CMOS Analog Switches

DESCRIPTION

The DG304B, DG306B and DG307B monolithic CMOS switches were designed for applications in communications, instrumentation and process control. This series is well suited for applications requiring fast switching and nearly flat on-resistance over the entire analog range.

Designed on the Vishay Siliconix PLUS-40 CMOS process to achieve low power consumption and excellent on/off switch performance, these switches are ideal for battery powered applications, without sacrificing switching speed.

Break-before-make switching action is guaranteed, and an epitaxial layer prevents latchup. Single supply operation (for positive switch voltages) is allowed by connecting the V- rail to 0 V .

Each switch conducts equally well in both directions when on, and blocks up to the supply voltage when off. These switches are CMOS input compatible.

FEATURES

- $\pm 15 \mathrm{~V}$ input range
- Fast switching - $\mathrm{t}_{\mathrm{ON}}: 110 \mathrm{~ns}$
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on}):} 30 \Omega$
- Single supply operation

Available

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic "0" $\leq 3.5 \mathrm{~V}$
Logic " 1 " $\geq 11 \mathrm{~V}$

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic "0" $\leq 3.5 \mathrm{~V}$
Logic " 1 " $\geq 11 \mathrm{~V}$

[^0]
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Four SPST switches per package
TRUTH TABLE

Logic	$\mathbf{S W}_{1}, \mathbf{S W} \mathbf{N}_{2}$	$\mathbf{S W}_{3}, \mathbf{S W}_{4}$
0	OFF	ON
1	ON	OFF

Logic " 0 " ≤ 3.5 V
Logic " 1 " $\geq 11 \mathrm{~V}$

ORDERING INFORMATION			
Temp. Range	Package	Standard Part Number	Lead (Pb)-free Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		DG304BDJ	DG304BDJ-E3
		DG306BDJ	DG306BDJ-E3
		DG307BDJ	DG307BDJ-E3

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)		
Parameter	Limit	Unit
Voltages Referenced V+ to V-	44	V
GND	25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	$\text { (V-) }-2 \text { to (V+) +2 }$ or 30 mA , whichever occurs first	
Current (Any Terminal)	30	mA
Continuous Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max.)	100	
Storage Temperature	- 65 to 150	${ }^{\circ} \mathrm{C}$
	470	mW

Notes:
a. Signals on S_{X}, D_{X}, or IN_{X} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=3.5 \mathrm{~V} \text { or } 11 \mathrm{~V}^{\dagger} \end{gathered}$		Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	-15		15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$V_{D}= \pm 10$	0 mA	Room Full		30	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	Ω	
Source Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$			Room Full	$\begin{gathered} \hline-5 \\ -100 \end{gathered}$	± 0.1	$\begin{gathered} 5 \\ 100 \end{gathered}$		
Drain Off Leakage Current	$I_{\text {(off) }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-5 \\ -100 \end{gathered}$	± 0.1	$\begin{gathered} 5 \\ 100 \end{gathered}$	nA	
Drain On Leakage Current	${ }^{D}$ (on)	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}^{\text {d }}$		Room Full	$\begin{gathered} \hline-5 \\ -200 \\ \hline \end{gathered}$	± 0.1	$\begin{gathered} \hline 5 \\ 200 \end{gathered}$		
Digital Control									
Input Current with Input Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		Room Full	-1	-0.001		$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		Room Full		0.001	1		
Input Current with Input Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	-1	-0.001			
Dynamic Characteristics									
Turn-On Time	t_{ON}	see figure 2		Room		110		ns	
Turn-Off Time	toff			Room		70			
Break-Before-Make Time	topen	DG305A/307A ONLY, see figure 3		Room		50			
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\text {gen }}=0 \Omega, \mathrm{~V}_{\text {gen }}=0 \mathrm{~V} \\ \text { see figure } 4 \end{gathered}$		Room		30		pC	
Source-Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		Room		14		pF	
Drain-Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$			Room		14			
Channel-On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$			Room		40			
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Room		6			
			$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$	Room		7			
Off-Isolation	OIRR	$\begin{gathered} V_{I N}=0 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega \\ V_{S}=1 V_{r m s}, f=500 \mathrm{kHz} \end{gathered}$		Room		62		dB	
Crosstalk (Channel-to-Channel)	$\mathrm{X}_{\text {TALK }}$			Room		74			
Power Supplies									
Positive Supply Current	$1+$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \quad \text { (all inputs) } \end{aligned}$		Room Full		0.001	100	$\mu \mathrm{A}$	
Negative Supply Current	I-			Room Full	-100	-0.001			

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {DS(on) }}$ vs. V_{D} and \pm Power Supply

V_{D} or V_{S} - Drain or Source Voltage (V)
Leakage Currents vs. Analog Voltage

Switching Time vs. Positive Supply Voltage

$R_{\text {DS(on) }}$ vs. V_{D} and + Power Supply Voltage

V+, V- Positive and Negative Supplies (V) Input Switching Threshold vs. V+ and V-

Supply Voltages

Switching Time vs. Negative Supply Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Currents vs. Toggle Frequency

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \frac{R_{L}}{R_{L}+r_{D S(o n)}}
$$

Figure 2. Switching Time

TEST CIRCUITS

Figure 3. Break-Before-Make SPDT (DG307B)

Figure 4. Charge Injection

APPLICATIONS HINTS ${ }^{\text {a }}$				
V+ Positive Supply Voltage (V)	V- Negative Supply Voltage (V)	GND Voltage (V)	V_{IN} Logic Input Voltage $\mathrm{V}_{\mathrm{INH}(\text { min) }} / \mathrm{V}_{\mathrm{INL}(\text { max })}$ (V)	$V_{S} \text { or } V_{D}$ Analog Voltage Range (V)
15	-15	0	11/3.5	- 15 to 15
20	-20	0	11/3.5	- 20 to 20
15	0	0	11/3.5	0 to 15

Notes:
a. Application hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.

APPLICATIONS

Figure 5. Low Power Binary to 10^{n} Gain Low Frequency Amplifier

Figure 6. Low Power Instrumentation Amplifier with Digitally Selectable Inputs and Gain

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
$\mathbf{A}_{\mathbf{1}}$	0.38	5.08	0.150	0.200
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	17.27	19.30	0.680	0.760
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{Q}_{\mathbf{1}}$	1.27	2.03	0.050	0.080
\mathbf{S}	1.02	2.03	0.040	0.080
ECN: S-03946-Rev. C, 09-Jul-01				
DWG: 5481				

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply.

