied by IC removal, since the degree of parallel may be spoiled with the left solder, please do not carry out.
3. Mounting

1) In the case of solder mounting, the devices should be mounted with the window glass protective tape in order to avoid dust or dirt included in reflow machine.

2) The window glass protective tape is manufactured from materials in which static charges tend to build up. When removing the tape from CCD sensor after solder mounting, install an ionizer to prevent the tape from being charged with static electricity.

3) When the tape is removed, adhesives will remain in the glass surface. Since these adhesives appear as black or white flaws on the image, please wipe the window glass surface with the cloth into which the organic solvent was infiltrated. Then please attach CCD to a product.

4) Do not reuse the window glass protective tape.

5) The parts of glass seal area have possibility to be became clouded by reflow process, however, there is no problem in quality.

4. Foot Pattern on the PCB

We recommend Fig 2’s foot pattern for your PCB (Printed circuit Board).

5. Mask for Solder Paste Application

We recommend metal mask that have the following thickness.

- a thickness of 0.1mm.

And, we recommend that the size of the pattern of the metal mask is 100% of recommended foot pattern at fig. 2.
Package Dimensions

Note 1: Sensor pixel (S1) to edge of package.
Note 2: Top of chip to bottom of package.
Note 3: Chip center to edge of package.
The information contained herein is subject to change without notice.

Toshiba is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Toshiba products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk.

The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Toshiba for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Toshiba or others.

Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

The products described in this document are subject to foreign exchange and foreign trade control laws.