ZiLOG

eZ80ZDS0100ZCC

eZ80 C-Compiler
Version 1.03

User Manual

UMO005504-0402

ZiLOG Worldwide Headquarters « 532 Race Street « San Jose, CA 95126-3432
Telephone: 408.558.8500 ¢ Fax: 408.558.8300 ¢ www.ZiLOG.com

eZ80 C-Compiler
Version 1.03 User Manual

- &
A
&
s i
L

w L

Tl

L

This publication is subject to replacement by alater edition. To determine whether alater edition
exists, or to request copies of publications, contact

ZiLOG Worldwide Headquarters
532 Race Street

San Jose, CA 95126-3432
Telephone: 408.558.8500

Fax: 408.558.8300

www.ZiL OG.com

Windows is aregistered trademark of Microsoft Corporation.

Document Disclaimer

©2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded.
ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF
ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS
DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered
by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of
Sale. ZIiLOG, Inc. makes no warranty of merchantability or fithess for any purpose Except with the
express written approval of ZiLOG, use of information, devices, or technology as critical components
of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.

UMO005504-0402

http://www.zilog.com

eZ80 C-Compiler
Version 1.03 User Manual

|
- i
EILSE 11

ABOUT THIS MANUAL

We recommend that you read and understand everything in this manual
before setting up and using the product. However, we recognize that users
have different styles of learning. Therefore, we have designed this manual
to be used either as a how-to procedural manual or areference guide to
important data.

Manual Conventions

The following conventions have been adopted to provide clarity and ease

of use:

* Arial Medium 10-point ALL-CAPS highlights the following items:

Commands, displayed messages

Menu selections, pop-up lists, button, fields, or dialog boxes
Modes

Pins and ports

Program or application name

Instructions, registers, signals and subroutines

Action(s) performed by the software

Icons

®* Courier Regular 10-point highlightsthe following items

Bit

Software code

File names and paths
Hexadecimal value

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

7

ZiLog
Table of Contents
Table of Contents
I ntroduction
ZDSENVIFONMENTo 2
Run-TimeModel e 3
Minimum RequUirements.o e e e e e e e 3
InstallingtheeZ80 C-Compiler i 4
REGISTY KEYS oo e e e 4
INStalling ZDSo e e 5
SAMPIE SESSION. . . ottt e 6
Create aProjectand SelectaProcessorcco i i it 6
Configuring the Compiler UsingtheWizard 7
AddingIncluded Files. i e 9
ConfiguringtheCompiler i i 10
Configure SEttiNgSo e 10
Compiling and ConnectingtotheEmulator 18
Connecttothe Emulatori oo 18
Contacting ZiLOG Customer SUPPOrtt 18
C-Compiler Overview
Language EXtensions e 22
Default Memory Qualifiers ... 23
PO N S, . o 23
[/O AdAress SPaCE. . .ot i it e 23
Interrupt FUNCLIONS. e 25
UsingtheDOSCommandLine........... 26

UMO005504-0402 Table of Contents

eZ80 C-Compiler
Version 1.03 User Manual

vi| e
CommandLineFormat i, 26
Command LineSWitcheso 26
CommandLineEXamplescco i 28
Optimization Levels. e e e 28
Debugging Code after Optimizationcccvvien.... 30
Level 20ptimizations e e 30
Level 30ptimizationst i e e e 32
Level 4 0ptimizationst e e 32
Understanding ErrorsS.ot 32
EnablingWarning Messages ittt 32
Included Files. o 32
Predefined Names e 32
Generated Assembly File 33
ObJECt SIZES . .t e e 33
SECtION NAMESo 34
Incorporating AssemblywithC 34
Incorporating Cwith Assembly i 35
Linking Files
INErodUCLioN e 37
What the Linker DOBSt e 38
UsingtheLinker withthe C-Compiler 39
RunTimelnitiglizationFile 40
Installed Files 41
Invokingthe Linker. i e e e 41
UsingtheLinker inZDS 41
Using the Linker with the Command Line........................... 43
Linker Symbols e 44
Linker Command File. e 44

UMO005504-0402 Table of Contents

eZ80 C-Compiler
Version 1.03 User Manual

s i
i

TiLaw Vil

Linker Command Line. ... e 50
Command Line Specifications 52
Linker Command LineOptions, 53
Symbol Fileln ZiLOG Symbol Format 54

UsingtheLibrarian. i 54
Command LineOptionscoitiirii i 55

Run Time Environment

Function Calls i 57
Function Call Stepsot e 57
Special CasesforaCalled Functiono, 58

OveErlay SUPPOIT ..ot 59
EnablingOverlays 59

UsingtheRun-TimeLibrary i 61
Installed files e 62

Library FUNCLIONS. e e e 63
ADSTUNCHION ... e 63
ACOSTUNCHION ... i e 64
aSiNfUNCLiON 64
atan, atlan2 fUNCioNot 65
AsMIfUNCtON ... e 65
atof, atoi, atol fTUNCLIONSo e 66
cal fuNClioN 67
COS, COShfuNCtioN 68
diviunction e 68
eXpiunction 69
fabSTUNCHION 69
floor fuNCLioN o e 70
fmod function 71
frexpfunction e e 72

isfunctions 73

Table of Contents UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

"
L
Vi CiLa®

labsfunction 74
Idexpfunction i e 75
Idiviunction 75
log, loglOfunction i e 76
memchr fuNCioN e 77
memcmp function 77
memcpy function 78
memmovefunction 79
memset fuNCtion 80
modf fUNCLION 80
POW fUNCHION ... e 81
rand function e 81
SN, SINNFUNCHION ... e e 82
sprintf function e 82
SOt FUNCTION .. e e e e 87
srand funCtion 87
sscanf fuNCHiON 88
Streat funCtioN o e 93
Srchr funCtion ... e 93
srempfunction ... 9
strepy fUNCtioN 95
strespnfunction ... 96
srlenfunction 96
strncat fUNCHioN 97
srnempfunction 98
Srncpy fUNCLioN e 99
strpbrk function 99
strrchr function 100
SrSPNfUNCLION 101
SISt fUNCLION ... o 101
srtok function 102
strtod, strtol, strtoul functions 103

UMO005504-0402 Table of Contents

tan, tanh function
tolower, toupper functions..
va arg, va_end, va_start functions
vsprintf function

Initialization and Link Files

Initialization File.
LinkFile.........................
MMUFile........................

ASCII Character Set
Problem/Suggestion Report Form
Glossary

Table of Contents

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

UMO005504-0402 Table of Contents

eZ80 C-Compiler
Version 1.03 User Manual

ZiLog
List of Figures
Figurel Development Flow. i e e 2
Figure2 New Project DiadogBoXt 6
Figure3 ZDSNew Project DiadlogBoOX ... 8
Figure4 C-CompilerGenera Page, 11
Figure5 C-CompilerWarningsPage.t 13
Figure6 C-Compiler OptimizationsPage iiiiiiiiann.. 14
Figure7 C-Compiler PreprocessorPage 16
Figure8 CodeGenerationMemory Page. ..., 17
Figure9 Linker Functional Relationshipo, 37
Figure 10 Linker COMpPONentS.ottt et e ettt 40
Figure1ll SampleSymbol File........ i 54
Figure12 FrameLlayout.o it e e e 58

UMO005504-0402 List of Figures

Xi

eZ80 C-Compiler
Version 1.03 User Manual

UMO005504-0402

List of Figures

eZ80 C-Compiler
Version 1.03 User Manual

ZiLog
List of Tables
Tablel [/OMachineInstructionst e e 23
Table 2 Command LineSWitChes. 26
Table3 Linker Referenced Files. i e 41
Table4 Linker Symbols 44
Table5 Summary of Linker Commands. 45
Table 6 Summary of Linker Options.co i 53
Table7 Summary of Library Options. o 55
Table 8 Installed Library Files 62
Table9 ASCIlI Character Set. e e e e e 119

UMO005504-0402 List of Tables

Xiii

eZ80 C-Compiler
Version 1.03 User Manual

UMO005504-0402

List of Tables

eZ80 C-Compiler
Version 1.03 User Manual

7

tiLed

| ntroduction

The eZ280 C-Compiler conformsto the ANSI's definition of a“freestanding imple-
mentation”, with the exception that doubles are 32 hits. In accordance with the defi-
nition of a freestanding implementation, the compiler accepts programs which
confine the use of the features of the ANSI standard library to the contents of the
standard headers <float.h>, <limits.h>, <stdarg.h> and <stddef.h>. This release sup-
ports more of the standard library than is required of a freestanding implementation,
as described in Run Time Environment on page 57. Figure 1 depictsthe development
flow.

There are several language extensions supported in this version, including interrupt
functions and memory space accesses.

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

g,

ziLos | 2

|| &S
Frms
— W
diggwmline =
SN “ompilar
¥ -
Aanemblsr
Arzedvibley 1| Sowek

] oFF -
B pCr e ulﬂih‘ Linker Command
| Files
i __I’_r

Linksar
COFF Load

Fim =T
itk S ¥
| COFF . oy ersion

y%@g
| 5

Lumipsr LEiRY

Figure 1. Development Flow

ZDS ENVIRONMENT

ZiLOG Developer Studio is an integrated devel opment environment with a standard
Windows 95/98/NT user interface that allows accessto all of ZiLOG's development
tools without having to alternate from one program to another. These development
tools include alanguage sensitive editor, project manager, assembler, linker, and a
symbolic debugger. ZDS supports the €280 line of ZiLOG processors.

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

i
; i

= i
LiLdE

ZDS dlows the user to:
* Create project filesand add or removefiles to and from the project
* Create and edit asourcefile.
* Download, execute, debug, and analyze code
* Buildandlink aproject file
* Compile, assemble and link files

* Prepare code for ROM release (one-time programming)

Run-Time Model

Inergers of type Ints and Pointers are 16 bits. A startup program named
eZ80boot . s isincluded on theinstallation diskette. Thisprogram clearsthe.bss
section, sets the processor mode, and calls the main function.

Note: The startup program does not copy initialized data.

MINIMUM REQUIREMENTS

For the C-Compiler to run properly with ZDS, the host system must meet the foll ow-
ing minimum requirements:;

* The eZ80 C-Compiler requires Windows 95, Windows 98, or Windows/NT.
The compiler generates assembler language source, which can be assembled
and linked using the UNIX, DOS or Windows versions of the ZiLOG
assembler, archiver and linker.

* |IBM PC (or 100-percent compatible) Pentium-based machine
* 75MHz16 MB Memory

* VGA Video Adapter

* Hard Disk Drive (12 MB free space)

* CD-ROM drive

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

* Mouse or Pointing Device
* Microsoft Windows 95/98/NT

* To use the ZDS debugger, an emulator is needed that corresponds to the
processor required for configuration

INSTALLING THE EZ80 C-COMPILER

To install the e280 C-Compiler, insert the €280 C-Compiler CD ROM and follow
the onscreen prompts

After installing the €280 C-Compiler the compiler’sinstallation path is set in the
Window’s registry. When installing ZDS 3.00 or later, ZDS automatically looks for
the C-Compilersinstallation path and loads the corresponding DLL from that path.

Thisis effective for the following compiler versions:
* e7801.00o0r later
* 7Z3xx B0.00 or later
* 78C1.00o0r later

Note: Older compiler versions require the user to copy the compiler's DLLstothe ZDS
installation directory.

Registry Keys

The following keys are written to the window’s registry during the C-Compiler
installation:

* For 2380 Installation
- + HKEY LOCAL MACHINE\Software\ZiLOG\C Compiler\Z380
— + 2380 Key has Path value which tells where the Z380 is located

® [or Z3xx Ingtallation
- + HKEY LOCAL MACHINE\Software\ZiLOG\C Compiler\Z3xx

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

— + Z3xx Key has Path value which tells where the Z3xx is
located

* For Z8/Z8Plus Ingdlation
- + HKEY LOCAL MACHINE\Software\ZiLOG\C Compiler\Z8
— + 7z8 Key has Path value which tells where the Z8 is located

®* [or eZ80ingalation
- + HKEY LOCAL MACHINE\Software\ZiLOG\C Compiler\eZ80
— +eZ80 Key has Path value which tells where the 280 is located

INSTALLING ZDS
Perform the following stepsto install ZDS:

1. Insert the ZiLOG Developer Studio CD-ROM into the host CD ROM drive. The
Emulator Software Setup window appears.

2. Inthe Select Components dialog box check ZiLOG Developer Studio.
3. Click Next. The ZiLOG Developer Studio window appears.

4. Click Next to accept the licensing agreement. Immediately after the agreement is
accepted, the Choose Destination Location dialog box appears.

5. Click Next to install ZDS in the default directory. Click Browse to change the
ZDSingtall directory.

6. After selecting the appropriate install directory, click next. The Select Program
Folder dialog box appears.

7. Click Next to add the ZDS program icon to the ZiLOG Devel oper Studio program
folder. To create a personalized folder, type the folders name in the Program
Folders field.

8. Click Next. The Installing ZDS Program Files progress bar appears.

9. After installation the Setup Complete dialog box appears. Check View
README File to view the read me file containing the ZDS release notes. Check
Launch ZiLOG Developer Studio to start ZDS at the end of the installation.

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

10. Click Finish to complete the ZDS installation.

SAMPLE SESSION

The eZ280 C-Compiler isamodular component that is part of the ZDS development
environment. Users should become familiar with ZDS and configure the settings
before programming or downloading files. This chapter orients the user on using
ZDS and configuring the compiler for theeZ80 family of processors. For more infor-
mation on installing ZDS, consult the ZDS Quick Start Guide or the ZDS on-line
help.

Create a Project and Select a Processor

The user must create a project and select a processor before creating or opening a C-
file. Perform the following stepsto create a new project and select a processor:

1. Open ZDS by selecting Start > Programs > ZiLOG Developer Studio > ZDS.

2. Choose New Project fromthe File menu. The New Project dialog box appears,
as shown in Figure 2.

T bt Sebichion
Sekconty =1
& Fardy O Spphesion Lo I
[LERT LY ChipDsta I
I =l it g
Proset Tasget Ermadsiza
| ezam =0 =l m
Frogsct Mames Frogsct bpps
|Emmmmmm5_3m _| I Apdaibein
T Lbuay
et ool o Nes i C Cowrgaii
T OTP Dk

Figure 2. New Project Dialog Box (Example Only)

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

. Select Family inthe Selection by field.

Select ez80 from the Master pop-up list.

. Select the processor from the Project Target pop-up list.
Select an emulator from the Emulator pop-up list.

N~ o 00 M w

. Click on the browse button {(...) in the Project Name field. The New Project
Browse dialog box appears.

8. Enter the file name and select a path in the New Project Browse dialog box.

9. Click Save. Thefilenameappearsinthe Project Name fieldintheNew Project
dialog box.

10.Select Application fromthe Project type field. This selection enablesthelinker.

11.Check Include default startup files for C Compiler. This option must be
checked to enable the Wizard. To manually add the necessary files for the C-
Compiler, see Adding Included Files on page 9.

12.Click on Chip Data to view specifications for the selected Project Target.
Note: Fieldsin the Chip Data page are read-only and can not be modified.

13.Click OK. The new project is saved with the file name specified in the New
Project Browse dialog box.

Configuring the Compiler Using the Wizard

The Wizard is enabled when the Include default startup files for C Compiler
option is checked in the New Project dialog box.

Note: The Wizard isonly available for ZDS version 3.5 and later.

Perform the following steps after clicking OK inthe New Project Browse dialog
box:

1. TheZDS New Project Dialog box appears, as shown in Figure 3.

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

Z05 Hew Piopect
Check the fles pou sesh o rclude

| (i[8 I
[ricieoo s Cancsl |
=R
=R
=

File Dicbcaipion:
Libiary heedpes hurchors:

Cetrgy
B aAdd dedaak nclude path o compie iefirg:

F Gt defsult brker settings ot compler

Figure 3. ZDS New Project Dialog Box
2. Select dl thefilesinthe Check the files you wish to include window.

3. Select Set default include path to compiler settings in the Settings window.
Selecting this option sets the path of the include files in the Additional include
directories field in the C-Compiler preprocessor page.

4, Select Set default linker settings for compiler.

5. Click OK. Theinitialization file for the selected model appears in the project
viewer window.

6. Select Optimizations from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears.

7. Select Level 4 optimization.
8. Click Apply.

Create a File

Perform the following steps to create a new C file:

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

1. Select Add to Project>New from the Project menu. The Insert New Files
Into Project dialog box appears.

2. Select C Files from the Files of type pop-up menu.
3. Type afilenamein the File Name field.

4. Click Open. The new file name appears in the Project Viewer window with a. ¢
suffix, and a blank Edit window also appears.

5. Type the following code in the edit window:
#include <stdlib.h>

int randnum;

int main ()

{

srand (10) ;
randnum=rand () ;

randnum=rand () ;

}
6. Close and save thefile.

Note: Skip the Adding Included Files section if you configured the compiler using the wiz-
ard.

ADDING INCLUDED FILES
The user can manually add files and configure the settings for the C-Compiler.

After creating a project the user must add or create new files. A previoudly created
project has the following attributes saved with it:

* Target settings
* Assambler and Linker settings for the specified target
* Sourcefiles (including header files)

UMO005504-0402 Introduction

10

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

The user must first add the necessary files for the compiler to function properly. The
following examples are based on using a small model.

Perform the following steps to add files:

1. Select Open Project from the File menu. The Open Project dialog box appears.

2. Inthe Open Project dialog box, select the project that was created in the previous
exercise. The project appearsin the Project Viewer window.

3. Select Add to Project > Files from the Project menu. The Insert Files into
Project dialog box appears.

© N o 0 N

. Browse to the directory where the C-Compiler was installed.

. Select the Lib directory.

Select all files fromthe Files of type pop-up menu.

. Hold the Control key and select all the filesin the lib directory.
. Click Open. Thefiles appear in the Project Viewer window.

CONFIGURING THE COMPILER

The following section explains how to configure the compiler using ZDS.

Configure Settings

The €280 C-Compiler can be configured through the Settings Option dialog box in
ZDS. The Settings Option dialog box allows the user to configure:

Generd options

Warnings

Optimization levels
Preprocessor symbol definitions

Code generation configuration

Perform the following steps to open the C-Compiler Settings Option dialog box:

Introduction

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

1. Open the project.
2. Select Settings from the Project menu. The Settings Options dialog box appears.
3. Click the C-Compiler tab. The C-Compiler Settings Option dialog box appears,
see Figure 4.
General Configuration

The C-Compiler General page allows the user to enable or disable settings for the C-
Compiler.

Perform the following steps to configure the General Page .

1. Select General from the Category pop-up list in the C-Compiler Settings dialog
box. The C-Compiler General page appears.

2. Click the Set Default button.

3. Click Apply.
€ Compies | Assembles | Linker |
Cadpsging |l.|-:n-e1.i 1'|

B Geresle gebag mlommation

I Display compler semon manbe

' Enable ZL0G lanouags exlersions:

Lirks 5 eftirge
Gel b cesfmall bk salinge nesded by e complar Sy
cutant Inkeai calling: vl ba remcresd

[et Cielavi |

o | _Coe | b | v |

Figure 4. C-Compiler General Page

UMO005504-0402 Introduction

12

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

The following options are available in the C-Compiler General page.

* The Generate debug information option generates symbolic debug

information in the output object module. If arelocatable object file is being
generated, symbols and other debugging information are embedded in the
output relocatable object file. If this option is not checked, no symbolic debug
information is generated. If this option is checked, optimizations are not
performed.

The Display compiler version number option causes atwo-line message
to display in the Output window that shows the C-Compiler copyright notice
and version number.

The Enable ZiLOG extensions causes the C-Compiler to automatically
recognizelanguage extensionsfor thetarget device. Theselanguage extensions
allow the microcontroller to communicate with externa devices.

The Set Default button automatically configuresthe linker for use by the C-
Compiler.

Configuring Warnings

The C-Compiler Optimizations page allows the user to control the informational and
warning messages that are generated in the ZDS output window.

Perform the following steps to configure the Warnings page, see Figure 5.

1. Select Warnings from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears.

2. Select the warningsto apply.
3. Click Apply.

Introduction

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

TiLaw 13

Seltmgs Dpdions BE

C Compder | Asarsbler | Linka |

— e &
Ersbls

B\l aming message
[T Shrict wessrirgs

[T Migrt S| kb
=

r

-

WY i =iy sy

[ok | cams | g | e |

Figure 5. C-Compiler Warnings Page

Configuring Optimization Levels

The C-Compiler Optimizations page allows the user to select an optimization level
for the C-Compiler. See Optimization Levels on page 28 for adetail ed description of
the different optimization levels.

Perform the following steps to configure the Optimizations page .

1. Select Optimizations from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears as shown in Figure 6.

2. Select Level 4 optimization.
3. Click Apply.

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

i

14 | e

C Congsbst | fssmemibles | Liriker |
Congoy. | IEEET N ~ |

I¥" Wo optimization

™ Lewnl | oplimizations
™ Leved 2 npdimizasion
™ Level 3 plimizaion:
™ Liseid 4 opdiizabor

[ok] concs | | Hew |

Figure 6. C-Compiler Optimizations Page

The following optimization levels are available in the C-Compiler Optimizations
page.

* TheNo optimization option disables al optimizations.

* Thelevel 1 optimization option performs:
— constant folding
— dead object removal
— simple jJump optimization
* Thelevel 2 optimization option performs:
constant propagation
copy propagation
dead code elimination
common sub expression elimination
jump to jump optimization

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

= i
LiLdE

loop invariant code motion

constant condition evaluation and other condition evauation
optimizations

constant evaluation and expression simplification

all the optimizationsin level 1

* The Level 3 optimization option performsLevel 2 optimizationstwice, and
replaces any redirection of read-only nonvolatile globd or static data with a
copy of theinitial expression.

* The Level 4 optimization option performs Level 2 optimizations three
times, and eliminates common sub-expressions by transforming expression
trees.

Defining Preprocessor Symbols

The C-Compiler Preprocessor page enables you to define preprocessor definitions,
and specify additional search paths for included files.

Perform the following steps to configure the Optimizations page .

1. Select Preprocessor from the Category pop-up list in the C-Compiler Settings
dialog box. The Preprocessor page appears as shown in Figure 7.

2. Inthe Additional Include Directories field enter the C-Compiler’ sinstallation
path and \ INCLUDE.

For example: If the compiler’sinstallation path is C: \PROGRAMS\eZ80 enter
c: PROGRAMS\eZ80\ INCLUDE.

3. Click Apply.

UMO005504-0402 Introduction

15

eZ80 C-Compiler
Version 1.03 User Manual

C Compler | Assembler | Linkes | Debugge |

Categen: [T |
Frepiogeesol delrslarc:

Lujdtional irciuck discinser
=
B

|- WPoagtarn FilesC Sbrsne et ahinciode

00 gL \Program Fles'C-ibrnes\betahinohade -He

[ok | come | | Hew |

Figure 7. C-Compiler Preprocessor Page

The Preprocessor page defines the following:
®* The Preprocessor definitions field is used to define the names of the
symbols that are used by the preprocessor. Symbols may be defined with or
without a value and successive symbols should be separated by a comma.

ExampLE: DEBUG, VERSTION=3 defines the symbol DEBUG, but
does not assign it a value. The statement also defines the symbol

VERSION and assignsit avalue of 3.

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
i

IILaE 17

®* The Additional Include Directories field is used to enter additiona search
paths that the C-Compiler should use to locate included files. The search path
can consist of directory names separated by semicolons.

ExampLE: C: \PROGRAMS\ ZDS\ INCLUDE:LIB

Code Generation Configuration

The Code Generation page (Figure 8) allows the user to define the name of memory
sections.

Perform the following steps to configure the Memory page.

1. Select Code Generation from the Category pop-up list in the C-Compiler
Settings dialog box. The Memory page appears.

2. Enter the names that you have selected to rename the memory sections to.
3. Click Apply.

Seblinage [l

& Compie | fssembe | Linker |

Categoy [EEEIEETEN - |

Saition Fuii

g5 |

DaTa |

II-'.‘:-::Tl

Hourdaes abgring
i

P

[or]| coce | | e |

Figure 8. Code Generation Memory Page

UMO005504-0402 Introduction

eZ80 C-Compiler
Version 1.03 User Manual

i

18 J....l.': :II

Compiling and Connecting to the Emulator

Before performing a debug session the user must compile the code and connect to
the emulator. For more information on performing a debug session, see the ZDS
Quick Start Guide or the ZDS on-line help.

Compile a Project
Perform the following steps to compile a project.
1. Open the previously project created.

2. Inthe Project Viewer window, double click on the C filethat was created earlier in
the session. The C file appearsin the Edit window.

3. Select Build from the Build menu (the shortcut is F7) to compile, and link the files
in the project. If an error occurs, double click on the error in the Output window.

Note: When building a project, ZDS only processesthe filesin the project that have changed
since thelast build. During abuild, ZDS updates a dependency list for the project by adding
each included filename to the project list.

Connect to the Emulator
Perform the following steps to connect to the emulator.

1. Select !Connect from the Project menu. The ZDS status bar shows that it's
connecting to the Emulator.

2. The message Emulator connected appears in the Output window Debug page.

Note: If an error message is received, ensure that both the target and emulator for the project
are selected.

CONTACTING ZILOG CUSTOMER SUPPORT

ZILOG has aworldwide customer support center located in Austin, Texas. The cus-
tomer support center is open from 7 am. to 7 p.m. Central Time.

The customer support toll-free number for the United States and Canadais 1-877-
ZiLOGCS (1-877-945-6427). For calls outside of the United States and Canada dial

Introduction UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

19

512-306-4169. The FAX number to the customer support center is 512-306-4072.
Customers can also access customer support viathe website at:

* For customer service:

— http://register.zilog.com/login.asp?login=servicelogin
* For technical support:

— http://register.zilog.com/login.asp? ogin=supportlogin

For valuable information about hardware and software development tools go to
ZiLOG home page at http://www.zilog.com. The latest released version of the ZDS
can be downloaded from this site.

UMO005504-0402 Introduction

http://register.zilog.com/login.asp?login=servicelogin
http://register.zilog.com/login.asp?login=supportlogin

eZ80 C-Compiler
Version 1.03 User Manual

Introduction

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

7

tiLed

C-Compiler Overview

The eZ80 C Compiler isan optimizing compiler that translates standard ANSI C pro-
gramsinto ZiLOG assembly language source code. Key characteristics of the com-

piler are:

Supports ANSI C language - ZiLOG's C-Compiler conformsto the ANSI C
standard as defined by ANS| specificationsafor free standing implementation.

Assembly output - The compiler generates assembly language source files
that can be viewed and modified.

Provides ANSI-standard run-time libraries - A run-time library for each
device isincluded with the compiler’ s tools. All library functions conform to
the ANSI C library standard. These libraries include functions for string
manipulation, buffer manipulation, data conversion, math, variable length
argument lists.

COFF object files - Common object file format (COFF) isused. Thisformat
allows the user to define the system’s memory map at link time. This
maximizes performance by linking C code and data objects into specific
memory areas. Source-level debugging is also supported by the COFF file
format.

Friendly assembly interface - The compilers calling conventions are easy to
use and flexible. These calling conventions allow the user to easily call
assembly and C functions.

Preprocessor integration - The compiler front end has a built in
preprocessor for faster compilation.

Optimization levels - The compiler alows the user to select optimization
levels that employ advanced techniques for compacting and streamlining C
code.

Language extensions - Language extensions are provided to support
processor specific features.

UMO005504-0402 C-Compiler Overview

21

eZ80 C-Compiler
Version 1.03 User Manual

i

22 | o=

Memory and I/O address spaces are supported through memory qualifiers
Support for interrupt functions
Intrinsic functions are provided for in-line assembly

Programs containing up to 1 megabyte of code are supported using the
€Z80 memory management unit.

LANGUAGE EXTENSIONS

The eZ80 family of processors supports various address spaces that correspond to the
different types of addressed |ocations and the method logical addresses are formed.
The C-language, without extensions, is only capable of accessing datain one mem-
ory address space. The €280 C-Compiler memory extensions allow the user to
access datain the e280 memory address space, the external 1/0 address space, or the
on-chip /O address space.

Assigning Types
Types are extended by adding memory qualifiers to the front of a statement. These
memory qualifiers are defined with the following keywords:

®* MEMORY assigns the type to the standard €280 main memory address
space.

®* EXTIO assigns the type to the externa /O port address space, through
which peripheral devices are accessed. There may be no allocations in this
space, but pointersto it may be defined and used.

®* INTIO assigns the type to the interna (on-chip) 1/O port address space,
through which periphera devices and system control registers are accessed.
There may be no alocationsin this space, but pointersto it may be defined and
used.

A derived typeis not qualified by memory qualifiers (if any) of the type from where
it was derived. Derived types can be structures, unions and function return types.

ExampLe: INTIO char * ptr;

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i
-
¥ 4
_

IiLa® 23

In the above example ptr isapointer to char ininternal I/O address space. The
ptr isnot memory qualified but is a pointer to a qualified memory type.)
DEFAULT MEMORY QUALIFIERS
Default memory qualifiers are applied if no memory qualifiers are specified. In all
cases the default memory qualifieris_ MEMORY.
POINTERS

A pointer to a qualified memory type can not be converted to a different qualified
memory type.

Size of Pointers
Pointers are always 16-bitsin size for the 280 C-Compiler.

I/O ADDRESS SPACE

The compiler automatically generates the appropriate 1/0 instructions for accessing
datainthe INTIO and__ EXTIO memory spaces. The machine instructions are
described in Table 1.

Table 1. I/O Machine Instructions

Load IN INO

Store ouT OuTO

UMO005504-0402 C-Compiler Overview

eZ80 C-Compiler
Version 1.03 User Manual

i

24 J....l.':.':ll

Accessing I/O Address Space

The eZ80 instruction set does not allow indirect access of the internal 1/0O address
space through aregister.

To access the 1/0 address space, use the on-chip peripheral-addresses as operands to
the INO/OUTO machine instructions. Variable pointers can not be used to access the
internal 1/0 address space and address constants must be used.

The recommended method to access the 1/O address space is shown in the below
example.

typedef volatile unsigned char __ INTIO *PBINTIO;
#defineIO ADDR ((PBINTIO) 0x0002)

/]

unsigned char ch;

/]

IO ADDRI[O0] = ch;// store to I/O address 2

/] e

ch = IO ADDR[0];// load from I/O address 2

/] e

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

INTERRUPT FUNCTIONS

Interrupt functions are declared by preceding their definition with #pragma inter-
rupt. Such functions should not take parameters or return a value. For example:

#include <zilog.h>
#include <eZ80.h>
volatile int gprtCount;
#pragma interrupt

void timer (void)

{

char cDummy;

cDummy = tcr;

cDummy = tmdrO0l;

cDummy = tmdrOh;

gprtCount++;

}

Note: The compiler generates the following prologue and epilogue code for interrupt func-
tions:

push af

pop af
ei

reti

UMO005504-0402 C-Compiler Overview

eZ80 C-Compiler
Version 1.03 User Manual

Using the DOS Command Line
The €280 C-Compiler can be invoked from the DOS command line.

Command Line Format
The syntax for the €280 C-Compiler command lineis as follows:
eZ80

[switches] source

Command Line Switches

The following command-line switches are recognized.
Table 2. Command Line Switches

Switch Function

-D <macro> Define a preprocessor macro

-g Generate symbolic debug information

-gw Generate symbolic debug information and facilitate ZDS watch
window functionality.

-1 <path> Specify include path. This option may be repeated to specify
multiple include paths

-Nbss<name> Names the uninitialized data section. Defaultis .bss

-Ndata<name> Names the initialized data section. Defaultis .data

-Ntext<name> Names the text section. Defaultis . text

-o<name> Specifies the output assembly file name

-00 No optimization

-01 Level 1 optimization—Basic optimizations: Constant folding,
dead object removal and simple jump optimization

-02 Level 2 optimization—Constant propagation, copy propagation,

dead code elimination, common sub expression elimination, jump
to jump optimization, tail recursion elimination, loop invariant
code motion, constant condition evaluation and other condition
evaluation optimizations, constant evaluation and expression
simplification and all the optimizations in level 1

C-Compiler Overview

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

Table 2. Command Line Switches

Switch Function

-03 Level 3 optimization—All the optimizations in level 2 are
performed twice. Also any redirection on a read only non-volatile
global or static data is replaced by a copy of its initial expression.

-04 Level 4 optimization—All the optimizations in level 2 are
performed three times. Also common sub expression elimination
is attempted through transformation of expression trees (Thisis
the default optimization level)

-P <path> Specify the path where the pre-processor’s output should be
written

-V Display compiler version number

-W Enable warning messages

-Wa Enable portability warnings about accuracy loss in conversions

-Wall Equivalent to specifying all of the warning options

-Wansi Enable warnings about non-ANSI usage

-Wb Enable warnings about unreachable break statements

-Wd Enable warnings about variable usage, such as unused variable,
defined but not used, and so on.

-Wf Enable warnings about function return values

-Wh Enable some heuristic warnings

-Wp Enable portability warnings, and warnings about handling
enumeration types

-Wstrict Enable strict warnings

-Wv Enable warnings about unused parameters (not included in —Wd)

-Wx Enable warnings about unused global objects

-ZiILOG Allow // style comments

Note: Other switches are for ZiLOG use only in this version.

UMO005504-0402

C-Compiler Overview

28

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Command Line Examples

Compiling
The command for eZ80:
eZ80 test.c generatestest .s. By default the -04 optionsis used.

Assembling
The command for eZ80:
zma -peZ80 -j -otest.o test.sgeneratestest.o

Linking
The command for eZ80:

zld -mtest -otest (compileringallation path)\ez80inits.o
test.o generatestest.ld and test .map.

OPTIMIZATION LEVELS

The €280 C-Compiler alows the user to manually specify the level of optimization
to be performed on their code. The optimization levels are controlled through the C-
Compiler options dialog box. See Configuring Optimization Levels on page 13 for
more information on the C-Compiler Settings Option dialog box.

The eZ280 C-Compiler allows you to specify four levels of optimizations. The opti-
mizations are:
®* Level 1 optimization
— constant folding
— dead object removal
— simple jJump optimization
* |evel 2 optimization
— constant propagation

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Copy propagation
dead-code elimination

common sub-expression elimination

jump-to-jump optimization

loop invariant code motion

constant condition evaluation and other condition evaluation
optimizations

constant evaluation and expression simplification

all the optimizationsin level 1

®* Check Level 3 optimization to perform Level 2 optimizations twice, and
replace any redirection of read-only nonvolatile global or static data with a
copy of itsinitial expression.

®* Check Level 4 optimization to perform Level 2 optimizations three times,
and eliminate common sub-expressions by transforming of expression trees.

UMO005504-0402

C-Compiler Overview

29

30

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Debugging Code after Optimization

Debugging of code should be complete before performing any level of optimization
on the code. If the generate debug information is on, no optimizations are performed,
even if an optimization level is chosen.

Note: To enable or disable debug information in ZDS, select Settings from the Options
menu. Click the Linker tab and select Output from the Category pop-up list.

Level 1 Optimizations
The following is a description of the optimizations that are performed during alevel
1 optimization.

Constant Folding

The compiler simplifies expressions by folding them into equivalent forms that
require fewer instructions.

ExampLE: Before optimization: a=(b+2) +(c+3); After optimization:
a=b+c+5

Dead Object Removal

Loca and static variables that are declared but never used are removed

Simple Jump Optimization

Jump to next instruction is removed. Unreachable code is also removed.

Level 2 Optimizations

Level 2 optimization performs all the optimizationsin Level 1 plus the following
new optimizations.

Constant Propagation

Unaliased local variables are replaced by their assigned constant.

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Copy Propagation

The compiler replaces references to the variable with its value. The value could be
another variable, a constant, or acommon sub-expression. This replacement
increases the chances for constant folding, common sub-expression elimination, or
total elimination of the variable.

Dead Code Elimination

Useless code is removed or changed. For example: assignments to local variables
that are not used afterwards are removed.

Common Sub Expression Elimination

When the same value is produced by two or more expressions, the compiler com-
putes the value once, savesit, and reusesit.

Jump to Jump Optimization

Targets in the control statement are replaced by the ultimate target.

Loop Invariant Code Motion

Expression within loops that compute the same value are identified and are replaced
by areferenceto a precomputed value.

Constant Condition Evaluation

The conditional expressions that are constant are computed at compile time.

Constant Evaluation and Expression Simplification

Replaces an expression by a simpler expression with the same semantics using con-
stant folding, algebraic identities and tree transformations.

UMO005504-0402 C-Compiler Overview

31

32

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Level 3 Optimizations

Level 3 optimization perform all the Level 2 optimizations twice, and replaces any
redirection of read-only nonvolatile global or static data with a copy of itsinitial
expression.

Level 4 Optimizations

Level 4 optimization performs Level 2 optimizations three times, and eliminates
common sub-expressions by transforming of expression trees.

UNDERSTANDING ERRORS

The eZ280 C-Compiler detects and reports errors in the source program. When an
error is encountered, an error message is displayed in the ZDS Output window.

For example:

file.c”, line Nn: error message

Enabling Warning Messages

Warning messages can be disabled or enabled through the command line. See
Table 2 for more information on the various warnings that can be enabled.

INCLUDED FILES

A path to included files must be defined before the C-Compiler can recognize
included files. Anincluded files path is set in the Preprocessor page in the C-Com-
piler setting options dialog box. For more information on the Preprocessor page, see
Defining Preprocessor Symbols on page 15. For command line version the -I com-
mand line option can be used to specify the include path.

PREDEFINED NAMES
The eZ280 C-Compiler comes with four predefined macro names. These names are;

* LINE_Expandsto the current line number

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 33

®* FILE Expandsto the current source filename

®* DATE Expandsto the compilation date in the form of mmdd yy

* TIME Expandsto the compilation timein theform of hh:mm:ss

Note: For more information on using the command line see page -26.

GENERATED ASSEMBLY FILE

After compiling ac-file, an assembly file is generated and placed in the project direc-
tory. The assembly files are downloaded and linked and a COFF file is produced that
is downloaded to the emulator. The user can modify the assembly in the ZDS Editor

window.

To open and edit the assembly file:

1. Select Open File from the ZDS Edit menu. The Open file dialog box appears.

2. Select Assembler Files from the files of type pull down menu.

3. Browse to the project directory and double click on the file to be opened. The

selected file appearsin the ZDS edit window.

OBJECT SIZES

The following table lists basic objects and their size.

Type

char

short

int

long

float
double

long double

UMO005504-0402

Size

8 bits

16 bits
16 bits
32 bits
32 hits
32 bits
32 hits

C-Compiler Overview

34

eZ80 C-Compiler
Version 1.03 User Manual

s i
i

LiLdE

SECTION NAMES

The compiler places code and data into separate sections in the object file. Every sec-
tion hasanamethat is used by thelinker to determine which sectionsto combine and
how sections are ultimately grouped in the executablefile.

* Code Section (. text)

* |nitialized Data Section (. data)

* Uninitialized Data Section (. bss)
* Constant Data Section (. const)

Note: All sectionsare allocated inthe MEMORY address space. The default

sections . text, .data, and . bss can berenamed using the -Ntext, —Ndata, and —Nbss
command line options.

INCORPORATING ASSEMBLY WITH C

The €280- C-Compiler allows the user to incorporate assembly code into their C
code.

In the body of afunction, use the asm statement. The syntax for the ASM statement
is _asm(“<assembly line>") ;.

* Thecontentsof <assembly 1ine> mustbelega assembly syntax
* Theonly processing doneonthe <assembly lines> isescape sequences
* Norma C escape sequences are trandated

Example

#include <zilog.h>
int main ()

{

_asm(“\tnop\n”) ;

return (0) ;

}

C-Compiler Overview UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

INCORPORATING C WITH ASSEMBLY

The C libraries that are provided with the compiler can also be used to add function-
ality to an assembly program. The user can create their own function or they can ref-
erencethelibrary using the ref statement.

Note: The C-Compiler precedes the use of globals with an underscore in the generated
assembly.
Example

The following example shows the C function imul () being called from assembly
language. The assembly routine pushes two words onto the stack (parametersx and y
for the function imul), calsthe function imul, then cleans the arguments off the

stack.

Assembly file.

.ref imul; Compiler prepends ‘' ' to names
.text

_main:

pushhl; parameter <ys>

pushde; parameter <x>

call imul

popaf; clean the stack

popaf; *

ret; result in hl:de

UMO005504-0402 C-Compiler Overview

35

eZ80 C-Compiler
Version 1.03 User Manual

Referenced C file.

typedef unsigned long uint32;
typedef unsigned short uintle;

typedef char int8;

uint32

imul (uintlé x, uintlé y)

{

uint32 res;

int8 i;

res = 0;

for (i=0; 1 < 16; i++)

{

if (y & 1)

{

res += X;

= X << 1;
y =y > 1;

}

return res;

}

C-Compiler Overview

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

7

tiLed

Linking Files

INTRODUCTION

The purpose of the ZiLOG cross linker isto read relocatable object filesand libraries
and link them together to generate an executable load file. The file may then be
loaded or written to a target system and debugged using ZDS. This chapter briefly
describes the linker’s inputs and outputs, and how the inputs to the linker are trans-
formed into those outputs. See Figure 9.

Relocatable
Object File

(s)

(Librarian)

Relocatable
Object File

©)

Library File
o

Executable
Load File

Figure 9. Linker Functional Relationship

UMO005504-0402 Linking Files

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

What the Linker Does
The linker performs the following fundamental actions:

* Readsin Relocatable object modules and library filesin Common Object File
Format (COFF) or ZiLOG Object Module Format (ZOMF)

* Resolves externa references
* Assigns absolute addresses to Relocatable sections
* Supports Source-Level Debugging (SLD)

* Generates a single executable module to download into the target system or
burn into OTP or EPROM programmable devices

* Generatesamapfile
* Generates COFF files (for Libraries)

Linkage Editing
Thelinker creates a single executable load modul e from multiple rel ocatable objects.

Resolving External References

After reading multiple object modules, the linker searches through each of them to
resolve external references to public symbols. The linker looks for the definition of
public symbols corresponding to each external symbol in the object module.

Relocating Addresses

The linker allows the user to specify where the code and data are stored in the target
processor system’s memory at run-time. Changing relocation addresses within each
section to an absol ute address is handled in this phase.

Debugging Support

When the debug option is specified, the linker creates an executable file that can be
loaded into the debugger at run-time. A warning message is generated if any of the
object modules do not contain a specia section that has debug symbols for the corre-

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

sponding source module. Such awarning indicates that a source file was compiled or
assembled without turning on a special switch that tells the compiler or assembler to
include debug symbols information while creating a relocatabl e object module.
Creating Map Files
Thelinker can be directed to create a map file that details the location of the Relocat-
able sections and Public Symbols.
Outputting OMF Files

Depending upon the options specified by the user, the linker can produce two types
of OMF files:

* |ntel Hex Format Executable File
® COFF Format Executable File

USING THE LINKER WITH THE C-COMPILER

Thelinker is used to link compiled and assembled object files, C-Compiler libraries,
user created libraries and C runtime initialization files. These files are linked accord-
ing to the commands that are given in the linker command file. Once the files are
linked an executable file in COFF (.1d) format is produced. The linker can also pro-
duce Intel hex (. hex, .dat) files, map files (. map) and symbol files (. sym) in
ZiLOG symbol format.

The primary components of the linker are shown in Figure 10.

UMO005504-0402 Linking Files

39

eZ80 C-Compiler
Version 1.03 User Manual

Link Command
Line or File
(text file)

Symbol File in ZILOG
Symbol Format
(text file)

C-Compiler libraries

Linker
Link and Relocate

Map File

I

Relocatable Object
Modules

C Run-Time Initialization
Files.

Linker Messages

and
ZOMF or COFF
Library Files
(binary files)

Figure 10. Linker components

Run Time Initialization File

Executable Intel Hex
(.hex & .dat) or
COFF (.Id) Format
File

The C run-timeinitialization file is an assembly program that initializes memory
before linking. This assembly program clears the .bss section, sets the pointer, and
initializes the processor mode resister. Once these initializations are complete the
program calls main, whichisthe C entry paint.

Linking Files

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

/4

]
LiLa®

Installed Files

The following linker associated files are installed in the C-Compiler installation
directory.

Table 3. Linker Referenced Files

eZ80boot .s Assembly language source of example C startup module
eZ80.1nk Example linker command file for eZ80

libc.1lib Standard C library without floating point support
1libf.1lib Standard C library with floating point support

1hf.1ib Library of runtime helper functions

eZ80mmu. s MMU static overlay manager

Note: Sourcefilesfor therun-timeinitialization files are provided in Run Time Initialization
File on page 40.

INVOKING THE LINKER
The linker can be invoked either through ZDS or the DOS command line.

Using the Linker in ZDS

Thelinker is automatically invoked when performing abuild in ZDS. The following
steps are performed when using the linker with ZDS.

1. ZDS callsthelinker after compiling and assembling all the files.
2. All the object files and libraries that are include in the project are linked.

UMO005504-0402 Linking Files

41

42

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

3. Error or warning messagesthat are generated by thelinker aredisplayedintheZDS
output window.

4. If no errors are encountered the linker produces an executablefilein either aCOFF
or HEX format. This executable fileis placed in the project directory.

Note: The user needs to include the C-run time initialization file that is appropriate for the
compilation model chosen in the project. See Table 3 for alist of initiaization files that are
included with the C-Compiler. For more information on adding included files see Adding
Included Files on page 9.

Configuring the Linker with ZDS

Perform the following steps to set the linker command file optionsin ZDS:

1. Open the project

2. Select Settings from the Project menu. The Settings Options dialog box appears.
3. Click the C-Compiler tab.
4

. Select General from the Category pop-up list in the C-Compiler Settings dialog
box. The C-Compiler General page appears.

5. Click the Set Default button.
6. Click Apply.

Note: Thelinker's settings can aso be modified through the Linker Settings dial og box.
Consult ZDS' s on-line help for more information on configuring the linker.

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Using the Linker with the Command Line
Use the syntax below to invoke the linker on the command line:

z1d -o output name -a init-object-files {object files} c-comp-lib-file lib-
files map-file linker-command-file

output-name isthe .1d filename. For exampleif test.1d isthedesred
output file, then the output name should be test.

init.-object-file isthe C runtimeinitialization file. The user can specify their
own initialization filesto use. If thefile isnot in the current directory the path
needs to be included in the file name.

{object files} isthelist of object filesthat are to be linked.

c-comp-lib-file is the C-Compiler library files that need to be linked. See
Table3for aligt of library filesthat are include with the C-Compiler.

lib-files isthelibrary files created by the user using the ZDS archiver (ZAR).
map-file isthe map file' s name that is to be generated by the linker.

linker-command-file isthe command file to belinked by the linker. Sample
command files are provided in the lib directory. See Table 3 for alist of
command files that are include with the C-Compiler.

Linker Command Line Example

The following exampl e shows how to invoke the linker using the DOS command

line.

zld -otest -A lib-path\eZ80boot.o test.o lib-
path\libc.lib lib-path\eZ80180.1link -mtest.map

Thisexample generatesatest .1d, test .hex, test.dat, test.symand
test.map asoutput. The 1ib-path isthe (C-Compiler installation path)\lib, and
test .o isthe object file corresponding to the C file created after compiling and
assembling.

UMO005504-0402 Linking Files

43

44

eZ80 C-Compiler
Version 1.03 User Manual

/4

]
LiLa®

For more information on the linker command line see Linker Command Line on
page 50.

LINKER SYMBOLS

The linker command file defines the symbols that are used by the C run-time initial-
ization file to initiaize the stack pointer, register pointer and clear the BSS section.
Table 4 shows the symbols that are used by the linker.

Table 4. Linker Symbols

BSS BASE Base of . BSS section
BSS LENGTH Length of . BSS section
TOS Top of stack

LINKER COMMAND FILE

The linker command file istext file that contains the linker command and options.
The linker commands that can be used in the command file are summarized in
Table 5. For linker options see Table 6.

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

o

]
LiLa®

Table 5. Summary of Linker Commands

Assign Assigns a control section to an address space

Bankarea Reserve space for overlay banks

Bank Assign a section to an overlay bank

Bankvector Specify an overlay manager vector

Copy Makes a copy of a control section

Define Creates a public symbol at link-time; helps resolve an external symbol
referenced at assembly time

Group Creates a group of control sections that can be defined using the
range command

Locate Set the base address for the control section

Noload Set the control section attribute as no load

Order Specifies the ordering of specified control sections

Range Sets a lower bound and an upper bound for an address space or a
control section

Note: Thelinker commands are listed al phabetically in the table, for convenienceit is not
required that commands be specified al phabetically in the command file. Command words
and parameters not listed in the table are not legal. If any other word or parameter is used, an
error message is written to the messages file, and the linker terminates without linking any-

thing.

UMO005504-0402

Linking Files

45

46

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Linker Command ASSIGN

The ASSIGN command assigns a control section to an address space. This command
is designed to be used in conjunction with the assembler’s .SECT instruction.

Syntax: ASSIGN <section> <address-space>

The <section> must be a control section name, and the <address-space> must be an
address space hame.

Example: ASSIGN DSEG DATA

Linker Command BANKAREA

The BANKAREA linker command reserves an area of an address spacefor use asan
overlay bank. Thiscommand is used in conjunction with the BANK linker com-
mand. The BANK AREA namesthe overlay bank, and is referenced by the BANK
linker command.

Syntax:
BANKAREA <bankarea> <address-space> <start-address>: <end-address>
BANKAREA <bankarea> <address-space> <start-address>, <length>
The location and size of the overlay bank is specified in one of two ways:
* A colon-separated area start-address and end-address
* A comma-separated area start-address and length

Example

The following example creates an overlay area named OVERLAY in the ROM
address space. The overlay area occupies the address range 08000h to OBFFFh.

BANKAREA OVERLAY, ROM, 08000h: OBFFFh

Linker Command BANK

The BANK linker command assigns a control section to an address space overlay
bank. Thiscommand isused in conjunction with the BANKAREA linker command.
The BANKAREA names the overlay bank, which is defined by the BANKAREA

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 47

linker command. The load-address specifies the physical address of the section. If
the load-address is omitted, the linker determines the load address.

Syntax: BANK <section> <bankarea> [[,] <load-address>]
Example

The following example assigns a section named BOOTSECTION to an overlay area
named OVERLAY. The load address of the section is 010000h.

BANK BOOTSECTION OVERLAY 010000h

Linker Command BANKVECTOR

The BANKVECTOR linker command specifies the vector address used for passing
control to overlays. Thiscommand is used in conjunction with the BANKAREA
and BANK linker commands. Valid values for the vector address depend upon the
target processor. For the 280 family, the valid values are 0, 8, 16, 24, 32, 40, 48,
and 56.

Syntax: BANKVECTOR <address>
Example

The following example specifies that vector address 56 should be used as the overlay
manager vector address.

BANKVECTOR 56

UMO005504-0402 Linking Files

48

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Linker Command COPY

This command makes acopy of acontrol section. The control section isloaded at the
specified location, rather than at its linker-determined location. This command is
designed to make a copy of aninitialized RAM data sectionin aROM address space,
so that the RAM may beinitialized from the ROM at run time.

Syntax: COPY <section> <address-space> [AT <expression> |

The <section> must be a control section name, and the <address-space> must be an
address space name. The optional AT <expression> is used to copy the control sec-
tion to a specific address in the target address space.

Example: COPY bankl_data ROM or COPY bankl_data ROM at %1000

Linker Command GROUP

This command allows the user to group control sections together and define the size
of the grouped sections using the RANGE command.

Syntax: GROUP <group hame> = <sectionl> [,<section2>...]

The group name is the name of the grouped sections. The group name can not be the
same name as an existing address space. Sectionl and section2 are the sections
assigned to the group. Sections within a group are allocated in the specified order.

Note: The new group’s lower address location and size must be defined using the linker’s
RANGE command.

Example:
GROUP RAM =.data, .bss
RANGE RAM = 1000h:1FFFh

This example defines RAM as ablock of memory intherangeof 1000h to 1FFFh.
The .data and .bss control sections are allocated to thisblock. The . data sec-
tion is alocated at address 1000h and the . bss section is alocated at the end of
the .data section.

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Linker Command DEFINE

This command is used for alink-time creation of a user defined public symboal. It
helpsin resolving any externa references (EXTERN) used in assembly time.

Syntax: DEFINE <symbol name> = <expression>

<symbol name> is the name of the public symbol. <expression> is the value of the
public symbol.

Example: DEFINE copy_size = copy top of usr_seg - copy base of usr_seg
The “Expression Formats’ section, which follows, explains different types of
expressions that can be used.
Linker Command LOCATE
This command sets the base address for a control section.
Syntax: LOCATE <name> <address>
Example:LOCATE .text 1000h
The name must be a control section name. The address be within the address range
of the address space to which the control section belongs.
Linker Command NOLOAD
This command sets the attribute of the control section as no load.
Syntax: NOLOAD <namel> <namez2>
Example: NOLOAD csec, dsec

The <namen> must be a control section name or a group name.

UMO005504-0402 Linking Files

49

eZ80 C-Compiler
Version 1.03 User Manual

i

50 J....l.': :II

Linker Command ORDER
This command determines a sequence of linking.
Syntax: ORDER <namel> [,<name2>...]
<namen> must be a control section name.
Example: ORDER CODE1, CODE2

Linker Command RANGE

This command sets the lower and upper limits of a control section or an address
space. The linker issues awarning message if an address falls beyond the range
declared with this command.

The linker provides multiple ways for the user to apply this command for alink ses-
sion. Each separate case of the possible syntax is described below.

Case 1l
Syntax: RANGE <name> <expression>, <length> [,...]

<name> may be a control section, or an address space. The first <expression> indi-
cates the lower bound for the given address RANGE. The <length> isthe length, in
words, of the object.

Example: RANGE ROM %700, %100

CASE 2
Syntax: RANGE <name> <expression>: <expression> [,...]

<name> may be a control section or an address space. The first <expression> indi-
cates the lower bound for the given address RANGE. The second <expression> isthe
upper bound for it.

Example: RANGE ROM %17ff: %2000

Note: Refer to the Expression Formats for the format of writing an expression.

LINKER COMMAND LINE

The syntax for the linker command lineis:

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

ZLD [<options>]<filenamels> ...<filenamens.

* The “[]” enclosing the string “options’ denotes that the options are not
mandatory. Inthisdocument this convention is continued for further discussion
on linker' s syntax and operations.

* Theitemsenclosedin“<>" indicate the non-literal items.

* The"...” (dlipses) indicate that multiple tokens can be specified. Thesetokens
are of thetype of the non-literal specifiedinthe syntax just prior to the dlipses.

* The syntax uses “%" prefix to a number to specify a hexadecima numeric
representation.

* Thelinker linksthefileslisted in <filename> list. Each <filename> isthe name
of aCOFF object file or library file, or the name of atext file containing linker
commands and options.

UMO005504-0402 Linking Files

51

52

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Command Line Specifications
The following rules govern the command line specification:

Linking Files

ZLD examines the named files content to determine the file type (object,
library, or command).

The file names of the input files specified on the command line must be
separated by spaces or tabs.

The commands are not case sensitive; however, command line options and
symbol names are case sensitive.

The order of specifying options does not matter.
The options must appear before the filenames.

Specifying that input files use both command line and list createsaunion of the
two sets of inputsthat istreated asinput object and library files. Thelinker links
the file twice, if the file names appear twice.

During linking, the linker combines all object files in the order specified and
resolves the externa references. linker searches through the library files when
it isunable to resolve references.

A command file is a text file containing linker commands and options.
Comments can be specified by use of the“;” character.

If the linker is unable to open a named object file, library file, or a link
command file, an error message is written to the standard error device, and the
linker terminates without linking anything.

If an unsupported OMF type of object fileisincluded inthe <filename> list, the
linker displays an error message and terminates without linking anything.

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

o

]
LiLa®

Linker Command Line Options

Linker options are specified by prefixing an option word with aminus (-). The linker
options are summarized in Table 6.

Table 6. Summary of Linker Options

-? Displays product logo, version nhumber, and brief description of
command line format and options.

-a Generates an absolute object file in Intel Hex Format or ZiLOG Symbol
Format.

-e <entry> Specifies the program entry point. <entry> is any Public symbol.

-g Generates symbolic debug information.

-m <mapfile> | Generates the map file.

-0 <objectfile> | Generates the output file.

-q Disables display of linker’s copyright notice.

-r Disables address range checking on relocatable expression. This
option must be used when linking compiler generated code.

-W Treats warnings as errors.

-w Disables the generation of warning messages.

1. Itis not required that options be specified alphabetically on the command line.

2. If any other option word is used, an error message is written to the messages file, and the
linker terminates without linking anything.

3. All options must be preceded by a dash (-).

For more information on the linker options refer to the ZDS On-line help.

UMO005504-0402 Linking Files

53

eZ80 C-Compiler
Version 1.03 User Manual

i

54 | Sreee

Symbol File In ZILOG Symbol Format

A symbol filein the ZiLOG symbol format is generated when the user specifies the
absolute link mode (-alinker option). It isin the standard ZiLOG symbol format,
shown in Figure 11, which follows. In each row, the first column lists the symbol
name, second column lists the attribute of the symbol (“1” standsfor internal symbol,
“N” stands for local symbol, and “X” stands for public symboal), and the third col-
umn provides the value of the symbol expressed as four hexadecimal bytes.

_dgt_outbfr I 00008004
_digit_cntr I 00008011
_dgt_inbfr I 00008012
_led refresh I 000000b5
hex reg N 00008009

_bcd hex conv

I ff££f£f7£5
_7conv_reg 4 N 00008009
_8conv_reg_ 3 N 0000800a

Figure 11. Sample Symbol File

USING THE LIBRARIAN

The librarian allows the user to modify libraries and view the contents of individual
library files.

The syntax for the librarian command lineis as follows:

Zar [options] library [memberl .. membern]

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

o

]
LiLa®

The librarian performs the operation specified in the options on the named library
using the named member files. Libraries conventionally have an extensionof .1ib
and library members have an extension of . o.

Command Line Options

Command line options are specified by prefixing an option letter with aminus (-).
The command line options are summarized in Table 7.

Table 7. Summary of Library Options

-7 Requests a usage display.

-a Appends the specified members to the library. This command does not
replace an existing member that has the same name as an added
member; it simply appends new members to the end of the library.

-d Deletes the specified members from the library.

-q Quiet mode: suppress display of the librarian copyright notice.

-r Replaces the specified members in the library. If a specified member is
not found in the library, the librarian adds it instead of replacing it.

-t Prints a table of contents of the library. If you don’t specify any member
names, the librarian lists the names of all members of the library. If you
specify any member names, only those members are listed.

-X Extracts the specified members from the library. The librarian does not
remove from the library those members that it extracts.

UMO005504-0402

Linking Files

eZ80 C-Compiler
Version 1.03 User Manual

i

56 | Sriee

Linking Files UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

7

ZiLog 57

Run Time Environment

FUNCTION CALLS

The C-Compiler imposes a strict set of rules on function calls. Except for special
runtime-support functions, any function that calls or is called by a C-function must
follow theserules. Failure to adhere to these rules can disrupt the C-environment and
cause a program to fail.

Function Call Steps

A function must perform the following tasks when it is called. Refer to Figure 12.
1. Push the frame pointer (IX) onto the stack.
2. Allocate the local frame.

3. If thefunction modifiesBC, DE or 1Y, push them on the stack. Any other registers
may be modified without preserving them.

4. Execute the code for the function.

5. If the function returns a scalar value, place it in the accumulator (HL for scalars
greater than eight bits; A for eight-bit scalars), or in the HL:DE register pair for
thirty-two bit scalars.

6. Deallocate the local frame.
7. Restore the caller’ s frame pointer.
8. Return

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

58 J....l.': :II

Run Time Stack

High Address
ParameterN Iy

Parameter 1

Parameter 0

Return address

Caller’s frame pointer (1X)
Locals Low Ada ress

Frame Pointer

Stack Pointer — g

Figure 12. Frame Layout

Special Cases for a Called Function

The following exceptions apply to special cases for called functions.

Returning a Structure

If the function returns a structure, the caller allocates the space for the structure on
top of the stack. The size of the space allocated is the size of structure plus two addi-
tional bytes. To return a structure, the called function then copies the structure to the
space allocated by the caller.

Not Allocating a Local Frame

If there are no local variables or arguments an d no use of temporary locations, the
code is not being compiled to run under the debugger and the function does not
return a structure, there is no need to allocate a stack frame.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 59

OVERLAY SUPPORT

The compiler supports program overlays using the e280 memory management unit
(MMU). Overlays alow the user to increase their maximum executable-file-size
from 64 KB (without overlays) to 1 MB (with overlays).

The compiler creates overlays by dividing the application into aresident portion that
is loaded upon the application execution. Overlays are then mapped into the MMU
bank area as needed.

Oneload fileis created by this method and makes it possible to run large programs.
However, the disadvantages are:

* anincrease in program execution time. This increase is due to the amount of
overhead involved in manipulating the MMU.

* more space is needed because the application contains the code for the overlay
manager.

Enabling Overlays

Enable overlays by using the —z 1 1.0G command-line option. After overlays are
enabled al function calls to external modules make useof afar call instruction.
This function uses four-bytes instead of the usual three-bytes required for a normal
(or near) call.

The format of the far call isasfollows.

Rst IntNo IntNo isthe restart interrupt
.byte OverlayNumber The overlay number
.word OverlayEntry Offset of the entry point

Therestart instruction passes control to the static overlay manager which determines
which overlay is being called, and mapsit into the MMU bank area. The restart vec-
tor to useis specified using the linker’'s BANKVECTOR command.

UMO005504-0402 Run Time Environment

60

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Configuring Source Files

To enable overlay support the user must configure two assembly-language source
filesthat areincluded in the compiler distribution. Theses files are:

®* e780boot.s Crun-time startup module
* e780mmu.s Staic overlay manager

To configurethe ezg0boot . s filedefinethe symbol OVERILAY. When this sym-
bol is defined the startup routine calls the overlay manager initiaization routine. The
overlay manager initialization routine is required for proper operation of the static
overlay manager.

Note: Overlay support is enabled by default.

To configure the ezg ommu . s file perform the following steps.

1. Define the symbol . FCDEPTH. This symbol is used to define the function call
depth that the overlay manager should support (default is eight). Three bytes are
required for each function call level.

2. Definethe symbol . CBAR. This symbol defines the value to be loaded into the
MMU’s CBAR register. This can be defined inthe ezgommu . s fileitself, or
defined in the linker command file or another source file. By default, thisis
declared as an external symbol and requiresthat it be defined in alinker command
file or another source module. The CBAR register isan eight-bit register, the upper
nibble defines the start address of common area 1 and the end address of the bank
area. The lower nibble of CBAR defines the start address of the bank area. The
static overlay manager assumes that all overlays are mapped into the bank area.

Note: Ensurethat thefunction__eZ800verlay (definedin eZ8 0mmu . s) servicesthe
restart interrupt specified using the linker’'sBANKVECTOR command. Do this by loading
the appropriate restart vector with the addressof _ eZ800verlay.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

USING THE RUN-TIME LIBRARY

The C-Compiler provides a collection of run-time libraries that can be easily refer-
enced and incorporated into your code. The following sections describe the use and
format of run-time libraries. Each library function is declared in a supplied header
file. These header files can be included in C programs using the #include prepro-
cessor directive. See Defining Preprocessor Symbols on page 15 for more informa-
tion on including header files.

Each header file contains declarations for a set of related functions plus any neces-
sary types and additional macros. See Table 8 for a description of each header file
that is include with the C-Compiler.

The header files are installed in the include directory of the compiler installation
path. Thelibrary filesare installed in the lib directory of the compiler installation
path.

The standard C runtime libraries are separated into two files. These two files consist
of integer support (1ibc.11ib) and floating-point support libraries (Libf .11ib).
Both libraries are required to support floating point calculations. Both libraries con-
tainversionsof printf () and scanf (), andtheir variants to minimize the run-
time library size for applications that do not require floating-point support. If float-
ing-point versions of these library functions are required, then the library
libf.1ib should be specified before 1ibc. 1ib inthe project file.

UMO005504-0402 Run Time Environment

62

eZ80 C-Compiler
Version 1.03 User Manual

/4

]
LiLa®

Installed files

The header filesin Table 8 are installed in the C-Compiler installation directory.

Table 8. Installed Library Files

asset.h Asserts

ctype.h Character handling functions
errno.h Errors

float.h Floating point limits
limits.h Interger limits

math.h Math functions

stdarg.h Variable argument macros
stddef.h Standard defines

stdio.h Standard types and defines
stdlib.h General utility functions
string.h String handling functions
zilog.h ZiLOG specific functions and defines

Run Time Environment

UMO005504-0402

eZ80 C-Compiler

Version 1.03 User Manual

LIBRARY FUNCTIONS

Run-time library routines are provided for the following:

Buffer Manipulation

Character Classification and Conversion
Data Conversion

Math

Searching and Sorting

String Manipulation

Variable-Length Argument Lists

Intrinsic functions

abs function

Header file statement: #include<stdlib.h>

Syntax: int abs(intn);

Parameter Description

n

Integer Value

i

= i
LiLdE

The abs function returns the absolute value of its integer parameter n.

Return Value

The abs function returns the absolute value of its parameter. There is no error return.

UMO005504-0402

Run Time Environment

63

eZ80 C-Compiler
Version 1.03 User Manual

acos function
Header file statement: #include<math.h>

Syntax: double acos (double x);

Parameter Description

X Value whose arccosine is to
be calculated

The acos functions return the arccosine of x in the range 0 to Pi radians. The va ue of
X must be between -1 and 1.

Return Value

The acos functions return the arccosine resullt.

asin function
Header file statement: #include<math.h>

Syntax: double asin (double x);

Parameter Description
X Value whose arcsine is to be
calculated

The asin functions calculate the arcsine of x in the range -Pi/2 to Pi/2 radians. The
value of x must be between -1 and 1.

Return Value

The asin functions return the arcsine result.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

atan, atan2 function
Header file statement: #include<math.h>
Syntax: double atan (doublex);

double atan2 (double y, double Xx);

Parameter Description

X,y Any number

The atan family of functions calculates the arctangent of X, and the atan2 family of
functions cal culates the arctangent of y/x. The atan group returnsavalue in the range
-pi/2 to pi/2 radians, and the atan2 group returns a value in the range -pi to pi radians.

The atan2 functions use the signs of both parameters to determine the quadrant of the
return value. The atan2 functions are well defined for every point other than the ori-
gin, even if x equals 0 and y does not equal 0.

Return Value

The atan family of functions returns the arctangent result

_asm function
Header file statement: #include <zilog.h>
Syntax: _asm ("assembly language instruction")

The _asm pseudo-function emits the specified assembly language instruction to the
compiler-generated assembly file. The _asm pseudo-function accepts a single param-
eter, which must be a string literal. The assembly instruction is placed asisin the
assembly file, and the user hasto follow all the assembler conventions when emitting
the assembly instructions through the _asm instruction.

Return Value

Thereis no return value.

UMO005504-0402 Run Time Environment

65

66

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

atof, atoi, atol functions

Header file statement: #include <stdlib.h>
Syntax: double atof (const char *string);
int atoi (const char *string);

long atol (const char *string);

Parameter Description

string String to be converted

These functions convert a character string to a double-precision floating-point value
(atof), an integer value (atoi), or along integer value (atol). Theinput stringisa
sequence of characters that can be interpreted as a numerical value of the specified
type.

The function stops reading the input string at the first character that it cannot recog-
nize as part of anumber. This character may be the null character (‘\0") terminating
the string.

The atof function expects string to have the following form:
[whitespace] [sign] [digits] [.digits] [{d | D | e| E }[sign]digits]

A whitespace consists of space and/or tab characters, which areignored; signis
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the decimal point. The
decimal digits may be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed decimal integer.

The atoi and atol functions do not recognize decimal points or exponents. The string
argument for these functions has the form

[whitespace] [sign]digits

where whitespace, sign, and digits are exactly as described above for atof.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Return Value

Each function returns the double, int, or long value produced by interpreting the
input characters as a number. The return valueis O (for atoi), OL (for atol), and 0.0
(for atof) if the input cannot be converted to a value of that type.

* Thereturn valueis undefined in case of overflow.

ceil function
Header file statement: #include<math.h>

Syntax:double ceil (double X);

Parameter Description

X Floating-point value

The ceil function returns a double value representing the smallest integer that is
greater than or equal to Xx.

Return Value

This function returns the double result. Thereisno error return.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

cos, cosh function
Header file statement: #include<math.h>
Syntax: double cos (double X) ;

double cosh (double Xx);

Parameter Description

X Angle in radians

The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of
X.

Return Value

The cos function returns the cosine result. The cosh function returns the hyperbolic
cosine result.

div function
Header file statement: #include <stdlib.h>

Syntax: div_t div (int num, int denom);

Parameter Description
numer Numerator
denom Denominator

The div function divides numer by denom, computing the quotient and the remain-
der. The div_t structure contains the following elements:

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

69

Element Description
int quot Quotient
int rem Remainder

The sign of the quotient isthe same asthat of the mathematical quotient. Its absolute
valueisthe largest integer that is less than the absolute value of the mathematical
guotient. If the denominator is O, the behavior is undefined.

Return Value

The div function returns a structure of type div_t, comprising both the quotient and
the remainder. The structure is defined inthe std1ib . h header file.

exp function
Header file statement: #include<math.h>

Syntax:double exp (double X);

Parameter Description

X Floating-point value

The exp function returns the exponential function of their floating-point parameter
(x).
Return Value

This function returns the exponential value of x.

fabs function
Header file statement: #include<math.h>

Syntax: double fabs (doubleX);

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

Parameter Description
X Floating-point value

The fabs function calculates the absolute value of its floating-point parameter (x).
Return Value

This function returns the absolute value of its argument. There is no error return.

floor function
Header file statement: #include <math.h>

Syntax: double floor (double X);

Parameter Description

X Floating-point value

The floor function returns a floating-point value representing the largest integer that
isless than or equal to x.

Return Value

This function returns the floating-point result. Thereis no error return.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

71

fmod function
Header file statement: #include <math.h>

Syntax: double fmod (double X, doubley) ;

Parameter Description
X,y Floating-point values

The fmod function calculates the floating-point remainder f of X / y suchthat x =i *
y +f, wherei isan integer, f hasthe same sign as x, and the absolute value of f isless

than the absolute value of y.
Return Value
This function returns the floating-point remainder. If y is 0, the function returns 0.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

72 J....l.':.':ll

frexp function
Header file statement: #include <math.h>

Syntax: double frexp (double X,int* expptr);

Parameter Description

X,y Floating-point value

expptr Pointer to stored integer
exponent

The frexp function breaks down the floating-point value (X) into a mantissa (m) and
an exponent (n), such that the absolute value of mis greater than or equal to 0.5 and
lessthan 1.0, and x equals m times (2 raised to the power of n). The integer exponent
nisstored at the location pointed to by expptr.

Return Value

This function returns the mantissa. If x is 0, the function returns O for both the man-
tissa and the exponent. There is no error return.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

73

is functions
Header file statement: #include <ctype.h>
Syntax: int isalnum(intc);
int isalpha(intc);
int iscentrl(intc);
int isdigit(intc);
int isgraph(intc);
int islower(intc);
int isprint(intc);
int ispunct(intc);
int isspace(intc);
int isupper(intc);
int isxdigit(intc);
Parameter Description
c Interger to be tested

Each function in the i s family tests a given integer value, returning a nonzero value
if the integer satisfiesthe test condition and O if it does not. The ASCII character set
is assumed.

The is functions and their test conditions are listed below:

FunctionTest Condition

isalnumAlphanumeric (A'-'Z’,'d-'z’", or ‘0’-'9’)
isalphaletter (A'-‘Z’ or ‘a-'Z')

iscntrl Control character (0x00 - OX1F or Ox7F)

UMO005504-0402 Run Time Environment

74

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

isdigitDigit (‘0'-'9")

isgraphPrintable character except space (* *)
islowerLowercase letter (‘a’-'2)

isprint Printable character (0x20 - OX7E)

ispunct Punctuation character

isspace White-space character (0x09 - 0xOD or 0x20)
isupperUppercase letter (‘A'-'Z’)
isxdigitHexadecimal digit (A’ -'F,a-'f’, or ‘0'-'9")
Return Value

These routines return anonzero value if the integer satisfies the test condition and O
if the interger does not satisfy the test condition.

labs function

Header file statement: #include <stdlib.h>

Syntax: long labs(longn);

Parameter Description

n Long-integer value

The labs function produces the absol ute value of its long-integer argument n.

Return Value

The labs function returns the absol ute value of its argument. There is no error
returned.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

75

Idexp function
Header file statement: #include <math.h>

Syntax:double ldexp (doublex, intexp);

Parameter Description
X Floating-point value
exp Integer exponent

The Idexp function calculates the value of x * (2 raised to the power of exp).

Return Value
This function returns an exponential value.

Idiv function
Header file statement: #include <stdlib.h>

Syntax: 1div_t 1div (longint numer, long int denom);

Parameter Description
numer Numerator
denom Denominator

The ldiv function divides numer by denom, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the mathe-
matical quotient. If the denominator is 0, the program will terminate with an error

message.
Theldiv function is similar to the div function, with the difference being that the
arguments and the members of the returned structure are all of type long int.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

Theldiv_t structure, defined in STDLIB.H, contains the following elements.

Element Description

long intquot Quotient
long int rem Remainder

Return Value

The ldiv function returns a structure of type Idiv_t, comprising both the quotient and
the remainder.

log, 10g10 function
Header file statement: #include <math.h>
Syntax:double log (double x);
double logl0 (double x) ;

Element Description
X Value whose logarithm is to be found

The log and log10 functions calcul ate the natural logarithm and the base-10 loga-
rithm, respectively, of x.

Return Value

The log functions return the logarithm of x.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

A
= i
LiLdE

77

memchr function
Header file statement: #include <string.h>

Syntax: void *memchr(const void *buf, int ¢, size t count)

Parameter Description

buf Pointer to buffer

c Character to look for
count Number of characters

The memchr function looks for the first occurrence of ¢ in thefirst count bytes of
buf. It stopswhen it finds ¢ or when it has checked the first count bytes.

Return Value

If successful, memchr returns a pointer to the first location of ¢ in buf. Otherwise, it
returns NULL.

memcmp function
Header file statement: #include <string.h>
Syntax:int memcmp (const void *bufl, const void *buf2, size t count)

Parameter Description

bufl First buffer

buf2 Second buffer

count Number of characters

The memcmp function compares the first count bytes of buf1 and buf2 and returns a
value indicating their relationship, as follows:

ValueMeaning
< 0bufl lessthan buf2

UMO005504-0402 Run Time Environment

78

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

= Obuf1l identical to buf2

> Obufl greater than buf2

Return Value

The memcmp function returns an integer value, as described above.

memcpy function
Header file statement: #include <string.h>

Syntax:void *memcpy (void *dest, const void *src, size t count)

Parameter Description

dest New buffer

src Buffer to copy from

count Number of characters to copy

The memcpy function copies count bytes of src to dest. If the source and destination
overlap, these functions do not ensure that the original source bytesin the overlap-
ping region are copied before being overwritten. Use memmove to handle overlap-

ping regions.
Return Value

The memcpy function returns the value of dest.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

79

memmove function
Header file statement: #include <string.h>

Syntax:void *memmove (void *dest, const void *src, size t count)

Parameter Description

dest Destination object

src Source object

count Number of characters to copy

The memmove function copies count characters from the source (src) to the destina-
tion (dest). If some regions of the source area and the destination overlap, the mem-
move function ensures that the origina source bytesin the overlapping region are
copied before being overwritten.

Return Value

The memmove function returns the value of dest.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

memset function
Header file statement: #include <string.h>

Syntax: void *memset (void*dest, intc, size t count)

Parameter Description

dest Pointer to destination
c Character to set
count Number of characters

The memset function sets the first count bytes of dest to the character c.
Return Value

The memset function returns the value of dest.

modf function
Header file statement: #include <math.h>

Syntax:double modf (double X, double*intptr);

Parameter Description

X Floating-point value

intptr Pointer to stored integer
portion

The modf functions breaks down the floating-point value x into fractional and inte-
ger parts, each of which has the same sign as x. The sighed fractional portion of x is
returned. The integer portion is stored as a floating-point value at the location

pointed to by the intptr parameter.
Return Value
The modf function returns the signed fractional portion of x. There is no error return.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

pow function
Header file statement: #include <math.h>

Syntax:double pow (double X, doubley);

Parameter Description
X Number to be raised
y Power of x

The pow function computes x raised to the power of y.

Return Value

The pow function returns the value of xY.

rand function
Header file statement: #include <stdlib.h>
Syntax: int rand (void);

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX.
The srand routine can be used to seed the pseudorandom-number generator before

calling rand.
Return Value

The rand function returns a pseudorandom number, as described above. Thereis
no error returned.

UMO005504-0402 Run Time Environment

81

eZ80 C-Compiler
Version 1.03 User Manual

sin, sinh function
Header file statement: #include<math.h>

Syntax: double sin (double x);

double sinh (double x);

Parameter Description

X Angle in radians

Thesin and sinh functionsfind the sine and hyperbolic sine of X, respectively.

Return Value

The sin function returnsthe sine result. The sinh function returns the hyperbolic
sine result.

sprintf function
Header file statement: #include <stdio.h>

Syntax:int sprintf (char *buffer, const char *format [, argument]...);

Parameter Description

buffer Storage location for output

format Format-control string

argument Optional arguments

count Maximum number of bytes to store

The sprintf function formats and stores a series of characters and valuesin buffer.
Each argument (if any) is converted and output according to the corresponding for-

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 83

mat specification intheformat. A null character is appended to the end of the charac-
ters written but is not counted in the return value.

Return Value

The sprintf function returns the number of characters stored in buffer, not counting
the terminating null character.

Format Specifiers

Format specifications always begin with a percent sign (%) and are read left to right.
When the first format specification is encountered, the value of the first argument
after format is converted and is output accordingly. The second format specification
causes the second argument to be converted and output, and so on. If there are more
arguments than there are format specifications, the extra arguments are ignored. The
results are undefined if there are not enough arguments for all the format specifica-
tions.

Each field of the format specification is a single character or anumber signifying a
particular format option. The simplest format specification contains only the percent
sign and atype character (for example, %). The optional fields, which appear before
the type character, control other aspects of the formatting.

After the % sign, the following format specifiers can be used in the following
sequence;

* Zero or more flagsthat modify the meaning of the conversion specification.

* An optiona decimal integer specifying a minimum field width (%). If the
converted value has fewer characters than the field width, it will be padded
with spaces on theleft (or right, if the left adjustment flag, described later, has
been given) to the field width.

* Anoptiona precision that gives the minimum number of digits to appear for
thed, i, 0, u, x and X conversions, the number of digits to appear after the
decimal point character for e, E and f conversions, the maximum number of
significant digits for the g and G conversions, or the maximum number of
charactersto be written from a string in s conversion. The precision takes the

UMO005504-0402 Run Time Environment

84

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

form of a period () followed by an optional decimal integer; if the integer is
omitted, it istreated as zero.

An optiona h specifying that afollowing d, i, 0, u, x or X conversion specifier
applies to a short int or unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value shall be
converted to short int or unsigned short int before printing); an optional h
specifying that the following n conversion specifier applies to a pointer to a
short int argument; an optional | (ell) specifying that afollowing d, i, o, u, x or
X conversion specifier appliesto along int or unsigned long int argument; an
optional | specifying that afollowing n conversion specifier appliesto apointer
to along int argument; or an optional L specifying that afollowing g, E, f, gor
G conversion specifier appliesto along double argument. If anh, | or L appears
with any other conversion specifier, the behavior is undefined.

A character that specifies the type of conversion to be applied.

A field width or precision, or both, may beindicated by an asterisk * instead of
adigit string. Inthis case, an int argument suppliesthe field width or precision.
The arguments specifying field width or precision, or both, shall appear (in that
order) before the argument (if any) to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A negative
precision argument istaken asif it were missing.

The flag characters and their meanings are:

— A minussign (-) meansthe result of the conversion will be left-justified
within the field.

— A plussign (+) meansthe result of asigned conversion will always begin
with aplus or minus sign.

— A space will be prepended to the result if the first character of a signed
conversionisnot asign, or if asigned conversion resultsin no characters.
If the space and + flags both appear, the space flag will be ignored.

— A pound sign means (#) the result will be converted to an “alternate
form”. For o conversion, it increases the precision to force the first digit
of the result to be a zero. For x (or X) conversion, a nonzero result will
have Ox (or 0X) prepended to it. For e, E, f, g and G conversions, the

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

result will always contain a decimal point character, even if no digits
follow it (normally, a decimal point character appears in the result of
these conversions only if a digit follows it). For g and G conversions,
trailing zeros will not be removed from the result.For other conversions,
the behavior is undefined.

— Leading zeroes (0), following any indication of sign or base, are used to
pad tothefidd widthfor d, i, o, u, X, X, €, E, f, gand G; no space padding
is performed. If the O and — flags both appear, the O flag will be ignored.
For d, i, 0, u, x and X conversions, if a precision is specified, the O flag
will beignored. For other conversions, the behavior is undefined.

The conversion specifiers and their meanings are:

— Thed, i, o, u, x, X specifiersconverttheint argument into a
signed decimal (d or i), unsigned octal (o), unsigned decimal (u) or
unsigned hexadecimal notation (x or X); thelettersabcdef are used for
X conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with an explicit precision of zero is no characters.

— Thef specifier convertsthe double argument into decimal notation using
the style [-]ddd.ddd, where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is explicitly zero, no decimal-
point character appears. |If adecimal-point character appears, at least one
digit appears beforeit. The value isrounded to the appropriate number of
digits.

— The e, E gpecifiers convert the double argument into the style [-
]d.ddde+/-dd, where there is one digit before the decimal -point character
(which is nonzero if the argument is nonzero) and the number of digits
after it is equd to the precision; if the precision is missing, it is taken as
6; if the precision is zero, no decimal-point character appears. The value
isrounded to the appropriate number of digits. The E conversion specifier
will produce a number with E instead of eintroducing the exponent. The

UMO005504-0402 Run Time Environment

86

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

exponent always contains at least two digits. If the value is zero, the
exponent is zero.

The g, G gpecifiers converts the double argument into the stylef or e
(or in style E in the case of a G conversion specifier), with the precision
specifying the number of significant digits. If an explicit precision is
zero, itistaken as 1. The style used depends on the value converted; style
e will be used only if the exponent resulting from such a conversion is
less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a decimal-point
character appears only if it is followed by a digit.

The ¢ specifier converts the int argument into an unsigned char, and the
resulting character iswritten.

The s specifier indicates that the argument is a pointer to an array of
character type(%%). Characters from the array are written up to (but not
including) a terminating null character; if the precision is specified, no
more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a
null character.

The p specifier indicatesthat the argument isapointer to void. Thevalue
of the pointer is converted to a sequence of printable characters, in an
implementation-defined manner.

The n specifier indicates that the argument is a pointer to an integer that
will contain the number of characters written to the output by the call to
sprintf. No argument is converted.

The percent (%) specifier indicates that no argument is converted. The
compl ete conversion specification is %%.

Notes: Thefollowing are rules for the above specifiers:

1. If aconversion specification isinvalid, the behavior is undefined.

2. If any argument is, or pointsto, a union or an aggregate (except for an
array of character type using %s conversion, or a pointer cast to be a
pointer to void using %p conversion) the behavior is undefined.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

87

3. Inno case does a nonexistent or small field width cause truncation of a
field; if the result of a conversion iswider than the field width, the field
is expanded to contain the conversion result.

sqrt FUNCTION

Header file statement: #include<math.h>

Syntax double sqgrt (double x) ;

Parameter Description
X Nonnegative floating-point value

The sgrt functions calcul ate the sguare root of x.
Return Value
The sgrt functions return the square-root result.

srand function
Header file statement: #include <stdlib.h>

Syntax: void srand(unsigned int seed);

Parameter Description
seed Seed for random-number generation

The srand function sets the starting point for generating a series of pseudorandom
integers. To reinitialize the generator, use 1 as the seed argument. Any other value

for seed sets the generator to arandom starting point.

The rand function is used to retrieve the pseudorandom numbersthat are generated.
Cdlling rand before any call to srand generates the same sequence as calling srand
with seed passed as 1.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

88 | Sriwe

Return Value

Thereis no return value.

sscanf function
Header file statement: #include <stdio.h>

Syntax: int sscanf (const char *buffer, const char *format [, argument]...);

Parameter Description

buffer Stored data

format Format-control string
argument Optional arguments

The sscanf function reads data from buffer into the locations given by each argu-
ment. Every argument must be a pointer to a variable with atype that correspondsto
atype specifier in format. The format controls the interpretation of the input fields.

Return Value

The sscanf function returns the number of fields that were successfully converted
and assigned. The return value does not include fields that were read but not
assigned.

The return value is EOF for an attempt to read at end-of-string. A return value of 0
means that no fields were assigned.

Format Specifiers

The format should be a multi-byte character sequence, beginning and ending in its
initial shift state. The format is composed of:

* zero or more directives:
* one or more white-space characters

* anordinary multi-byte character (not %); or a conversion specification.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Each conversion specification is introduced by the percent (%) character. After
the %, the following appear in sequence:

* Anoptional assignment-suppressing character (*).
* Anoptional decimal integer that specifies the maximum field width.

* Anoptiond h, 1 (dl)or L indicating the size of the receiving object. The
conversion specifiers d, i and n shall be preceded by h if the corresponding
argument is a pointer to short int rather than a pointer to int, or by | if itisa
pointer to long int. Similarly, the conversion specifiers o, u and x shall be
preceded by h if the corresponding argument is a pointer to unsigned short
rather than a pointer to unsigned int, or by | if it is a pointer to unsigned long
int. Finally, the conversion specifiers e, f and g shall be preceded by | if the
corresponding argument is a pointer to double rather than a pointer to float, or
by L if it is a pointer to long double. If an h, | or L appears with any other
conversion specifier, the behavior is undefined.

* A character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

The sscanf function executes each directive of the format in turn. If adirective
fails, as detailed below, the sscanf function returns. Failures are described as input
failures (due to the unavailability of input characters), or matching failures (due to
inappropriate input).

The following rules apply to the execution of adirective:
* A directive composed of white-space is executed by reading input up to the

first non-white-space character (which remains unread), or until nho more
characters can be read.

* A directive that is an ordinary multi-byte character is executed by reading the
next characters of the stream. If one of the characters differs from one
comprising the directive, the directive fails, and the differing and subsequent
characters remain unread.

* A directive that is a conversion specification defines a set of matching input
seguences, as described below for each specifier.

UMO005504-0402 Run Time Environment

89

90

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are
skipped, unless the specification includes a[, ¢ or n specifier.

Aninput item isread, unless the specification includes an n specifier. An
input item is defines asthe longest sequence of input characters (up to any
specified maximum field width) which is an initial subsequence of a
matching sequence. The first character, if any, after the input item
remains unread. If the length of the input item is zero, the execution of
the directive fails: this condition is a matching failure, unless an error
prevented input, in which caseit is an input failure.

Except in the case of a% specifier, the input item (or, in the case of a %n
directive, the count of input characters) is converted to atype appropriate
to the conversion specifier. If the input item is not a matching sequence,
the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the
conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion
result.

If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is
undefined.

The following are valid conversion specifiers:

The d specifier matches an optionally signed decimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 10 for the base argument. The corresponding
argument shall be a pointer to integer.

The 1 specifier matches an optionally signed integer, whose format isthe
same as expected for the subject sequence of the strtol function with the
value 0 for the base argument. The corresponding argument shall be a
pointer to integer.

The o specifier matches an optionally signed octal integer, whose format
isthe same as expected for the subject sequence of the strtol function with

Run Time Environment UMO005504-0402

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

the value 8 for the base argument. The corresponding argument shall be
apointer to unsigned integer.

The u specifier matches an optionaly signed decimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 10 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

The x specifier matches an optionally signed hexadecimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

Thee, £, g specifiers match an optionally signed floating-point
number, whoseformat isthe same as expected for the subject string of the
strtod function. The corresponding argument shall be a pointer to
floating.

The s specifier matches a sequence of non-white-space characters (%).
The corresponding argument shall be a pointer to the initial character of
an array large enough to accept the sequence and a terminating null
character, which will be added automatically.

The bracket ([) specifier matches a non-empty sequence of characters
(%) from a set of expected characters (the scanset). The corresponding
argument shall be a pointer to the initial character of an array large
enough to accept the sequence and a terminating null character, which
will be added automatically. The conversion specifier includes all
subsequent characters in the format string, up to and including the
matching right bracket (]). The characters between the brackets (the
scanlist) comprise the scanset, unless the character after the |eft bracket
isacircumflex (*), in which case the scanset contains all characters that
do not appear in the scanlist between the circumflex and the right bracket.
As a special case, if the conversion specifier begins with [] or [*], the
right bracket character is in the scanlist and the next right bracket
character is the matching right bracket that ends the specification. If a -
character isin the scanlist and is not the first, nor the second where the

Run Time Environment

91

92

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

first character is a ™, nor the last character, the behavior is
implementation-defined.

The ¢ specifier matches a sequence of characters (%) of the number
specified by thefield width (1 if no field width is present in the directive).
The corresponding argument shall be a pointer to the first character of an
array large enough to accept the sequence. No null character is added.

The p specifier matches an implementation-defined set of sequences,
which should be the same as the set of sequences that may be produced
by the P conversion of the sprintf function. The corresponding
argument shall be a pointer to a pointer to void. The interpretation of the
input item is implementation-defined; however, for any input item other
than a value converted earlier during the same program execution, the
behavior of the $P conversion is undefined.

Then specifier indicates that no input is consumed. The corresponding
argument shall be a pointer to integer that will contain the number of
charactersread from theinput so far by thiscall tothe sscanf function.
Execution of a %n directive does not increment the assignment count
returned at the completion of execution of the sscanf function.

The percent sign (%) matches a single %; no conversion or assignment
occurs. The complete conversion specification is %%.

Notes: The following are rules for the above specifiers

1. If aconversion specification isinvalid, the behavior is undefined.

2. The conversion specifiers E, G and X are also valid and behave the
same as, respectively, e, g and x.

3. If end-of-fileis encountered during input, conversion is terminated.

4. If end-of-file occurs before any characters matching the current direc-
tive have been read (other than |eading white-space, where permitted),
execution of the current directive terminates with an input failure; oth-
erwise, unless execution of the current directive isterminated with a
matching failure, execution of the following directive (if any) istermi-
nated with an input failure.

5. If conversion terminates on a conflicting input character, the offending
input character is left unread on the input. Trailing white-space

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

(including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments
is not directly determinable other than viathe %n directive.

strcat function
Header file statement: #include <string.hs>

Syntax:char *strcat (char *stringl, const char * string2);

Parameter Description
stringl Destination string
string2 Source string

The strcat function appends string? to stringl, terminates the resulting string
with anull character, and returns a pointer to the concatenated string (stringl).

The strcat function operates on null-terminated strings. The string arguments to
this function are expected to contain anull character (‘\0') marking the end of the
string. No overflow checking is performed when strings are copied or appended.

Return Value

The return values for this function are described above.

strchr function
Header file statement: #include <string.h>

Syntax:char *strchr (const char *string, int ¢);

Parameter Description
string Source string
c Character to be located

UMO005504-0402 Run Time Environment

94

eZ80 C-Compiler
Version 1.03 User Manual

s i
i

LiLdE

The strchr function returns a pointer to the first occurrence of ¢ (converted to
char) in string. The converted character ¢ may be the null character (‘\0’); the termi-
nating null character of string isincluded in the search. The function returns NULL if
the character is not found.

The strchr function operates on null-terminated strings. The string arguments to
these functions are expected to contain a null character (‘\0') marking the end of the
string.

Return Value

The return values for this function are described above.

strcmp function

Header file statement: #include <string.hs>

Syntax: int strcmp (const char *stringl, const char *string2);

Parameter Description
stringl String to compare
string2 String to compare

The stremp function compares stringl and string2 lexicographically and returns a
value indicating their relationship, as follows:

Value Meaning

< Ostringl less than string2

= Ostringl identical to string2
> Ostringl greater than string2

The st remp function operates on null-terminated strings. The string arguments to
these functions are expected to contain a null character (‘\0') marking the end of the
string.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II o5

Two strings containing characters located between ‘Z’ and ‘@ inthe ASCII table (‘[
T, v, and) compare differently depending on their case. For example,

the two strings, “ABCDE” and “ABCD””, compare one way if the comparison is
lowercase (“abcde” > “abcd™”) and compare the other way (*ABCDE” <“ABCD"")
if it isuppercase.

Return Value

The return values for this functions are described above.

strcpy function
Header file statement: #include <string.hs>

Syntax: char *strcpy (char *stringl, const char * string2);

Parameter Description
stringl Destination string
string2 Source string

The strcpy function copies string2, including the terminating null character, to the
location specified by stringl, and returns stringl.

The strecpy function operates on null-terminated strings. The string arguments to
this function are expected to contain anull character (‘\0') marking the end of the
string. No overflow checking is performed when strings are copied or appended.

Return Value

The return values for this function are described above.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

096 | Sriwe

strcspn function
Header file statement: #include <string.h>

Syntax: size t strcspn (const char *stringl, const char *string2);

Parameter Description
stringl Source string
string2 Character set

The strcspn functions return the index of the first character in stringl belonging
to the set of characters specified by string2. This value is equivalent to the length of
the initial substring of stringl consisting entirely of characters not in string2. Termi-
nating null characters are not considered in the search. If stringl begins with a char-
acter from string2, strcspn returns 0.

The strcspn function operates on null-terminated strings. The string argumentsto
these functions are expected to contain a null character (‘\0’) marking the end of the
string.

Return Value

The return values for this function are described above.

strlen function
Header file statement: #include <string.h>

Syntax:size t strlen (const char *string);

Parameter Description

string Null-terminated string

The strlen function returnsthe length, in bytes, of string, not including the termi-
nating null character (‘\0").

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

97

Return Value

This function returns the string length. There is no error returned.

strncat function
Header file statement: #include <string.hs>

Syntax:char *strncat (char *stringl, const char *string2, size t count);

Parameter Description

stringl Destination string

string2 Source string

count Number of characters appended

The strncat function appends, at most, the first count characters of string2 to
stringl, terminate the resulting string with anull character (‘\0'), and return a pointer
to the concatenated string (stringl). If count is greater than the length of string2, the
length of string2 is used in place of count.

Return Value
The return values for these functions are described above.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

08 | Sriwe

strncmp function
Header file statement: #include <string.h>

Syntax:int strncmp (const char *stringl, const char *string2, size t count);

Parameter Description

stringl String to compare

string2 String to compare

count Number of characters compared

The strnecmp function lexicographically compares, at most, the first count charac-
ters of stringl and string2 and return a val ue indicating the relationship between the
substrings, as listed below:

ValueMeaning

< Ostringl less than string2

= Ostringl identical to string2
> Ostringl greater than string2
Return Value

The return values for this function are described above.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

strncpy function
Header file statement: #include <string.h>

Syntax:char *strncpy (char *stringl, const char *string2, size t count);

Parameter Description

stringl Destination string

string2 Source string

count Number of characters copied

The st rnepy function copies count characters of string2 to stringl and return
stringl. If count isless than the length of string2, anull character (‘\0’) is not
appended automatically to the copied string. If count is greater than the length of
string2, the stringl result is padded with null characters (‘\0") up to length count.

Note that the behavior of st rncpy isundefined if the address ranges of the source

and destination strings overlap.
Return Value

The return values for this function are described above.

strpbrk FUNCTION
Header file statement: #include <string.h>

Syntax:char *strpbrk (constchar *stringl, const char *string2);

Parameter Description
stringl Source string
string2 Character set

The strpbrk function finds the first occurrence in stringl of any character from
string2. The terminating null character (‘\0’) is not included in the search.

UMO005504-0402 Run Time Environment

99

eZ80 C-Compiler
Version 1.03 User Manual

i

100 | Sri=

Return Value

Thisfunction returns a pointer to the first occurrence of any character from string2 in
stringl. A NULL return value indicates that the two string arguments have no char-

actersin common.

strrchr function
Header file statement: #include <string.h>

Syntax:char *strrchr (constchar *string, int c);

Parameter Description
string Searched string
c Character to be located

The strrchr function finds the last occurrence of ¢ (converted to char) in string.
The string’'s terminating null character (‘\0") isincluded in the search. (Use strchr to
find the first occurrence of cin string.)

Return Value

This function returns a pointer to the last occurrence of the character in the string. A
NULL pointer isreturned if the given character is not found.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

A
= i
LiLdE

101

strspn function
Header file statement: #include <string.h>

Syntax: size t strspn(const char *stringl, const char *string2);

Parameter Description
stringl Searched string
string2 Character set

The strspn function returns the index of the first character in stringl that does not
belong to the set of characters specified by string2. Thisvalueis equivalent to the
length of theinitial substring of stringl that consists entirely of characters from
string2 . The null character (‘\0') terminating string2 is not considered in the match-
ing process. If stringl begins with a character not in string2, strspn returns O.

Return Value

Thisfunction returns an integer val ue specifying the length of the segment in stringl
consisting entirely of charactersin string2.

strstr function
Header file statement: #include <string.hs>

Syntax: char *strstr(cons char *stringl, const char *string2)

Parameter Description
stringl Searched string
string2 String to search for

The strstr function returns a pointer to the first occurrence of string2 in stringl.

Return Value

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

102 | Sri=s

This function returns either a pointer to the first occurrence of string2 in stringl, or
NULL if it does not find the string.

strtok function
Header file statement: #include <string.h>

Syntax: char *strtok (char *stringl, const char * string2)

Parameter Description
stringl String containing token(s)
string2 Set of delimiter characters

The strtok function reads stringl as a series of zero or more tokens and string2 as
the set of characters serving as delimiter of the tokensin stringl. The tokensin
stringl may be separated by one or more of the delimiters from string2.

The tokens can be broken out of stringl by a series of calsto strtok. Inthefirst
call to strtok for stringl, strtok searches for the first token in stringl, skipping lead-
ing delimiters. A pointer to the first token is returned. To read the next token from
stringl, call strtok with aNULL value for the stringl argument. The NULL
stringl argument causes strtok to search for the next token in the previous token
string. The set of delimiters may vary from call to call, so string2 can take any value.

Note that calls to this function will modify stringl, because each time strtok is
called it inserts anull character (‘\0") after the token in stringl.

Return Value

Thefirsttime strtok iscalled, it returns apointer to the first token in stringl. In
later calls with the same token string, st rtok returns a pointer to the next token in
the string. A NULL pointer isreturned when there are no more tokens. All tokens are
null-terminated.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 103

strtod, strtol, strtoul functions
Header file statement: #include <stdlib.h>
Syntax: double strtod(const char *nptr, char **endptr);
long strtol(const char *nptr, char **endptr, int base);

unsigned long strtoul(const char *nptr, char **endptr, int base)

Parameter Description

nptr String to convert

endptr Pointer to character that stops scan
base Number base to use

Thestrtod, strtol, and strtoul functions convert a character string to a dou-
ble-precision value, along-integer value, or an unsigned long-integer value, respec-
tively. The input string is a sequence of characters that can be interpreted as a
numerical value of the specified type.

These functions stop reading the string at the first character they cannot recognize as
part of a number. This may be the null character (‘\0’) at the end of the string. With
strtol or strtoul, thisterminating character can also be the first numeric character
greater than or equal to base. If endptr is not NULL, apointer to the character that
stopped the scan is stored at the location pointed to by endptr. If no conversion could
be performed (no valid digits were found or an invalid base was specified), the value
of nptr is stored at the location pointed to by endptr.

The strtod function expects nptr to point to a string with the following form:
[whitespace] [sign] [digits] [.digits] [{d | D | e| E}[sign]digits]

A whitespace consists of space and tab characters, which areignored; signis either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the decimal point, at |east one must appear after the decimal point. The deci-
mal digits can be followed by an exponent, which consists of an introductory |etter
(b, D, e, or E) and an optionally signed decimal integer.

UMO005504-0402 Run Time Environment

104

eZ80 C-Compiler
Version 1.03 User Manual

i

= i
LiLdE

Thefirst character that does not fit this form stops the scan.

The strtol and strtoul functions expect nptr to point to a string with the fol-
lowing form:

[whitespace] [{ +[-}] [0 [{ x| X }]] [digits]

If base is between 2 and 36, then it is used as the base of the number. If baseis 0, the
initial characters of the string pointed to by nptr are used to determine the base. If the
first character is 0 and the second character isnot ‘X’ or ‘ X', then the string is inter-
preted as an octal integer; otherwise, it isinterpreted as a decimal number. If the first
character is‘0’ and the second character is‘x’ or ‘X', then the string is interpreted as
ahexadecimal integer. If the first character is* 1’ through ‘9’, then the string is inter-
preted as adecimal integer. The letters‘a’ through ‘Z' (or ‘A’ through ‘Z’) are
assigned the values 10 through 35; only letters whose assigned values are less than
base are permitted.

The strtoul function allows a plus (+) or minus (-) sign prefix; aleading minus sign
indicates that the return value is negated.

Return Value

The strtod function returns the value of the floating-point number, except when
the representation would cause an overflow, in which case they return +/-
HUGE_VAL. The functions return 0 if no conversion could be performed or an
underflow occurred.

The strtol function returnsthe value represented in the string, except when the
representation would cause an overflow, in which case it returns LONG_MAX or
LONG_MIN. The function returns O if no conversion could be performed.

The strtoul function returnsthe converted value, if any. If no conversion can be
performed, the function returns 0. The function returns ULONG_MAX on overflow.

In al these functions, errno is set to ERANGE if overflow or underflow occurs.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

105

tan, tanh function
Header file statement: #include<math.h>
Syntax: double tan (double x) ;
double tanh (double x);

Parameter Description
X Angle in radian

The tan and tanh functionsfind the tangent and hyperbolic tangent of x, respec-
tively.

Return Value

The tan function returns the tangent result. The tanh function returns the hyper-
bolic tangent result.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

tolower, toupper functions
Header file statement: #include <ctype.h>
Syntax:int tolower(intc);
int toupper(intc);
Parameter Description

c Character to be converted

The tolower and toupper routines macros convert asingle character, as
described below:

functionMacroDescription
tolowertolower Converts c to lowercase if appropriate
touppertoupper Converts ¢ to uppercase if appropriate

The tolower routine converts c to lowercase if ¢ represents an uppercase letter. Oth-
erwise, cisunchanged.

The toupper routine converts ¢ to uppercase if ¢ represents an lowercase | etter.
Otherwise, ¢ is unchanged.

Return Value

The tolower and toupper routines return the converted character c. Thereisno
error returned.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

i

IiLa :II 107

va_arg, va_end, va_start functions
Header file statement: #include <stdarg.h>
Syntax: type va_arg(va list arg_ptr, type);
void va_end(va listarg_ptr);

void va_start(va list arg_ptr, prev_param)

Parameter Description

arg_ptr Pointer to list of arguments

prev_param Pointer preceding first optional
argument

type Type of argument to be retrieved

Theva arg,va end,andva_ start macros provide aportable way to access
the arguments to a function when the function takes a variable number of arguments.
The macros are listed below:

Macro Description
va_arg Macro to retrieve current argument
va_end Macro to reset arg_ptr

va_ list The typedef for the pointer to list of arguments
va_start Macro to set arg_ptr to beginning of list of optional arguments

The macros assume that the function takes a fixed number of required arguments,
followed by avariable number of optional arguments. The required arguments are
declared as ordinary parameters to the function and can be accessed through the
parameter names. The optional arguments are accessed through the macrosin
STDARG.H, which set a pointer to the first optional argument in the argument list,
retrieve arguments from the list, and reset the pointer when argument processing is
compl eted.

The ANSI C standard macros, defined in STDARG.H, are used as follows;

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

i

108 | fiies

* All required arguments to the function are declared as parametersin the usua
way.

®* Theva_start macro setsarg_ptr to thefirst optional argument in thelist of
arguments passed to the function. The argument arg ptr must have
va_list type Theargument prev param isthe name of the required
parameter immediately preceding the first optional argument in the argument
list. If prev_param is declared with the register storage class, the macro's
behavior is undefined. The va_start macro must be used before va arg is used
for thefirst time.

®* Theva_arg macro doesthe following:

Retrieves a value of type from the location given by arg_ptr

Increments arg_ptr to point to the next argument in thelist, using the size
of type to determine where the next argument starts

Theva_arg macro can be used any number of timeswithin the function
to retrieve arguments from the list.

After all arguments have been retrieved, va_end resets the pointer to
NULL.

Return Value

The va_arg macro returnsthe current argument va_start andva_end do not
return values.

Run Time Environment UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

s i
= i
LiLdE

109

vsprintf function
Header file statement: #include <stdio.h>
#include <stdarg.h>

Syntax: int vsprintf (char *buffer, const char *format, va list arg_ptr);

Parameter Description

format Format control

argptr Pointer to list of arguments
buffer Storage location for output
count Maximum number of bytes

The vsprintf function formats data and outputs data to the memory pointed to by
buffer. This functions are similar to its counterpart sprintf, but accepts a pointer to a
list of argumentsinstead of an argument list.

The format argument has the same form and function as the format argument for the
sprintf function; see sprintf for a description of format.

The argptr parameter has type va list, which is defined in the include files
STDARGH. The argptr parameter pointsto alist of arguments that are converted
and output according to the corresponding format specifications in the format.

Return Value

Thereturn valuefor vsprintf isthe number of characterswritten, not counting
the terminating null character.

UMO005504-0402 Run Time Environment

eZ80 C-Compiler
Version 1.03 User Manual

Run Time Environment

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

g,

ZiLog 111

| nitialization and Link Files

INITIALIZATION FILE

Thefollowing is the initialization file that is included with the e280 C-Compiler
installation.

;***

P eZ80Boot: C Runtime Startup
P * Copyright (c¢) ZiLOG, 1999

;***

;***

. sect " .bss ", In case no-one
else names it

;***

.sect ".startup"; This should be placed properly
.def _c_into
.def __exit
.ref _main
.ref .BSS_BASE, .BSS_LENGTH
.ref .TOS
.OVERLAY .equ 1 ; Overlay support?
.INITBSS .equ 1 ; Zero the .bss section ?
.INITASCI .equ 1 ; Initialize ASCI

;**********************************

; Program entry point
;**********************************

_c_into:
1d sp, -TOS ; Setup SP

UMO005504-0402 Initialization and Link Files

eZ80 C-Compiler
Version 1.03 User Manual

.1f .INITASC

; Initialize ASCIO to 57.6K,

; 2 stop bit
1d
out0 (%46) ,a
1d
out0 (%1f),a
1d
out0 (%02),a
1d
out0 (%1la),a
1d

out0 (%1b),a ; asci_astcOh

1d
out0 (%
(

[

2),a

.if
P Initialize the

14
14
cp
jr
cp
jr
$3:
14

Initialization and Link Files

I

s, no flow control.
a,s%ff

; Port B AFSR,
a, %80

; CCR PHI = XTAL/1
a, %o

; asci _cntlb0 = 0

a,8

; asci_astcOl
a,o

a, %6¢c
; asci_asextO

a,%fe

; asci _statoO
a, %65

; asci_cntla0

.INITBSS

1]
(o]

=0

= 0x6c¢C

8 data bits,

enable ASCI,

no parity,

CSIO

= asci stat0 and Oxfe

= 0x65

.BSS section to zero

bc, .BSS_LENGTH; Check for non-zero length

a,o

a,b

nz, St

a,c

Z, C_bss done;

hl, .BSS BASE;

1
1
1

1

*

*
*
*

.BSS is zero-length

[h1l]=.bss

UMO005504-0402

1d

dec
byte’s taken care of

1d
modify zero flag

or

jr

1d

ldir
_c_bss_done:

.endif

a,c
Z, _C_bss_done;

I-*******************************I-

.ifdef
.ref
call
.endif

I-*******************************I-

1d
push
1d
add
push
push
nop
call
pop
pop
pop
__exit:
jr

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

LiL%E 113

; 1lst

Just 1 byte

de, .BSS_BASE+1; [del=.bss+1
; .INITBSS
.OVERLAY
___eZB800OverlayInit
___eZB800OverlayInit
hl,o0 ; hl=NULL
hl ; argv[0] = NULL
ix, 0
ix, sp ; ix=&argv[0]
ix ; &argv[0]
hl ; argc==0
_main ; main()
af ; clean the stack
af ; *
af ; *
S ;7

Initialization and Link Files

,-***

*

.def HUGE_ VAL
HUGE_ VAL
.long 80000000h

;***

*

.end

LINK FILE

Thefollowing isthe linker initialization file that is included with the e280 C-Compiler
installation.

R R R E SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
-a

-ohello

-mhello

assign .const rom

assign .startup rom

order .startup

range rom 08400h:0ffffh

define .TOS=highaddr of rom-1

define .BSS BASE=base of .bss

define .BSS LENGTH=length of .bss

define .CBAR=0BAh; Common/Bank Area Register (for C runtime)
eZ80boot .o

eZ80mmu.o

eZ80eval.o

hello.o

"..\lib\libc.1lib"

", .\1lib\1lhf.1lib"

eZ80 C-Compiler
Version 1.03 User Manual

LiLaE 115

MMU FILE

The following isthe MMU initialization file that is included with the €280 C-Com-
piler installation.
I-***

i eZ80mmu: C Runtime Overlay Manager
P * Copyright (c) ZiLOG, 1999

I-***

I-***

.FCDEPTH .equ 8 ; Maximum overlay call depth
.def ___eZ800verlay
.define .ovlhf, space=ROM
.section .ovlhf
jp ___eZB80Overlay
.ref .CBAR ; MMU Common/Bank

Area Register

I-***

bbr .equ 039h ; Bank Base
Register
cbar .equ 032Ah ; Common/Bank Area
Register
I-***
fcall .struct
ret .word
seg .byte
fclen .endstruct
fcstack .tag fcall

.bss fcstack, fclen* . FCDEPTH

.bss fcsp, 2

I-***

UMO005504-0402 Initialization and Link Files

eZ80 C-Compiler
Version 1.03 User Manual

116 | ziies

.page

,-***

1

Initialize the overlay manager

I-***

.def ___eZB800OverlayInit
___eZB80OverlayInit:

1d hl, fcstack; Prime the far call stack
pointer

1d (fcsp) ,hl; *

1d a, .CBAR ; Common/Bank Area
Register

outo0 (cbar) ,a; *

ret ; Done

I-***

.page

I-***

; Far Call entry point

; Stack layout: [sp]->address of (RST p)+1

I-***

.def ___eZ800verlay
___eZ800verlay:
push hl ; Allocate 1 word for indirect call
push ix ; Save frame pointer
1d ix,0 ; Establish our frame
add ix,sp ; *
push af ; Save scratch
push hl ; *
push de ; *
1d , (ix+4); [h1l]=RSTp+1

1
1d h, (ix+5); *
a

1d , (hl); (a)=Callee’s Bank Base Register
inc hl ;o
1d e, (hl) ; [de]l=&(function to call)

Initialization and Link Files UMO005504-0402

inc
1d
inc
14
14

ino0
cp
jr

14
14
jr

.stack:
1d

eZ80 C-Compiler
Version 1.03 User Manual

_?,
oies | 117

hl ;

d, (hl) ; =

hl ; [hl]l=&(next sequential instruction)

(ix+2) ,e ; Patch in callee address

(ix+3),d ; *

e, (bbr) ; (e)=Caller’s bank base register

a,e ; Caller’s BBR == Callee’s BBR ?

nz, .stack ; No ... need to stack it

(ix+4),1; Patch in caller’s return address
(ix+5) ,h; *
.common; Rejoin common

(ix+4),<_ eZ80OverlayRet ; Patch in kernel

return address

1d
ex
1d
1d
inc
1d
inc
ino0
1d
inc
1d
outo0

. common :
pop
pop
pop
pop

pointer

UMO005504-0402

(ix+5) ,> eZB80OverlayRet; *

de, hl ; (de)=Caller’s return address
hl, (fcsp) ; (hl)=Far call stack pointer
(hl) ,e ; Save caller’s return address
hl ; *

(hl),d P*

hl ; *

e, (bbr) ; (e)=Caller’s bank base register
(hl) ,e ; Save caller’s BBR

hl ; *

(fcsp) ,hl; Update far call stack pointer
(bbr) ,a ; Map the callee into view

de ; Recover scratch
hl ; *

af ; *

ix ; Recover frame

Initialization and Link Files

ret

; Dispatch the callee

;***

.page

;***

.def

___eZ800verlayRet:

push
push
push
1d
dec
1d
dec
outO
1d
dec
1d
1d
ex
pop
pop
ex
ret

___eZ800verlayRet

hl ; Save scratch
af ; *

de ; *

hl, (fcsp); Far call stack pointer

hl ; *

a, (hl) ; Caller’s bank base register
hl P

(bbr) ,a ; Remap caller
d, (hl) ; Reload caller’s return address
hl P

e, (hl) ; *

(fcsp) ,hl; Update far call stack pointer

de,hl ; (hl)=Caller’s return address

de ; Recover scratch

af ; *

(sp) ,hl ; Recover (hl); load caller’s return
; Back to caller

;***

.end

ASCII Character Set

Table 9. ASCII Character Set

Version 1.03 User Manual

eZ80 C-Compiler

g,

tiLed

Graphic Decimal Hexadecimal Comments
0 0 Null
1 1 Start Of Heading
2 2 Start Of Text
3 3 End Of Text
4 4 End Or Transmission
5 5 Enquiry
6 6 Acknowledge
7 7 Bell
8 8 Backspace
9 9 Horizontal Tabulation
10 A Line Feed
11 B Vertical Tabulation
12 C Form Feed
13 D Carriage Return
14 E Shift Out
15 F Shift In
16 10 Data Link Escape
17 11 Device Control 1
18 12 Device Control 2
19 13 Device Control 3
20 14 Device Control 4
21 15 Negative Acknowledge

UMO005504-0402

ASCI| Character Set

119

120

eZ80 C-Compiler
Version 1.03 User Manual

Table 9. ASCII Character Set (Continued)

Graphic Decimal Hexadecimal Comments
22 16 Synchronous Idle
23 17 End Of Block
24 18 Cancel
25 19 End Of Medium
26 1A Substitute
27 1B Escape
28 1C File Separator
29 1D Group Separator
30 1E Record Separator
31 1F Unit Separator
32 20 Space
! 33 21 Exclamation Point
" 34 22 Quotation Mark
35 23 Number Sign
$ 36 24 Dollar Sign
% 37 25 Percent Sign
& 38 26 Ampersand
' 39 27 Apostrophe
(40 28 Opening (Left) Parenthesis
) 41 29 Closing (Right) Parenthesis
* 42 2A Asterisk
+ 43 2B Plus
, 44 2C Comma
- 45 2D Hyphen (Minus)
46 2E Period

ASCI| Character Set

UMO005504-0402

Table 9. ASCII Character Set (Continued)

eZ80 C-Compiler
Version 1.03 User Manual

Graphic Decimal Hexadecimal Comments

/ 47 2F Slant
0 48 30 Zero
1 49 31 One
2 50 32 Two
3 51 33 Three
4 52 34 Four
5 53 35 Five
6 54 36 Six
7 55 37 Seven
8 56 38 Eight
9 57 39 Nine

58 3A Colon
; 59 3B Semicolon
< 60 3C Less Than
= 61 3D Equals
> 62 3E Greater Than
? 63 3F Question Mark
@ 64 40 Commercial At
A 65 41 Uppercase A
B 66 42 Uppercase B
C 67 43 Uppercase C
D 68 44 Uppercase D
E 69 45 Uppercase E
F 70 46 Uppercase F
G 71 47 Uppercase G

UMO005504-0402

ASCI| Character Set

121

122

eZ80 C-Compiler

Version 1.03 User Manual

Table 9. ASCII Character Set (Continued)

Graphic Decimal Hexadecimal Comments
H 72 48 Uppercase H
I 73 49 Uppercase |
J 74 4A Uppercase J
K 75 4B Uppercase K
L 76 4C Uppercase L
M 77 4D Uppercase M
N 78 4E Uppercase N
0 79 4F Uppercase 0
P 80 50 Uppercase P
Q 81 51 Uppercase Q
R 82 52 Uppercase R
S 83 53 Uppercase S
T 84 54 Uppercase T
U 85 55 Uppercase U
\% 86 56 Uppercase V
W 87 57 Uppercase W
X 88 58 Uppercase X
Y 89 59 Uppercase Y
Z 90 5A Uppercase Z
[91 5B Opening (Left) Bracket
\ 92 5C Reverse Slant
] 93 5D Closing (Right) Bracket
A 94 5E Circumflex
_ 95 SF Underscore
‘ 96 60 Grave Accent

ASCI| Character Set

UMO005504-0402

Table 9. ASCII Character Set (Continued)

eZ80 C-Compiler

Version 1.03 User Manual

Graphic Decimal Hexadecimal Comments
a 97 61 Lowercase A
b 98 62 Lowercase B
C 99 63 Lowercase C
d 100 64 Lowercase D
e 101 65 Lowercase E
f 102 66 Lowercase F
g 103 67 Lowercase G
h 104 68 Lowercase H
[105 69 Lowercase |
] 106 6A Lowercase J
k 107 6B Lowercase K
1 108 6C Lowercase L
m 109 6D Lowercase M
n 110 6E Lowercase N
o] 111 6F Lowercase O
p 112 70 Lowercase P
q 113 71 Lowercase Q
r 114 72 Lowercase R
S 115 73 Lowercase S
t 116 74 Lowercase T
u 117 75 Lowercase U
\Y 118 76 Lowercase V
w 119 77 Lowercase W
X 120 78 Lowercase X
y 121 79 Lowercase Y

UMO005504-0402

ASCI| Character Set

124

eZ80 C-Compiler

Version 1.03 User Manual

Table 9. ASCII Character Set (Continued)

Graphic Decimal Hexadecimal Comments
z 122 7A Lowercase Z
{ 123 7B Opening (Left) Brace
| 124 7C Vertical Line
} 125 7D Closing (Right) Brace
~ 126 TE Tilde
127 7F Delete

ASCI| Character Set

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

7

ZiLog 125

Problem/Suggestion Report Form

If you experience any problems while using this product, or if you note any inaccura-
cies while reading the User's Manual, please copy this form, fill it out, then mail or
fax it to ZiL.OG. We also welcome your suggestions!

Customer Information

Name Country
Company Telephone
Address Fax Number
City/State/ZIP E-Mail Address

Product Information and Return Information

Serial # or Board Fab #/Rev. # ZiLOG, Inc.

Software Version System Test/Customer Support

Manual Number 910 E. Hamilton Ave., Suite 110, MS 4-2
Host Computer Description/Type Campbell, CA 95008

Fax Number: (408) 558-8536

Email: tools@zilog.com

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are reporting
a specific problem, include all steps leading up to the occurrence of the problem.
Attach additional pages as necessary.

UMO005504-0402 Problem/Suggestion Report Form

Glossary

eZ80 C-Compiler
Version 1.03 User Manual

g,

ZiLog 127

AABS

Absolute Value

Address Space

Physical or logical area of the target system's
Memory Map. The memory map could be physically
partitioned into ROM to store code, and RAM for
data.

The memory can also be divided logically to form
separate areas for code and data storage.

ANSI American National Standards Institute.

ASCII American Standard Code of Information Inter
change.

ASM Assembler File.

B Binary.

Binary Number system based on 2. A binary digit is a bit.

Bisynchronous
Communications

A protocol for communications data transfer used
extensive in mainframe computer networks. The
sending and receiving computers synchronize their
clocks before data transfer may begin.

C-Compiler A compiler program that is used to link and build files
written in C, convert them into assembly and create a
hex file that can be downloaded or run on a processor.

Bit A digit of a binary system. It has only two possible
values: O or 1.

BPS Bits Per Second. Number of binary digits transmitted
every second during a data-transfer procedure.

Buffer Storage Area in Memory.

Bug A defect or unexpected characteristic or event.

Bus In Electronics, a parallel interconnection of the

internal units of a system that enables data transfer
and control Information.

UMO005504-0402

Glossary

128

eZ80 C-Compiler

Version 1.03 User Manual

E'.'L"-:':’I

Byte A collection of four sequential bits of memory. Two
sequential bytes (8 bits) comprise one word.

CALL This command invokes a subroutine

Checksum A field of one or more bytes appended to a block of n
words which contains a truncated binary sum formed
from the contents of that block. The sum is used to
verify the integrity of data in a ROM or on a tape.

CcoOM Device name used to designate a communication

port.

Control Section

A continuous logical area containing code or user
data. Each control section has a name. The linker
puts all those control sections with the same name in
one entity. The linker provides address spaces to the
control sections. There are either absolute control
sections or relocatable ones.

CPU

Central Processing Unit.

Cross-Linkage Editor

A linkage editor that executes on a processor that is

DSP

Digital Signal Processing. A specialized micropro-
cessor that is tailored to perform high repetition math
processing and improve signal quality.

Emulator

An emulation device. For example, an In-Circuit
Emulator (ICE) module duplicates the behavior of the
chip it emulates in the circuit being tested.

External Symbol

A symbol that is referenced in the current program file
but is defined in another program file.

GUI Graphical User Interface. The windows and text that a
user sees on their computer screen when they are
using a program.

H Hexadecimal, Half-Carry Flag.

Hex Hexadecimal.

Hexadecimal

A Base-16 Number System. Hex values are often
substituted for harder to read binary numbers.

ICE

In-Circuit Emulator. A ZiLOG product which supports
the application design process.

Glossary

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

LiL%E 129

IE Interrupt Enable.

IM Immediate Data Addressing Mode.

IMASK Interrupt Mask Register.

IMR Interrupt Mask Register.

INC Increment.

INCW Increment Word.

Initialize To establish start-up parameters, typically involving
clearing all of some part of the device’s memory space.

Instruction Command.

INT Interrupt.

Internal Symbol

A symbol that is defined in a program file. This symbol
could be visible to multiple functions within the same
program file.

1/0 Input/Output. In computers, the part of the system that
deals with interfacing to external devices for input or
output, such as keyboards or printers.

IPR Interrupt Priority Register.

Ir Indirect Working-Register Pair Only.

IR Infrared. A light frequency range just below that of
visible light.

IRQ Interrupt Request.

ISDN Integrated Services Digital Network.

ISO International Standards Organization.

JP Jump.

JR Jump Range.

Library A File Created by a Librarian. This file contains a
collection of object modules that were created by an
assembler or directly by a C compiler.

Local Symbol Symbol visible only to a particular function within a
program file.

LSB Least Significant Bit.

MCU Microcontroller or Microcomputer Unit.

Ml Minus.

UMO005504-0402

Glossary

eZ80 C-Compiler
Version 1.03 User Manual

y 4
130 | wiee

MLD Multiply and Load.

MPYA Multiply and ADD.

MPYS Multiply and Subtract.

MSB Most Significant Bit.

Nibble A Group of 4 Bits.

NMI Non-Maskable Interrupt.

NOP No Operation.

Object Module Programming code created by assembling a file with
an assembler or compiling a file with a compiler.
These are relocatable object modules and are input to
the linker in order to produce an executable file.

OMF Object Module Format.

OPC Operation Code.

Op Code Operation Code.

OTP One-Time Programmable.

PCON Port configuration register.

PER Peripheral. A device which supports the import or
output of information.

POP Retrieve a Value from the Stack.

POR Power-On Reset.

Port The point at which a communications circuit termi-
nates at a Network, Serial, or Parallel Interface card.

PRE Prescaler.

PROM Programmable Read-Only Memory.

Protocol Formal set of communications procedures governing
the format and control between two communications
devices. A protocol determines the type of error
checking to be used, the data compression method, if
any, how the sending device will indicate that it has
finished sending a message, and how the receiving
device will indicate that it has received a message.

PRT Programmable Reload Timer or Print.

PTR Pointer.

Glossary UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

PTT

Post, Telephone, and Telegraph. Agency in many
countries that is responsible for providing telecommu-
nication approvals.

Public/Global Symbol

A programming variable that is available to more than
one program file.

PUSH Store a Value In the Stack.

r Working Register Address.

R Register or Working-Register Address, Rising Edge.

RA Relative Address.

RAM Random-Access Memory. A memory that can be
written to or read at random. The device is usually
volatile, which means the data is lost without power.

RC Resistance/Capacitance.

RD Read.

RES Reset.

ROM Read-Only Memory. Nonvolatile memory that stores
permanent programs. ROM usually consists of
solid-state chips.

ROMCS ROM Chip Select.

RP Register Pointer.

RR Read Register or Rotate Right.

SCF Set C Flag.

SIO Serial Input/Output.

SL Shift Left or Special Lot.

SLL Shift Left Logical.

SMR Stop Mode Recovery.

SN Serial Number.

SOIC Small Outline IC.

SP Stack Pointer.

SPH Stack Pointer High.

SPI Serial Peripheral Interface.

SPL Stack Pointer Low.

SRAM Static Random Access Memory.

UMO005504-0402

Glossary

132

eZ80 C-Compiler

Version 1.03 User Manual

y 4
iee

SR Shift Right.

SRA Shift Right Arithmetic.

SRC Source.

SSI Small Scale Integration. Chip that contains 5 to 50
gates or transistors.

Static Characteristic of Random Access Memory that
enables It to operate without clocking signals.

ST Status.

STKPTR Stack Pointer.

SUB Subtract.

SVGA Super Video Graphics Adapter.

S/W Software.

SWI Software Interrupt.

Symbol Definition

Symbol defined when the symbol name is associ-
ated with a certain amount of memory space,
depending on the type of the symbol and the size of
Its dimension.

Symbol Reference

Symbol referenced within a program flow, when-
ever It is accessed for a read, write, or execute
operation.

SYNC Synchronous Communication Protocol. An event or
device is synchronized with the CPU or other process
timing.

TC Time Constant.

TCM Trellis Coded Modulation.

TCR Timer Control Register.

TMR Timer Mode Register.

UART Universal Asynchronous Receiver Transmitter.
Component or functional block that handles asynchro-
nous communications. Converts the data from the
parallel format in which it is stored, to the serial format
for transmission.

UGE Unsigned Greater Than or Equal.

UGT Unsigned Greater Than.

Glossary

UMO005504-0402

eZ80 C-Compiler
Version 1.03 User Manual

LiL%E 133

ULE Unsigned Less Than or Equal.

ULT Unsigned Less Than.

USART Universal Synchronous/Asynchronous
Receiver/Transmitter. Can handle synchronous as well
as asynchronous transmissions.

USB Universal Serial Bus.

uscC Universal Serial Controller.

uTB Use Test Box. A board or system to test a particular

V chip in an end-use application.

Volt, Overflow Flag.

WDT Watch-Dog Timer. A timer that, when enabled under
normal operating conditions, must be reset within the
time period set within the application (WDTMR (1,0)). If
the timer is not reset, a Power-on Reset occurs. Some
earlier manuals refer to this timer as the WDTMR.

WDTOUT Watch-Dog Timer Output.

Word Amount of data a processor can hold in its registers
and process at one time. A DSP word is often 16 bits.
Given the same clock rate, a 16-bit controller
processes four bytes in the same time it takes an 8-bit
controller to process two.

WR Write.

WS Wafer Sort.

X Indexed Address, Undefined.

XOR Bitwise Exclusive OR.

XTAL Crystal.

Z Zero, Zero Flag.

ZASM ZiLOG Assembler. ZiLOG"s program development
environment for DOS.

ZDS ZiLOG Developer Studio. ZiLOG"s program develop-

ment environment for Windows 95/98/NT.

ZiLOG Symbol Format

Three fields per symbol including a string containing
the Symbol Name, a Symbol Attribute, and an Absolute
Value in Hexadecimal.

UMO005504-0402

Glossary

eZ80 C-Compiler
Version 1.03 User Manual

134 E'.'L"-:':’I

ZLD ZiLOG Linkage Editor. Cross linkage editor for ZiLOG"s
microcontrollers.

ZLIB ZiLOG Librarian. Librarian for creating library files from
locatable object modules for the ZiLOG family of
microcontrollers.

ZMASM ZiLOG Macro Cross Assembler. ZiLOG"s program
development environment for Windows 3.1.

ZOMF ZiLOG"s Object Module Format. The object module

format used by the linkage editor.

Glossary UMO005504-0402

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	ZDS Environment
	Run-Time Model

	Minimum Requirements
	Installing the eZ80 C-Compiler
	Registry Keys

	Installing ZDS
	Sample Session
	Create a Project and Select a Processor
	Configuring the Compiler Using the Wizard

	Adding Included Files
	Configuring the Compiler
	Configure Settings
	Compiling and Connecting to the Emulator
	Connect to the Emulator

	Contacting ZiLOG Customer Support

	C-Compiler Overview
	Language Extensions
	Default Memory Qualifiers
	Pointers
	I/O Address Space
	Accessing I/O Address Space

	Interrupt Functions
	Using the DOS Command Line
	Command Line Format
	Command Line Switches
	Command Line Examples

	Optimization Levels
	Debugging Code after Optimization
	Level 2 Optimizations
	Level 3 Optimizations
	Level 4 Optimizations

	Understanding Errors
	Enabling Warning Messages

	Included Files
	Predefined Names
	Generated Assembly File
	Object Sizes
	Section Names
	Incorporating Assembly with C
	Incorporating C with Assembly

	Linking Files
	Introduction
	What the Linker Does

	Using the Linker with the C-Compiler
	Run Time Initialization File
	Installed Files

	Invoking the Linker
	Using the Linker in ZDS
	Using the Linker with the Command Line

	Linker Symbols
	Linker Command File
	Linker Command Line
	Command Line Specifications
	Linker Command Line Options
	Symbol File In ZiLOG Symbol Format

	Using the Librarian
	Command Line Options

	Run Time Environment
	Function Calls
	Function Call Steps
	Special Cases for a Called Function

	Overlay Support
	Enabling Overlays

	Using the Run-Time Library
	Installed files

	Library Functions
	abs function
	acos function
	asin function
	atan, atan2 function
	_asm function
	atof, atoi, atol functions
	ceil function
	cos, cosh function
	div function
	exp function
	fabs function
	floor function
	fmod function
	frexp function
	labs function
	ldexp function
	ldiv function
	log, log10 function
	memchr function
	memcmp function
	memcpy function
	memmove function
	memset function
	modf function
	pow function
	rand function
	sin, sinh function
	sprintf function
	sqrt FUNCTION
	srand function
	sscanf function
	strcat function
	strchr function
	strcmp function
	strcpy function
	strcspn function
	strlen function
	strncat function
	strncmp function
	strncpy function
	strrchr function
	strspn function
	strstr function
	strtok function
	strtod, strtol, strtoul functions
	tan, tanh function
	tolower, toupper functions
	va_arg, va_end, va_start functions
	vsprintf function

	Initialization and Link Files
	Initialization File
	Link File
	MMU File

	ASCII Character Set
	Problem/Suggestion Report Form
	Glossary

