N-Channel JFETs

Vishay Siliconix

2N/PN/SST4391 Series

N-Channel JFETs

2N4391 PN4391 SST4391
2N4392 PN4392 SST4392
2N4393 PN4393 SST4393

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VGS(off) (V)</th>
<th>rDS(on) Max (Ω)</th>
<th>ID(off) Typ (pA)</th>
<th>tON Typ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N/PN/SST4391</td>
<td>–4 to –10</td>
<td>30</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2N/PN/SST4392</td>
<td>–2 to –5</td>
<td>60</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2N/PN/SST4393</td>
<td>–0.5 to –3</td>
<td>100</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

FEATURES

- Low On-Resistance: 4391<30 Ω
- Fast Switching—tON: 4 ns
- High Off-Isolation: ID(off) with Low Leakage
- Low Capacitance: <3.5 pF
- Low Insertion Loss

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible “Off-Error,” Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally “On” Switches
- Current Limiters
- Commutators

DESCRIPTION

The 2N/PN/SST4391 series features many of the superior characteristics of JFETs which make it a good choice for demanding analog switching applications and for specialized amplifier circuits.

The 2N series hermetically-sealed TO-206AA (TO-18) can is available with processing per MIL-S-19500 (see Military Information). Both the PN, TO-226AA (TO-92), and SST, TO-236 (SOT-23), series are available in tape-and-reel for automated assembly (see Packaging Information). For similar dual products, see the 2N5564/5565/5566 data sheet.

For applications information see AN104 and AN106.
2N/PN/SST4391 Series
Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage:
(2N/PN Prefixes) –40 V
(SST Prefix) –35 V

Gate Current .. 50 mA

Lead Temperature .. 300 °C

Storage Temperature: (2N Prefix) –65 to 200 °C
(PN/SST Prefixes) –55 to 150 °C

Gate-Drain, Gate-Source Voltage:
- (2N/PN Prefixes) –40 V
- (SST Prefix) –35 V

Gate Current .. 50 mA

Lead Temperature .. 300 °C

Storage Temperature:
- (2N Prefix) –65 to 200 °C
- (PN/SST Prefixes) –55 to 150 °C

Operating Junction Temperature:
- (2N Prefix) –55 to 200 °C
- (PN/SST Prefixes) –55 to 150 °C

Power Dissipation:
- (2N Prefix) 1800 mW
- (PN/SST Prefixes) 350 mW

Notes
- a. Derate 10 mW/°C above 25 °C
- b. Derate 2.8 mW/°C above 25 °C

SPECIFICATIONS (T_A = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Typ</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4391</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>V_(BR)_{GSS}</td>
<td>I_G = –1 μA, V_DS = 0 V</td>
<td>–55</td>
<td>–40</td>
</tr>
<tr>
<td>Gate-Source Cutoff Voltage</td>
<td>V_GS(off)</td>
<td>V_DS = 20 V</td>
<td>2N/PN: I_D = 1 nA</td>
<td>–4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DS = 15 V</td>
<td>SST: I_D = 10 nA</td>
<td></td>
</tr>
<tr>
<td>Saturation Drain Current</td>
<td>I_DSS</td>
<td>V_DS = 20 V, V GS = 0 V</td>
<td>2N</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST</td>
<td>50</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GS</td>
<td>V_DS = –20 V</td>
<td>V_DS = 0 V</td>
<td>2N/SST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN</td>
<td>–5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2N: T_A = 150°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PN: T_A = 100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SST: T_A = 125°C</td>
</tr>
<tr>
<td>Gate Operating Current</td>
<td>I_G</td>
<td>V_DG = 15 V, I_D = 10 mA</td>
<td>–5</td>
<td></td>
</tr>
<tr>
<td>Drain Cutoff Current</td>
<td>I_D(off)</td>
<td>V_DS = 20 V</td>
<td>2N: V_GS = –5 V</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2N: V_GS = –7 V</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2N: V_GS = –12 V</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –5 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –7 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –12 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: V_DS = 10 V</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2N: V_GS = –5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2N: V_GS = –7 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2N: V_GS = –12 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –5 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –7 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: V_GS = –12 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: V_GS = –10 V</td>
<td>3</td>
</tr>
<tr>
<td>Drain-Source On-Voltage</td>
<td>V_DS(on)</td>
<td>V_GS = 0 V</td>
<td>I_D = 3 mA</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I_D = 6 mA</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I_D = 12 mA</td>
<td>0.35</td>
</tr>
<tr>
<td>Drain-Source On-Resistance</td>
<td>f_DS(on)</td>
<td>V_GS = 0 V, I_D = 1 mA</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Gate-Source Forward Voltage</td>
<td>V_GS(F)</td>
<td>I_G = 1 mA</td>
<td>V_DS = 0 V</td>
<td>2N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN/SST</td>
<td>0.7</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (\(T_A = 25°C\) UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Typ(^a)</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td></td>
</tr>
<tr>
<td>Common-Source Forward Transconductance</td>
<td>(g_{fs})</td>
<td>(V_{DS} = 20,V, I_D = 1,mA, f = 1,kHz)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Source Output Conductance</td>
<td>(g_{os})</td>
<td>(V_{GS} = 0,V, I_D = 0,mA, f = 1,kHz)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source On-Resistance</td>
<td>(r_{DS(on)})</td>
<td>(V_{GS} = 0,V, I_D = 0,mA, f = 1,kHz)</td>
<td>30, 60, 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Source Input Capacitance</td>
<td>(C_{iss})</td>
<td>(V_{DS} = 20,V, V_{GS} = 0,V)</td>
<td>2N: 12, 14, 14, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 1,MHz)</td>
<td>PN: 12, 16, 16, 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Source Reverse Transfer Capacitance</td>
<td>(C_{rss})</td>
<td>(V_{DS} = 0,V)</td>
<td>2N: (V_{GS} = -5,V)</td>
<td>3.3</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 1,MHz)</td>
<td>2N: (V_{GS} = -7,V)</td>
<td>3.2</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2N: (V_{GS} = -12,V)</td>
<td>2.8</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: (V_{GS} = -5,V)</td>
<td>3.5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: (V_{GS} = -7,V)</td>
<td>3.4</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PN: (V_{GS} = -12,V)</td>
<td>3.0</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: (V_{GS} = -5,V)</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: (V_{GS} = -7,V)</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: (V_{GS} = -12,V)</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Input Noise Voltage</td>
<td>(e_n)</td>
<td>(V_{DS} = 10,V, I_D = 10,mA)</td>
<td>2N/PN: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 1,kHz)</td>
<td>SST: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>2N/PN</th>
<th>SST</th>
<th>2N/PN</th>
<th>SST</th>
<th>2N/PN</th>
<th>SST</th>
<th>2N/PN</th>
<th>SST</th>
<th>2N/PN</th>
<th>SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-On Time</td>
<td>(t_{(on)})</td>
<td>(V_{DS} = 10,V, V_{GS(H)} = 0,V)</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>2</td>
<td></td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>(t_{(off)})</td>
<td>(V_{DD} = 10,V, V_{GS(H)} = 0,V)</td>
<td>2N/PN: 6</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>2N/PN: 6</td>
<td>13</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t_{f})</td>
<td></td>
<td>SST: 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SST: 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

b. Pulse test: \(PW \leq 300\,\mu\text{s} \text{ duty cycle} \leq 3\%.\)
On-Resistance and Drain Current vs. Gate-Source Cutoff Voltage

- $r_{DS} @ I_D = 1 mA, V_{GS} = 0 V$
- $I_{DS} @ V_{DS} = 20 V, V_{GS} = 0 V$

On-Resistance vs. Drain Current

- $T_A = 25^\circ C$
- $V_{GS(off)} = -2 V$
- $V_{GS(off)} = -4 V$
- $V_{GS(off)} = -8 V$

On-Resistance vs. Temperature

- $I_D = 1 mA$
- $r_{DS} \text{ changes } X 0.7\%/^\circ C$
- $V_{GS(on)} = -2 V$
- $V_{GS(on)} = -4 V$
- $V_{GS(on)} = -8 V$

Turn-On Switching

- t_r approximately independent of I_D
- $V_{DD} = 5 V, R_G = 50 \Omega$
- $V_{GD(ON)} = -10 V$
- $I_{(ON)} @ I_D = 12 mA$
- $I_{(ON)} @ I_D = 3 mA$

Turn-Off Switching

- t_{off} independent of device $V_{GD(off)}$
- $V_{DD} = 5 V, V_{GD(s)} = -10 V$
- $V_{GD(off)} = -2 V$
- $V_{GD(off)} = -4 V$
- $V_{GD(off)} = -8 V$

Capacitance vs. Gate-Source Voltage

- $t = 1 MHz$
- $V_{DD} = 9 V$
- C_{ISS}
- C_{RSS}

Capacitance (pF)

- $f = 1 MHz$
- $V_{DS} = 0 V$
- $V_{GS}(off)$
- $V_{GS(off)}$
- $T_A = 25^\circ C$
- $T_{emtperature (_C)}$

Typical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Noise Voltage vs. Frequency

- $V_{DS} = 10\, V$
- $I_b = 1\, mA$
- $I_b = 10\, mA$

Forward Transconductance and Output Conductance vs. Gate-Source Cutoff Voltage

- g_{fs} and $g_{os} @ V_{DS} = 20\, V$
- $V_{GS} = 0\, V$, $f = 1\, kHz$

Gate Leakage Current

- $T_A = 125\, ^\circ C$
- $I_{GSS} @ 125\, ^\circ C$
- $I_{GSS} @ 25\, ^\circ C$
- $I_{G(on)} @ I_D$

Common-Gate Input Admittance

- $V_{DG} = 10\, V$
- $I_D = 1\, mA$
- $I_D = 10\, mA$

Common-Gate Forward Admittance

- $V_{DG} = 10\, V$
- $I_D = 10\, mA$
- $T_A = 25\, ^\circ C$

Common-Gate Reverse Admittance

- $V_{DG} = 10\, V$
- $I_D = 10\, mA$
- $T_A = 25\, ^\circ C$

Vishay Siliconix

Document Number: 70241
S-04029—Rev. F, 04-Jan-01
www.vishay.com
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Common-Gate Output Admittance

- **VGS = 10 V**
- **ID = 10 mA**
- **TA = 25°C**

Transconductance vs. Drain Current

- **VGS(off) = -2 V**
- **VDS = 10 V**
- **f = 1 kHz**
- **TA = -55°C**
- **VGS(off) = -4 V**

Output Characteristics

- **VGS(off) = -4 V**
- **VGS = 0 V**
- **VGS = 10 V**
- **VGS = 15 V**
- **VGS = 20 V**

Transfer Characteristics

- **VGS(off) = -4 V**
- **VGS = 0 V**
- **VGS = 10 V**
- **VGS = 20 V**
- **TA = -55°C**
- **TA = 25°C**
- **TA = 125°C**

Switching Time Test Circuit

<table>
<thead>
<tr>
<th>VGS(L)</th>
<th>4391</th>
<th>4392</th>
<th>4393</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGS(H)</td>
<td>-12 V</td>
<td>-7 V</td>
<td>-5 V</td>
</tr>
<tr>
<td>RL*</td>
<td>800 Ω</td>
<td>1600 Ω</td>
<td>3000 Ω</td>
</tr>
<tr>
<td>ID(on)</td>
<td>12 mA</td>
<td>6 mA</td>
<td>3 mA</td>
</tr>
</tbody>
</table>

*Non-inductive

Input Pulse

- Rise Time < 1 ns
- Fall Time < 1 ns
- Pulse Width 100 ns
- PRF 1 MHz

Sampling Scope

- Rise Time 0.4 ns
- Input Resistance 10 MΩ
- Input Capacitance 1.5 pF

See Typical Characteristics curves for changes.
Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.